首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structures of plasma flows in close binary systems whose accretors have strong intrinsic magnetic fields are studied. A close binary system with the parameters of a typical polar is considered. The results of three-dimensional numerical simulations of the matter flow from the donor into the accretor Roche lobe are presented. Special attention is given to the flow structure in the vicinity of the inner Lagrangian point, where the accretion flow is formed. The interaction of the accretion-flow material from the donor’s envelope with the magnetic field of the accretor results in the formation of a hierarchical structure of the magnetosphere, because less dense areas of the accretion flow are stopped by the magnetic field of the white dwarf earlier than more dense regions. Taking into account this kind of magnetosphere structure can affect analysis results and interpretation of the observations.  相似文献   

2.
The results of three-dimensional MHD numerical simulations are used to investigate the characteristic properties of the magnetic-field structures in the accretion disks of semi-detached binary systems. It is assumed that the intrinsic magnetic field of the accretor star is dipolar. Turbulent diffusion of the magnetic field in the disk is taken into account. The SS Cyg system is considered as an example. The results of the numerical simulations show the intense generation of a predominantly toroidal magnetic field in the accretion disk. Magnetic zones with well defined structures for the toroidal magnetic field form in the disk, which are separated by current sheets in which there ismagnetic reconnection and current dissipation. Possible observational manifestations of such structures are discussed. It is shown that the interaction of a spiral precessional wave with the accretor’s magnetosphere could lead to quasi-periodic oscillations of the accretion rate.  相似文献   

3.
The results of 3D modeling of the formation of the accretion disks of intermediate polars are presented. A model with misaligned rotation axes of accretor and the orbit is onsidered, in which it is assumed that the white dwarf has a dipolar magnetic field with its symmetry axis inclined to the whitedwarf rotation and orbital axes. The computations show that, in the early stages of formation of the disk, the action of magnetic field is able to create the initial (seed) inclination of the disk. This inclination is then supported mainly by the dynamical pressure of the flow from the inner Lagrangian point L1. As themass of the disk increases, the inclination disappears. Under certain conditions, the disk inclination does not arise in systems with misaligned white-dwarf rotation and orbital axes. The influence of the magnetic field and asynchronous rotation of the accretor may result in the formation of spiral waves in the disk with amplitudes sufficient to be detected observationally.  相似文献   

4.
Typical changes of the accretion-disk structures in intermediate polars are studied as a function of the inclination of the accretor’s magnetic field. Thre-dimensional numerical modeling was performed for seven differentmagnetic-axis inclinations. The results showthat the system forms a magnetosphere region, and that column accretion occurs. The action of the magnetic field tilts the inner parts of the disk along the magnetic axis of the accretor. The magnetic-field inclination appreciably influences matter transfer in the disk and accretion processes. Generation of toroidal magnetic field, magnetic braking, and alignment of the dipole magnetic field result in oscillations of the accretion rate. A direct relationship between the field inclination and the oscillation amplitude is found, as well as an inverse relationship between the field inclination and the oscillation period.  相似文献   

5.
Soft X-ray data for prolonged flares in subgiants in RS CVn binary systems and some other active late-type stars (AB Dor, Algol) are analyzed. During these nonstationary events, a large amount of hot plasma with temperatures exceeding 108 K exists for many hours. Numerical simulations of gas-dynamical processes in the X-ray source—giant loops—can yield reliable estimates of the plasma parameters and flare-source size. This confirms that such phenomena exist while considerable energy is supplied to the top part of a giant loop or system of loops. Refined estimates of the flare energy (up to 1037 erg) and scales contradict the widely accepted idea that prolonged X-ray flares are associated with the evolution of local magnetic fields. The energy of the current component of the large-scale magnetic field arising during the ejection of magnetic field by plasma jets or stellar wind is estimated. Two cases are considered: a global stellar field and fields connecting regions with oppositely directed unipolar magnetic fields. The inferred energy of the current component of the magnetic field associated with distortion of the initial MHD configuration is close to the total flare energy, suggesting that large-scale magnetic fields play an important role in prolonged flares. The flare process encompasses some portion of a streamer belt and may propagate along the entire magnetic equator of the star during the most powerful prolonged events.  相似文献   

