首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The E∥c and E ⊥ c polarized optical absorption spectra of a variety of blue/green tourmalines and a schorl were measured from room temperature down to helium temperatures. Heat treatments at 750–800° C in air and hydrogen were carried out on several green tourmalines. From the results obtained, absorptions at 7,900 and 13,800 cm?1 in the E∥c spectra of tourmalines are assigned to Fe2+ in the b-site. In the same polarization, bands detected at 9,000 and 13,400 cm?1 are attributed to Fe2+ in the smaller c position. In contrast to previous interpretations, the E ⊥ c polarized bands at 9,000 and 13,800 cm?1 are not assigned to single ion transitions, but are largely associated with nearest neighbour Fe2+-Fe3+ pairs. Correlations between near-infrared band absorption coefficients and FeO concentration reinforce these assignments. The temperature dependence and the reaction to heat treatment of the strongly polarized (E⊥c?E∥c) band near 18,000 cm?1 in blue and green tourmaline spectra are shown to be consistent with previous assignments of the band to Fe2++Fe3+→Fe3++Fe2+ charge transfer. Similar results are discussed for broad absorptions (also E⊥c?E∥c) found in the 22,000–25,000 cm?1 region of the spectra of certain green and brown tourmalines. It is concluded that these absorptions are due to Fe2++Ti4+→Fe3++Ti3+ charge transfer. The proposal is made that the initial effect of heating green tourmalines in air and hydrogen is to reduce Fe3+ cations located in both b- and c-sites. Further heat treatment in air and hydrogen results in the oxidation of Fe2+→Fe3+ and leads to the generation of bands near 19,100 and 21,600 cm?1. The newly formed bands are assigned to Fe3+-Fe3+ pairs.  相似文献   

2.
Previous electron paramagnetic resonance (EPR) spectroscopic study of gamma-ray-irradiated stishovite at 77 K detected an Al hole center, which was proposed to be an [O2 3−–Al3+] defect. First-principles quantum-mechanical calculations show that the unpaired spin is 85% localized on one of the six oxygen atoms at an AlO6 octahedron, while the calculated 27Al hyperfine constants are similar to those determined by EPR experiments. Theoretical results allow us to propose the Al center to represent an [AlO6]0 defect, and hole hoping among equivalent oxygen atoms is responsible for its detection only at cryogenic temperatures. Theoretical calculations also show that the diamagnetic precursors [AlO6/H+]0, [AlO6/Li+]0, and [AlO6/Na+]0 are stable in stishovite. The calculated OH bond distance and orientation are in excellent agreement with those inferred from FTIR spectra and previous theoretical calculations. The calculated [AlO6/Li+]0 and [AlO6/Na+]0 defects suggest that the monovalent cations such as Li+ and Na+ are potentially important in accommodating Al in stishovite in the lower mantle.  相似文献   

3.
The isotopic composition of Pb in pyrite of the Mindyak orogenic gold deposit located in the Main Ural Fault Zone, the Southern Urals, has been studied by the high-precision MC-ICP-MS method. Orebodies at the deposit are composed of early pyrite and late polysulfide–carbonate–quartz mineral assemblages. The orebodies are localized in olistostrome with carbonaceous clayey-cherty cement. Pyrites from early and late mineral assemblages are close in Pb isotope ratios. For early pyrite 206Pb/204Pb = 18.250–18.336, 207Pb/204Pb = 15.645–15.653, 208Pb/204Pb = 38.179–38.461; while for late pyrite 206Pb/204Pb = 18.102–18.378, 207Pb/204Pb = 15.635–15.646, 208Pb/204Pb = 38.149–38.320. The model parameters μ2 (238U/204Pb = 9.91 ± 2), ω2 (232Th/204Pb = 38.5 ± 4), and 232Th/238U = 3.88 ± 3 indicate that an upper crustal Pb source played a leading role in ore formation. Carbonaceous shale as an olistostrome cement and syngenetic sulfide mineralization are considered to be the main Pb sources of both early and late mineral assemblages. An additional recept in apparently magmatic lead is suggested for the late veinlet mineralization. The involvement of lead from several sources in ore formation is consistent with the genetic model, which assumes a two-stage formation of orebodies at the Mindyak deposit.  相似文献   