6.
This paper continues a series of studies on three-dimensional hydrodynamical modeling of mass transfer in the binary system β Lyr. The model takes into account the stellar wind from the donor star, which outflows at a rate of , as demonstrated by radio observations. This stellar wind should appreciably influence the formation of the envelope in the binary. Computations have shown that the interaction of the matter flow from the Lagrangian point L1 and the accretor wind leads to the formation of an optically and geometrically thick gaseous envelope around the accretor. The matter flow meets the accretor wind, spreads out, accumulates over the outer edge of the wind, and forms a geometrically thick envelope (disk). The wind flows freely at the center of the disk, over the accretor poles. Jet-like structures arise beyond the wind-propagation region, above the thick accretion disk. The matter flowing from the outer edge of the disk interacts with the donor wind, leading to the formation of a standing shock between L1 and the outer edge of the disk, in the direction corresponding to orbital phase 0.25. This shock is able to explain the origin of the X-ray radiation from the binary β Lyr.  相似文献   

7.
We have performed three-dimensional magnetohydrodynamical calculations of stream accretion in cataclysmic variable stars for which the white dwarf primary possesses a strong, complex magnetic field. These calculations were motivated by observations of polars: cataclysmic variables containing white dwarfs with magnetic fields sufficiently strong to prevent the formation of an accretion disk. In this case, an accretion stream flows from the L1 point and impacts directly onto one or more spots on the surface of the white dwarf. Observations indicate that the white dwarfs in some binaries possess complex (non-dipolar) magnetic fields. We performed simulations of ten polars, with the only variable being the azimuthal angle of the secondary with respect to the white dwarf. These calculations are also applicable to asynchronous polars, where the spin period of the white dwarf differs by a few percent from the orbital period. Our results are equivalent to calculating the structure of one asynchronous polar at ten different spin-orbit beat phases. Our models have an aligned dipolar plus quadrupolar magnetic field centered on the whitedwarf primary. We find that, with a sufficiently strong quadrupolar component, an accretion spot arises near the magnetic equator for slightly less than half our simulations, while a polar accretion zone is active for most of the remaining simulations. For two configurations, accretion at a dominant polar region and in an equatorial zone occurs simultaneously. Most polar studies assume that the magnetic field is dipolar, especially for single-pole accretors. We demonstrate that, with the orbital parameters and magnetic-field strengths typical of polars, the accretion flow patterns can vary widely in the case of a complex magnetic field. This may make it difficult formany polars to determine observationally whether the field is pure dipolar or is more complex, but there shoulid be indications for some systems. In particular, a complex magnetic field should be suspected if there is an accretion zone near the white dwarf’s equator (assumed to be in the orbital plane) or if there are two or more accretion regions that cannot be fitted by dipolar magnetic field. Magnetic-field constraints are expected to be substantially stronger for asynchronous polars, with clearer signs of complex field geometry due to changes in the accretion flow structure as a function of azimuthal angle. These indications become clearer in asynchronous polars because each azimuthal angle corresponds to a different spin-orbit beat phase.  相似文献   

8.
We present three-dimensional hydrodynamical modeling of mass transfer in the close binary system β Lyr taking into account explicitly radiative cooling and the stellar wind of the accretor. Our computations show that flow forces wind out from the orbital plane, where an accretion disk with a radius of 0.4–0.5 and a height of about 0.15–0.17 (in units of orbital separation) is formed. Gas motions directed upward from the orbital plane are initiated in the region of interaction of the flow from L1 and the accretor wind (x = 0.91, y = ?0.17); i.e., a jetlike structure forms. This structure has the shape of a gas pillar above the orbital plane, where gas moves with the velocity of stellar wind. The number density of the gas in this structure is about 1014 cm?3, and its temperature is 20 000–45 000 K. At heights of about 0.15–0.20 above the orbital plane, in the region between the jetlike structure and the disk, two spiral shocks form. It is possible that the emission lines observed in the spectrum of β Lyr binary originate in this region.  相似文献   