4.
A new single beam microtechnique has been developed for measuring the polarized absorption spectra in the region 44,000-4,000 cm?1. Spectra of a natural garnet (Spess70Alm30), measured by the microtechnique and by conventional macrotechniques, are consistent and thus prove the applicability of the microtechnique described. It is possible to obtain well resolved spectra down to about 13,000 cm?1 with crystals as small as about 10 μm. Thus spectra of crystals obtained in routine high-pressure high-temperature silicate syntheses can be measured. The polarized spectra of Mn3+, Fe3+, Fe2+, and Cr3+ in the following synthetic silicate minerals are presented: piemontite (I), acmite (II), orthoferrosilite (III), and kyanite (IV) or uvarovite (V), respectively. O-Cr3+, O-Mn3+, and O-Fe2+ charge transfer band maxima in the UV region are identified at 38,700 cm?1, in V; at 33,200, 35,300, and 39,000 cm?1, in I; and at 32,800, 35,200, and 37,300 cm?1, in III, respectively. Bands in the region ≦25,000 cm?1 are assigned to spin-allowed and spin-forbidden dd transitions as predicted from crystal field theoretical considerations for the foregoing ions in the respective structures.  相似文献   

5.
It is shown that composite radio spectra of the hot spots of the radio galaxy Cygnus A can be fully explained by assuming a nonuniform distribution of the magnetic fields inside the hot spots, without invoking any physical mechanisms other than synchrotron radiation. The magnetic fields are strong (B ?? 10?2?10?1 G) at the center of the hot spots, and decreases at the hot-spot edges to the level of the magnetic field of the radio lobes in which the hot spots are embedded (B ?? 10?4?10?5 G). The difference in the magnetic field between the hot-spot center and edge decreases during the evolution, while the average magnetic-field intensity increases.  相似文献   

6.
The partitioning of samarium and thulium between garnets and melts in the systems Mg3Al2-Si3O12-H2O and Ca3Al2Si3O12-H2O has been studied as a function of REE concentration in the garnets at 30 kbar pressure. Synthesis experiments of variable time under constant P, T conditions indicate that garnet initially crystallizes rapidly to produce apparent values of D Sm (D Sm=concentration of Sm in garnet/concentration of Sm in liquid) which are too large in the case of pyrope and too small in the case of grossular. As the experiment proceeds, Sm diffuses out of or into the garnet and the equilibrium value of D Sm is approached. Approximate values of diffusion coefficients for Sm in pyrope garnet obtained by this method are 6 × 10–13 cm2 s–1 at 1,300 ° C and 2 × 10–12 cm2 s–1 at 1,500 ° C, and for grossular, 8.3 × 10–12 cm2 s–1 at 1,200 ° C and 4.6 × 10–11 cm2 s–1 at 1,300 ° C. The equilibrium values of D Sm have been reversed by experiments with Sm-free pyrope and Sm-bearing glass, and with Sm-bearing grossular and Sm-free glass.Between 12 ppm and 1,000 ppm Sm in pyrope at 1,300 ° C and between 80 ppm and >2 wt.% Tm in pyrope at 1,500 ° C, partition coefficients are constant and independent of REE concentration. Above 100 ppm of Sm in garnet at 1,500 ° C, partition coefficients are independent of Sm concentration. At lower concentrations, however, D Sm is dependent upon the Sm content of the garnet. The two regions may be interpreted in terms of charge-balanced substitution of Sm3Al5O12 in the garnet at high Sm concentrations and defect equilibria involving cation vacancies at low concentrations. At very low REE concentrations (< 1 ppm Tm in grossular at 1,300 ° C) DREE garnet/liquid again becomes constant with an apparent Henry's Law value greater than that at high concentrations. This may be interpreted in terms of a large abundance of cation vacancies relative to the number of REE ions.The importance of defects in the low concentration region has been confirmed by adding other REE (at 80 ppm level) to the system Mg3Al2Si3O12-H2O at low Sm concentrations. These change D Sm in the defect region, demonstrating their role in the production of vacancies.Experiments on a natural pyropic garnet indicate that defect equilibria are of importance to REE partitioning within the concentration ranges found in nature.  相似文献   

7.
The dissolution of water does not stop at the OH stage but may proceed further towards H2 plus O formation. The discovery of atomic carbon dissolved in minerals suggests that, if CO2 enters oxides and silicates at high pressures and temperatures, not only [CO3]2– ions but also [CO 4 . ]4– complexes are formed via a charge transfer which produces O and essentially zero-valent, atomic carbon. Under P —T-conditions of the mantle, where the solubility for water and CO2 is high, the silicate phases formed may therefore consist to a large volume fraction of O ions which are much smaller than O2–ions and strongly cova-lently bonding. The implications for the crystal chemistry of high pressure phases, for the petrology of mantle rocks are outlined.  相似文献   

8.
We have experimentally studied the excitation of transitions of the platinum atom ending in levels of the 3D main term. The atoms were excited by a 30 eV monoenergetic electron beam. The lines studied are located at wavelengths of 204–367 nm. The largest of the measured excitational cross sections exceed 10?16 cm2. The optical-excitation functions measured at electron energies of 0–200 eV have complex structures.  相似文献   

9.
The Pb-Zn-Ba(-Ag-Au) mineralization in the Triades and Galana mine areas is hosted in 2.5–1.4 Ma pyroclastic rocks, and structurally controlled mostly by NE-SW or N-S trending brittle faults. Proximal pervasive silica and distal pervasive sericite-illite alteration are the two main alteration types present at the surface. The distribution of mineralization-alteration in the district suggests at least two hydrothermal events or that hydrothermal activity lasted longer at Galana. The Sr isotope signature of sphalerite and barite (87Sr/86Sr = 0.709162 to 0.710214) and calculated oxygen isotope composition of a fluid in equilibrium with barite and associated quartz at temperatures of around 230°C are suggestive of a seawater hydrothermal system and fluid/rock interaction. Lead isotope ratios of galena and sphalerite (206Pb/204Pb from 18.8384 to 18.8711; 207Pb/204Pb from 15.6695 to 15.6976; 208Pb/204Pb from 38.9158 to 39.0161) are similar to those of South Aegean Arc volcanic and Aegean Miocene plutonic rocks, and compatible with Pb derived from an igneous source. Galena and sphalerite from Triades-Galana have δ34SVCDT values ranging from +1 to +3.6‰, whereas barite sulfate shows δ34SVCDT values from +22.8 to +24.4‰. The sulfur isotope signatures of these minerals are explained by seawater sulfate reduction processes. The new analytical data are consistent with a seawater-dominated hydrothermal system and interaction of the hydrothermal fluid with the country rocks, which are the source of the ore metals.  相似文献   

10.
The diffusivities of network-forming cations (Si4+, Al3+, Ge4+ and Ga3+) in melts of the jadeitic composition NaAl(Si, Ge)2O6 and Na(Al, Ga)Si2O6 have been measured at pressures between 6 and 20 kbar at 1400°C. The rates of interdiffusion of Si4+-Ge4+ and Al3+-Ge3+ increase with increasing pressure at constant temperature. The results are consistent with the ion-dynamics computer simulations of Jadeite melt by Angellet al. (1982, 1983). The coefficient measured for the Si4+-Ge4+ interdiffusion is between 8 × 10?10 and 2.5 × 10?8cm2sec at 6 kbar, depending on the composition of the melt, whereas at 20 kbar it is between 7 × 10?9 and 2 × 10?7cm2sec. The effect of pressure is greater for more Si-rich compositions (i.e., closer to NaAlSi2O6 composition). The coefficient measured for the Al3+-Ga3+ inter- diffusion is between 9 × 10?10 and 3 × 10?9 cm2/sec at 6 kbar and between 3 × 10?9 and 1 × 10?8cm2sec at 20 kbar. The rate of increase in diffusivity with pressure of Al3+-Ga3+ (a factor of 3–4) is smaller than that of Si4+-Ge4+ (a factor of 7–17).The Si4+-Ge4+ interdiffusion in melts of Na2O · 4(Si, Ge)O2 composition has also been measured at 8 and 15 kbar for comparison. The effect of pressure on the diffusivity in this melt is significantly smaller than that for the jadeitic melts. The increase in diffusivity of the network-forming cations in jadeitic melts with increasing pressure may be related to the decrease in viscosity of the same melt. The present results, as well as the ion-dynamics simulations, suggest that the homogenization of partial melts and mixing of magmas would be more efficient at greater depths.  相似文献   