9.
Three-dimensional numerical hydrodynamical modeling of a radiative wind and accretion disk in a close binary system with a compact object is carried out, using the massive X-ray binary LMC X-3 as an example. This system contains a precessing disk, and may have relativistic jets. These computations show that an accretion disk with a radius of about 0.20 (in units of the component separation) forms from the radiative wind from the donor when the action of the wind on the central source is taken into account, when the accretion rate is equal to the observed value (about 3.0 × 10?8 M /year, which corresponds to the case when the donor overflows its Roche lobe by nearly 1%). It is assumed that the speed of the donor wind at infinity is about 2200 km/s. The disk that forms is geometrically thick and nearly cylindrical in shape, with a low-density tunnel at its center extending from the accretor through the disk along the rotational axis. We have also modeled a flare in the disk due to short-term variations in the supply of material through the Lagrange point L1, whose brightnesses and durations are able to explain flares in cataclysmic variables and X-ray binaries. The accretion disk is not formed when the donor underfills its Roche lobe by 0.5%, which corresponds to an accretion rate onto the compact object of 2.0 × 10?9 M /year. In place of a disk, an accretion envelope with a radius of about 0.03 forms, within which gas moves along very steep spiral trajectories before falling onto the compact object. As in the accretion-disk case, a tunnel forms along the rotational axis of the accretion envelope; a shock forms behind the accretor, where flares occur in a compact region a small distance from the accretor at a rate of about six flares per orbital period, with amplitudes of about 10 m or more. The flare durations are two to four minutes, and the energies of individual particles at the flare maximum are about 100–150 keV. These flares appear to be analogous to the flares observed in gamma-ray and X-ray burst sources. We accordingly propose a model in which these phenomena are associated with massive, close X-ray binary systems with component-mass ratios exceeding unity, in which the donor does not fill its Roche lobe. Although no accretion disk forms around the compact object, an accretion region develops near the accretor, where the gamma-ray and X-ray flares occur.  相似文献   

10.
We present a three-dimensional hydrodynamical modeling of mass transfer in the close binary system β Lyr taking radiative cooling into account explicitly. The assumed mass-transfer rate through the first Lagrangian point L1 is 3.0 × 10?5 M /yr. A flow with a radius of 0.14–0.16 (in units of orbital separation) is formed in the vicinity of L1. This flow forms an accretion disk with a radius close to 23 R and a thickness of about 10 R . The accretion disk is surrounded by an outer envelope that extends beyond the computational domain. A spiral shock forms at the outer boundary of the disk at orbital phase 0.25. Geometrically, the disk is toruslike, while the outer envelope is cylinder-like. In this model, which has low temperatures inside the computational domain, no jetlike structures form in the disk. It is possible that the jetlike structure in β Lyr arises due to the interaction of radiative wind from the accretor with the flow from L1. In the model considered, a hot region exists over the poles of the accretor at a height of about 0.21. The amount of matter lost by the system is close to 10% of the mass flowing through L1; i.e., the mass transfer in the system is almost conservative. For a mass-transfer rate of 3.0 × 10?5 M /yr, the orbital period varies by 40.4 s/yr. This means that the observed variation of the orbital period of 19 s/yr should correspond to a mass-transfer rate close to 1.0 × 10?5 M /yr.  相似文献   

11.
We have carried out three-dimensional hydrodynamical modeling of the formation of an accretion disk around a compact object due to radiative wind of a massive donor in a close binary system. The massive X-ray binary Cen X-3, which has a precessing accretion disk and may possess relativistic jets, is considered as an example. The computations show that, when the action of the central compact object on the formation of the wind is taken into account, the radiative wind forms an accretion disk with a radius of 0.16 (in units of the orbital separation), which accretes at a rate close to 1 × 10?8 M /yr. In this model, the disk is spherically symmetrical and geometrically thick, with a tunnel going from the accretor to the upper layers of the disk along the accretor’s rotational axis at the disk center. The number density of the gas in the tunnel is five orders of magnitude lower than in the disk. The wind-disk interaction at the outer boundary of the disk produces a strong shock (wind-disk shock) directed toward the donor. The black-body emission of the disk and tunnel is nonstationary, and resembles the outbursts observed in Cen X-3. An analysis of the location of the region of nonstationary emission suggests that the outbursts occur in the wind-disk shock.  相似文献   