11.
Radio flux measurements of the Crab nebula have been performed over many years relative to Orion A at 927 MHz and relative to Cygnus A and Virgo A at 151.5 MHz. The inferred average secular rates of decrease in the radio flux of the Crab nebula are d 927 MHz = ?0.18 ± 0.10% yr?1 over 1977–2000 and d 151.5 MHz = ?0.3 ± 0.1% yr?1 over 1980–2003. The weighted mean flux-decrease rate averaged over several years of relative measurements at 86, 151.5, 927, and 8000 MHz is d mw = ?0.17 ± 0.02% yr?1. The secular flux decrease is frequency independent, with an upper limit of |dα/dt| < 3 × 10?4 yr?1 for the absolute value of the rate of change of the spectral index, and remains constant in time when averaged over long time intervals. The results of our measurements at 151.5 and 927 MHz combined with published absolute measurements at 81.5 and 8250 MHz are used to determine the radio spectrum of the Crab nebula for epoch 2010.0.  相似文献   

12.
Very few data on heat flow are available in the area around the aseismic front of the Japanese Islands. In order to remedy this situation, measurements of the terrestrial heat flow were made at three locations in the eastern part of Fukushima Prefecture, northeastern Honshu, Japan. The observed values of heat flow were 37 mW/m2 (0.88 μcal/cm2·s) at Soma, 52 mW/m2 (1.25 μcal/cm2·s) at Kashima and 19 mW/m2 (0.46 μcal/cm2·s) at Naraha, respectively. These data partially fill the gaps in the terrestrial heat flow data on land in northeastern Honshu, Japan. These values are considerably lower than the average heat flow over the world, but agree well with the previous estimation for the area.  相似文献   

13.
The intracrystalline diffusion rate of oxygen in diopside was constrained based on natural isotopic variations from a granulite facies marble from Cascade Slide, Adirondacks (New York, USA). The oxygen isotope compositions of the diopsides, measured as a function of grain size, are nearly constant (20.9 ± 0.3‰ vs. SMOW) over the entire measured size range (0.3–3.2 mm diameter). The δ18O values of the cores of calcite grains are 23.0‰. Temperature estimates based on the Δ18O(calcite-diopside) are 800d?C, in agreement with the highest previous thermometric estimates for these rocks. The lack of isotopic variation in the diopsides as a function of grain size requires that the oxygen intracrystalline diffusion rate in diopside from the Adirondack samples was very slow. The maximum diffusion rates (D800d?C parallel to the c-axis) were calculated with an infinite reservoir model (IRM) and a finite reservoir model (FRM) that incorporates mineral modal abundances and initial isotopic variations. For an assumed activation energy (Q) = 100 kJ/mol, the IRM diffusion rate estimate of 1.6 times 10-20cm2/s is two orders of magnitude faster than from the FRM; at Q=500kJ/mol, the D800d?C estimate for both methods is c. 5.6 times 10-20 cm2/s. The present results require that a hydrothermal fluid significantly enhances the diffusion rate of oxygen in diopside if previous data are correct. The δ18O(SMOW) and δ13C(PDB) values of the calcite, measured in situ with a CO2 laser, are 22.9 ± 0.3, 0.1±0.3‰ in the grain cores, 22.1 ±0.3, 0.2 ±0.1‰ at the grain boundaries and 21.7 ±0.4, -0.6±0.1‰ abutting diopside grains. The δ18O and δ13δC values measured conventionally are: crystal cores, 22.96, -0.95‰; abutting diopside grains, 22.38, -0.93‰; bulk, 22.79, -0.95%. Use of the bulk δ18O(calcite) values for thermometry yields unreasonably high temperatures. The lower δ18O values at the calcite grain boundaries are not due to retrograde diffusional exchange with the diopside, they are thought to be a result of a late retrograde fluid infiltration.  相似文献   

14.
The Pb isotopic compositions of coexisting plagioclase and sulfide from the Bushveld Complex were determined by laser ablation multi-collector ICPMS (LA MC-ICPMS). The samples are of the upper Critical Zone in the northeast corner of the Complex and were collected from drill core and underground mine exposures. All the rocks are fresh and exhibit no evidence for alteration, weathering, or disruption of the Pb isotope systematics subsequent to the initial cooling of the intrusion. Furthermore, individual plagioclase and sulfide crystals do not contain enough U to warrant correction for radiogenic in-growth. For these reasons, the measured Pb isotope ratios approximate the initial ones. For plagioclase, 207Pb/206Pb ranges from 0.98 to 1.02 and 208Pb/206Pb from 2.26 to 2.35. Low 207Pb/206Pb and 208Pb/206Pb ratios characterize grain boundaries and partially annealed microcracks, some of which contain minute fragments of sulfide and other phases, and this accounts for most, if not all, the heterogeneity exhibited by individual samples. Real compositional differences exist, however, in plagioclase from different lithologic layers. For example, plagioclase 207Pb/206Pb values vary from 1.004 in norite beneath the Merensky pyroxenite to 1.009 in the mineralized pyroxenite, and 0.997 in overlying norite. In most samples in which sulfide and plagioclase coexist, the sulfide 207Pb/206Pb ratio is lower and 208Pb/206Pb ratio higher than the corresponding ones in plagioclase. For example, in a mineralized Merensky reef sample, average sulfide 207Pb/206Pb and 208Pb/206Pb ratios are 0.993 and 2.313, respectively, while those in plagioclase are 1.000 and 2.292. In one sample, the sulfide is extremely heterogeneous, with 207Pb/206Pb and 208Pb/206Pb ratios as low as 0.84 and 2.12. In this particular sample, the compositions must represent an isolated occurrence of addition of a young Pb component.The array of sulfide and plagioclase compositions requires multiple sources of Pb at the time of crystallization or soon thereafter. The disequilibrium between plagioclase and sulfide implies that some of the Pb originated from the isotopically distinct country rocks and was introduced at temperatures at which the composition of sulfide but not plagioclase could be modified. Thus, Bushveld sulfide, and to some extent plagioclase, do not reliably record the initial Pb isotopic composition(s) of the parent magma(s).  相似文献   

15.
《Applied Geochemistry》2000,15(4):425-438
The dissolution of silica and diffusion of reactive dissolved Si in the porewaters of river sediments are investigated using sediments of different physical and chemical properties. Three sediments are considered: (a) from sectioned cores taken from a river-bed, (b) fine organic-rich surface sediment (<5 cm depth) installed in a fluvarium channel and, (c) coarse river sediment of low organic matter content also installed in a fluvarium channel. Dissolution rates of silica are measured at 10°C using batches of suspended material. The derived dissolution rate constants show large differences between the sediments. The river bed-sediment cores had vertical concentration profiles of dissolved Si that are consistent with the diffusion and dissolution of biogenic silica. Experiments in a fluvarium channel enabled Si fluxes to be calculated from a mass-balance of the overlying solution. The results are consistent with the attainment of a steady-state concentration profile of dissolved Si in the sediment. There are no discernible effects of water velocity over the sediment between 5 and 11 cm s−1. However, at 20 cm s−1, the flux increases as a result of either entrainment of fine particles at the surface or advective effects in the surface sediment. A fluvarium experiment with the fine sediment (<125 μm) over 61 days, produced a concentration profile with the highest concentration of 1025 μmol dm−3 at a depth of 4–5 cm in the sediment. A FORTRAN program is used to model the results of the increase in dissolved Si in the overlying water and development of a concentration profile in the porewater. This leads to a sediment diffusion coefficient of 1.21×10−9 m2 s−1 at 8.8°C at the beginning of the experiment and rate constant k=13.1×10−7 s−1 at pH=7.82 and average temperature of 7.6°C for the entire experiment. Fluxes measured at the sediment–surface interface and calculated assuming steady-state profiles had developed are typically 0.01–0.04 μmol m−2 (of river bed) s−1. The approach enables the efflux of dissolved Si from bottom-sediments to be estimated from dissolution rates measured using suspensions of bed-sediment.  相似文献   