12.
A model for magnetic reconnection in high-conductivity plasma in the solar corona is analyzed in a strong-magnetic-field approximation. The model includes a Syrovatskii current layer and magnetohydrodynamic (MHD) discontinuities attached to the ends of the layer. A two-dimensional analytical solution for the magnetic field is used to compute the distributions of the plasma flow velocity and plasma density in the vicinity of the corresponding current configuration. The properties of jumps in the density and velocity along the attached discontinuities are studied. Based on the character of the variations of the magnetic field and plasma flows at the MHD discontinuities, it is shown that, with the parameter values considered, an MHDdiscontinuity can include regions of trans-Alfvénic, fast, and slowshocks. The results obtained could be useful to explain the presence of “super-hot” (with effective electron temperatures exceeding 10 keV) plasma in solar flares. Other possible applications of the theory of discontinuous flows near regions of magnetic reconnection to analogous non-stationary phenomena in astrophysical plasmas are noted.  相似文献   

13.
We consider the evolution of a collisionless proton-electron plasma with an initial Lorentz factor ?? ?? 223 in the vicinities of astrophysical objects such as black holes, gamma-ray bursts, etc. A three-dimensional, numerical model describing the interaction of the plasma with the electromagnetic field in the Vlasov-Maxwell equations is used to simulate the flow of a relativistic neutral plasma. The modeling results can be used to estimate the conversion of the proton kinetic energy to the energy of electrons and the electromagnetic field.  相似文献   

14.
A numerical solution of the full set of MHD equations shows the generation of a heliospheric current sheet during the thermal expansion of the corona. Calculations were performed for a compressible plasma taking into account dissipative terms and anisotropy of the thermal conductivity of the magnetized plasma. It is shown that the current sheet is not magnetically neutral. The sheet contains a normal component of the magnetic field, which plays a fundamental role during the formation of the sheet and in the stationary state. The sheet is stable against MHD perturbations, which are apparently carried away by the plasma flow. For the numerical scheme chosen, the minimum sheet thickness is determined by the length of the spatial integration step. The PERESVET code was used for the calculations.  相似文献   

15.
Astronomy Reports - We performed a three-dimensional numerical MHD simulation of the flow structure in the asynchronous polar CD Ind during the switching phases between the magnetic poles of the...  相似文献   

16.
Using 3D gas dynamics, we numerically simulate accretion-disk formation in typical cataclysmic variable intermediate polars with dipolar magnetic fields (B a = 105?5 × 105 G) and misaligned white-dwarf magnetic and rotation axes. Our simulations confirm that a significant misalignment of the axes results in a significant misalignment of the disk to the orbital plane. However, over time, this disk tilt disappears: early in the simulation, the initial particle positions in the rarefied tilted disk are governed solely by the magnetic field of the white dwarf. Due to the increasing disk mass and hence increasing disk gas pressure, the tilted disk eventually becomes decoupled from the magnetic field. The tidal action of the donor leads to a retrograde (i.e., nodal) precession of the tilted disk’s streamlines, and the disk becomes twisted. When the disk tilt is greater than 4°, the incoming gas stream no longer strikes the disk rim (i.e., bright shocked region). Matter is now transported over and under the disk rim to the inner regions of the disk. Over time, the increased mass of inner parts of the disk due to the action of the colinear gas stream returns the inner-disk regions to a colinear configuration. Meanwhile, the outer regions of the tilted, twisted disk become warped. Our simulations suggest that the lifetime of an intermediate polar’s tilted disk could be several tens to thousands of orbital periods.  相似文献   