16.
The geochemistry of the stable isotopes of silicon   总被引:1,自引:0,他引:1  
One hundred thirty two new measurements of the relative abundances of the stable isotopes of silicon in terrestrial materials are presented. The total variation of δ30Si found is 6.2%., centered on the mean of terrestrial mafic and ultramafic igneous rocks, δ30Si = ?0.4%.. Igneous rocks show limited (1.1%.) variation; coexisting minerals exhibit small, systematic silicon isotopic fractionations that are roughly 13 the magnitude of concomitant oxygen isotopic fractionations at 1150°C. In both igneous minerals and rocks, δ30Si shows a positive correlation with silicon content, as does δ18O. Opal from both sponge spicules and sinters is light, with \?gd30Si = ?2.3 and ?1.4%., respectively. Large δ30Si values of both positive and negative sign are reported for the first time from clay minerals (?2.3 to +1.8%.), opaline phytoliths (?1.4 to +2.8%.), and authigenic quartz (+ 1.4%.). All highly fractionated samples were precipitated from solution at low temperatures; however, aqueous silicon is not measurably fractionated relative to quartz at equilibrium. A kinetic isotope fractionation of ≈3.5%. is postulated to occur during the low temperature precipitation of opal and, possibly, poorly ordered phyllosilicates, with the silicate phase being enriched in 28Si. This fractionation, coupled with a Rayleigh precipitation model, is capable of explaining most non-magmatic δ30Si variations. Chert δ30Si values are largely inherited, but the primary opal δ30Si values can be modified by isotopic equilibration of silicate silicon and dissolved silicon during the transformation of opal into quartz.  相似文献   

17.
The Koyna River basin in India drew the attention of geoscientists after an earthquake (magnitude 7) in 1967. Since then, detailed geological, tectonic, and seismic investigations of this river basin have been carried out by several workers. However, very little study has been done on its hydrogeological framework. The present work aims at filling this gap. Basalts, laterites, alluvium, soils, and talus deposits form shallow unconfined aquifers, with transmissivity of 27–135 m2/d and a regional specific yield of 0.012. In shallow basaltic aquifers, the lower part of the highly weathered and highly jointed horizon above, and the poorly weathered and highly jointed horizon below, form the most potential zone for groundwater occurrence. Well yields in the deeper basaltic aquifers are directly related to the occurrence of lineaments, whereas at a shallower level they are related to geomorphic features. Spring discharges are highly dependent on their source aquifers and areas of recharge. They have a mean winter discharge of 46 m3/d and a summer discharge of 28 m3/d. Chemically, groundwaters are dominated by alkaline earths (Ca2+, Mg2+) and weak acids (HCO3 , CO3 ); they are calcium-bicarbonate type (53%) and calcium-magnesium-bicarbonate type (27%) at shallower levels; and calcium-magnesium-bicarbonate type (29%), sodium-bicarbonate type (24%), calcium-bicarbonate type (19%), and calcium-magnesium-sodium-bicarbonate type (19%) in deeper aquifers. The Koyna River basin is characterized by both scarcity and abundance of groundwater. In the water-scarce areas in the dissected plateaus, artificial recharge of aquifers through construction of several recharge structures at suitable locations is highly recommended. In the water-abundant areas in the central valley, on the other hand, expanded consumptive use of water resources is encouraged. Electronic Publication  相似文献   

18.
The evolution of groundwater chemistry along the direction of groundwater flow was studied using hydrochemical data from samples collected along a flow line in the Neogene Aquifer, Belgium. Infiltrating water was found to have a very low mineral content and low pH because the sediments are strongly decalcified. Increasing SiO2 and cation concentrations along the groundwater flow line indicate silicate-weathering processes, confirmed with the aid of saturation indices, calculated with PHREEQC, and stability diagrams. A classification system based on redox sensitive species was developed and shows that an extensive redox sequence is present in the aquifer. At a shallow depth, pyrite oxidation has caused an increase in sulphate, while iron is precipitated as hydroxides. Elevated arsenic concentrations are related to the reduction of these iron hydroxides at a relatively shallow depth and to the dissolution of siderite at greater depth. Dissolution of carbonate in the aquifer material, present in deep layers and to the north, has lead to increased Ca2+ and HCO3 ? concentrations. The Ca2+ from the groundwater is exchanged for Na+, Mg2+ and K+ adsorbed to the clay surfaces at the bottom of the groundwater reservoir. Although the Neogene Aquifer is well flushed, there are still some marine influences present in the deepest parts.  相似文献   

19.
K. A. Savko 《Petrology》2006,14(6):567-587
BIF with alkali amphibole at the Lebedinskoe iron deposits, the largest in Russia, were metamorphosed at 550°C and 2–3 kbar and contain ferriwinchite, riebeckite, actinolite, grunerite, and aegirine-augite. All reaction textures observed in the rocks were produced during the prograde metamorphic stage and represent the following succession of mineral replacements: GruRbk, ActWinRbk. Data obtained on the textural relations and compositional variations of Ca, Ca-Na, and Na Al-free amphiboles point to the complete miscibility in the actinolite-ferriwinchite and ferriwinchite-riebeckite isomorphic series. Riebeckite is formed in BIF during the prograde metamorphic stage, with the participation of a fluid insignificantly enriched in Na+ and at increasing oxygen fugacity. The critical factors controlling the development of alkali amphiboles and Ca-Na pyroxenes in carbonate-bearing BIF is the oxygen activity and the presence of at least low concentrations of Na+ ions in the fluid. The minerals contain Fe3+, and all reactions producing them are oxidation reactions. The origin of riebeckite late in the course of the mineral-forming process is caused by the Ca2+Mg2+ → Na+Fe3+ heterovalent isomorphic replacement in calcic and calcic-sodic amphiboles and by the oxidation of grunerite in the presence of a fluid enriched in Na ions.  相似文献   

20.
 Previous stable isotope studies at Lizzies Basin revealed that metasedimentary rocks are 18O-depleted relative to protolith values, particularly in the lower parts of the section (Lower Zone) where the rocks are also isotopically homogeneous on a scale of hundreds of meters (quartz δ18O=+9.0 to +9.6 per mil). In contrast, metasedimentary rocks at higher levels at Lizzies Basin (Upper Zone) are less 18O-depleted and more heterogeneous in δ18O. In order to understand more fully the isotopic evolution of this terrane, a series of detailed, meter-scale traverses across various metamorphic and igneous lithologies were completed at Lizzies Basin, and at the structurally higher Angel Lake locality. Traverses in the Lizzies Basin Lower Zone and in the lower parts of Angel Lake (Angel Lake Lower Sequence) across various silicate lithologies, including abundant granitoids, reveal similar degrees of homogeneity, although the average δ18O values are higher at Angel Lake. In contrast, traverses which include substantial thicknesses of marble and calc-silicate gneiss and very little granitoid have more heterogeneous quartz δ18O values (+11.9 to +13.4 per mil), and also have a higher average δ18O (+12.9 per mil), than observed elsewhere. The scale of 18O/16O homogeneity in quartz observed at Lizzies Basin and Angel Lake (meters to hundreds of meters) requires fluid-mediated isotope exchange, which accompanied Tertiary metamorphism. There is a correlation between the degree of 18O-depletion in metasedimentary rocks, 18O/16O homogenization between lithologies, and the proportion of granitoids (leucogranites in particular) within any part of the section, and a corresponding anticorrelation with the proportion of marble. This points to a causal relationship, whereby the leucogranites (as well as the Tertiary hornblende diorite and biotite monzogranite) acted as both a relatively low-18O reservoir and a source of fluids to enhance exchange, while the marbles hindered isotope depletion and homogenization by acting as relatively high-18O reservoirs and impermeable layers. Material balance calculations help delineate the plausible mechanisms of exchange between granitoids and metasediments. Single-pass infiltration of magmatic fluids from the granitoids is not capable of reproducing all of the observations. Fluid-mediated exchange by convective recirculation of magmatic fluids on a scale of meters is the mechanism which explains all of the observations. The generalized model for the isotopic evolution of the East Humboldt Range core complex provides an excellent opportunity to establish the main causes and controlling factors of 18O-depletion and 18O/16O homogenization during regional metamorphism. Received: 27 July 1993 / Accepted: 1 July 1994  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号