17.
The results of numerical studies of the evolution of a close binary system containing a black hole with a mass of ~3000M are presented. Such a black hole could form in the center of a sufficiently rich and massive globular cluster. The secondary could be a main-sequence star, giant, or degenerate dwarf that fills or nearly fills its Roche lobe. The numerical simulations of the evolution of such a system take into account the magnetic wind of the donor together with the wind induced by X-ray irradiation from the primary, the radiation of gravitational waves by the system, and the nuclear evolution of the donor. Mass transfer between the components is possible when the donor fills its Roche lobe, and also via the black hole’s capture of some material from the induced stellar wind. The computations show that the evolution of systems with solar-mass donors depends only weakly on the mass of the accretor. We conclude that the observed ultra-luminous X-ray sources (L X ? 1038 erg/s) in nearby galaxies could include accreting black holes with masses of 102?104M. Three scenarios for the formation of black holes with such masses in the cores of globular clusters are considered: the collapse of superstars with the corresponding masses, the accretion of gas by a black hole with a stellar initial mass (<100M), and the tidal accumulation of stellar black holes. We conclude that the tidal accumulation of stellar-mass black holes is the main scenario for the formation of intermediate-mass black holes (102?104M) in the cores of globular clusters.  相似文献   

18.
The new approach to the modeling of quiescent solar prominences is proposed. We solve the inverse magnetohydrostatic problem, when the pressure, density and temperature of plasma in the filament are calculated from the equilibrium equations using the given magnetic structure (magnetic flux function is proposed to be known). The new exact nonlinear solutions for dense (n ≈ (2?3) × 1011 cm?3) and cold (T ≈ (5?10) × 103 K) filaments, embedded in the plan, vertically stratified atmosphere (hot solar corona) free of magnetic field, are derived. The filaments are stretched along the horizontal axisy(the translational symmetry is assumed: ?/?y = 0) and located parallel to and above a photospheric, magnetic polarity reversal line. The magnetic field lines have a structure of magnetic flux rope with helical field lines in three-dimensional space; the strength of magnetic field falls rapidly with distance from a rope axis. No external longitudinal magnetic field is needed to equilibrate the prominence. The net electric current along the filament is equal to zero. The model of magnetic arcade with the deflection (sag) on the top, proposed by Pikelner (1971) as a basic form of normal prominence, is calculated also using the method proposed. It is shown that such magnetic arcade, having the magnetic field strength of few gauss only, can effectively maintain the equilibrium of cool dense filament at the heights about 50–60 Mm.  相似文献   

19.
Abstract—Currently, hot Jupiters have extended gaseous (ionospheric) envelopes extending far beyond the Roche lobe. The envelopes are loosely bound to the planet and are subject to a strong influence by stellar wind fluctuations. Since hot Jupiters are close to the parent star, the magnetic field of the stellar wind is an important factor which defines the structure of their magnetospheres. For a typical hot Jupiter, the velocity of stellar wind plasma flowing around the atmosphere is close to the Alfvén velocity. Thus, fluctuations of the stellar wind parameters (density, velocity, magnetic field) can affect conditions for the formation of the bow shock around a hot Jupiter, such as transforming the flow from sub-Alfvén to super-Alfvén regime and back. The study results of three-dimensional numerical MHD simulations confirm that, in a hot Jupiter’s envelope located near the Alfvén point of the stellar wind, both the disappearance and appearance of a detached shock can occur under the influence of a coronal mass ejection. The study also shows that this process can affect the observational manifestations of a hot Jupiter, including the radiation flux in the spectrum’s hard region.  相似文献   

20.
The formation of neutron stars in the closest binary systems (P orb<12 h) gives the young neutron star/pulsar a high rotational velocity and energy. The presence of a magnetic field of 3×1011–3×1013 G, as is observed for radio pulsars, enables the neutron star to transfer ~1051 erg of its rotational energy to the envelope over a time scale of less than an hour, leading to a magnetorotational supernova explosion. Estimates indicate that about 30% of all type-Ib,c supernovae may be the products of magnetorotational explosions. Young pulsars produced by such supernovae should exhibit comparatively slow rotation (P rot>0.01 s), since a large fraction of their rotational angular momentum is lost during the explosion. The magnetorotational mechanism for the ejection of the envelope is also reflected by the shape of the envelope. It is possible that the Crab radio pulsar is an example of a product of a magnetorotational supernova. A possible scenario for the formation of the close binary radio pulsar discovered recently by Lyne et al. is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号