首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The petrography, mineral modal data and major and trace element compositions of 15 silicate inclusions in the Elga iron meteorite (chemical group IIE) show that these inclusions represent chemically homogeneous zoned objects with highly variable structures, reflecting the sequence of crystallization of a silicate melt during cooling of the metal host. The outer zones of inclusions at the interface with their metal host have a relatively medium-grained hypocrystalline texture formed mainly by Cr-diopside and merrillite crystals embedded in high-silica glass, whereas the central zones have a fine-grained hypocrystalline texture. Merrillite appears first on the liquidus in the outer zones of the silicate inclusions. Na and REE concentrations in merrillite from the outer zones of inclusions suggest that it may have crystallized as α-merrillite in the temperature range of 1300–1700°С. Merrillite tends to preferentially accumulate Eu without Sr. Therefore, strongly fractionated REE patterns are not associated with prolonged differentiation of the silicate melt source but depend on crystallization conditions of Н-chondrite droplets in a metallic matrix. The systematic decrease in Mg# with increasing Fe/Mn in bronzite may indicate partial reduction of iron during crystallization of the inclusion melt. The modal and bulk compositions of silicate inclusions in the Elga meteorite, as well as the chemical composition of phases are consistent with the model equilibrium crystallization of a melt, corresponding to 25% partial melting of H-chondrite, and the crystallizing liquidus phase, merrillite, and subsequent quenching at about 1090°С. Despite a high alkali content of the average weighted bulk inclusion composition, La/Hf and Rb/Th fall within the field of H chondrites, suggesting their common source. Our results reveal that silicate inclusions in the Elga (IIE) iron meteorite originated by mixing of two impact melts, ordinary chondrite and Ni-rich iron with а IIE composition, which were produced by impact event under near-surface conditions on a partially differentiated parent asteroid.  相似文献   

2.
刘景波 《岩石学报》2019,35(1):89-98

俯冲带含碳岩石通过俯冲过程的变质反应生成了含碳水流体、富硅酸盐的超临界流体和含碳熔体。不同类型流体的形成与岩石成分和岩石经历的温压条件相关。岩石中碳酸盐矿物脱碳反应的温压条件取决于岩石起初的流体成分:有水存在时,反应发生在低温条件下。在高压条件下,碳酸盐矿物在水或含盐水流体的溶解是生成含碳流体重要的机制,其导致的碳迁移作用可能超过脱碳变质反应的作用。高温条件下,含碳岩石的部分熔融可以生成含碳的熔体,这在热俯冲环境和俯冲带岩石底辟到上覆地幔的情况下是碳迁移重要载体。富硅酸盐的超临界流体可能是在第二临界端点上形成的超临界流体,目前在超高压岩石中观察到的非花岗质成分的多相固体包裹体被认为是这种流体结晶的产物,然而对其理解尚存在很多问题,需要进一步的实验研究。地表含碳岩石在俯冲带被带到深部,俯冲带地温特征的不同导致了不同类型含碳流体的形成,这些流体运移至上覆地幔引起岩石部分熔融产生含碳的岛弧岩浆,岩浆喷出到地表释放了其中的碳,这构成了俯冲带-岛弧系统的碳循环。

  相似文献   

3.
The microtexture and mineralogy of a 580-μm-wide melt vein in the Tenham L6 chondrite were investigated using field-emission scanning electron microscopy and transmission electron microscopy to better understand the shock conditions. The melt vein consists of a matrix of silicate plus metal-sulfide grains that crystallized from immiscible melts, and sub-rounded fragments of the host chondrite that have been entrained in the melt and transformed to polycrystalline high-pressure silicates. The melt-vein matrix contains two distinct textures and mineral assemblages corresponding to the vein edge and interior. The 30-μm-wide vein edge consists of vitrified silicate perovskite + ringwoodite + akimotoite + majorite with minor metal-sulfide. The 520-μm-wide vein interior consists of majorite + magnesiowüstite with irregular metal-sulfide blebs. Although these mineral assemblages are distinctly different, the pressure stabilities of both assemblages are consistent with crystallization from similar pressure conditions: the melt-vein edge crystallized at about 23-25 GPa and the vein interior crystallized at about 21-25 GPa. This relatively narrow pressure range suggests that the melt vein either crystallized at a constant equilibrium shock pressure of ∼25 GPa or during a relatively slow pressure release. Using a finite element heat transfer program to model the thermal history of this melt vein during shock, we estimate that the time required to quench this 580-μm-wide vein was ∼40 ms. Because the entire vein contains high-pressure minerals that crystallized from the melt, the shock-pressure duration was at least 40 ms. Using a synthetic Hugoniot for Tenham and assuming that the sample experienced a peak-shock pressure of 25 GPa near the impact site, we estimate that the Tenham parent body experienced an impact with collision velocity ∼2 km/s. Based on a one-dimensional planar impact model, we estimate that the projectile size was >150 m in thickness.  相似文献   

4.
Shock-induced Ti-rich melt pockets in a basaltic eucrite Northwest Africa (NWA) 8003 were studied using scanning and transmission electron microscopy. Unique mineral assemblages consisting of clinopyroxene, ilmenite, vestaite, corundum, and kyanite are observed. Among them, vestaite and corundum in NWA 8003 are first reported to occur in eucrite meteorites. Petrographic and chemical evidences indicate that the Ti-rich melt pockets have formed by in-situ melting of ilmenite, plagioclase, pyroxene, and possibly minor silica and apatite nearby. The temperature rise and melting were caused by the high shock impedance contrast at interfaces between ilmenite and other phases with a distinctly lower density. Crystallization pressure, temperature and cooling time of the Ti-rich melt pockets in NWA 8003 are constrained to be ˜0.9–˜10 GPa, ˜1300–˜1730 °C, and < 1 ms (5–50 μm in size), respectively.  相似文献   

5.
Mineralogy and Petrology - During the petrological examination of a double polished thick section of the light-colored lithology of the Shaw meteorite, small melt inclusions, typically with...  相似文献   

6.
Summary Nakhla augite and olivine grains commonly contain glass-bearing inclusions. In contrast to olivines, augites host only one type of multiphase inclusions which consists of euhedral to subhedral augite, Ti-magnetite and pigeonite plus silica-rich glass and a bubble. No fractures surround these inclusions, making it likely that they are of a pristine composition. Heating experiments with a final temperature of 1150 °C were done for the first time with Nakhla augite inclusions. During heating the glass melted and crystals inside the inclusions were dissolved in the melt whereby its chemical composition changed. The quenched glass is poorer in SiO2 and Al2O3 and richer in CaO, FeO and MgO compared to unheated inclusion glass. Our in situ analyses allowed us to estimate the initial composition of a liquid co-existing with Nakhla augite at 1150 °C and 1 atm pressure. Several features of Nakhla, such as the high Fe/Mg ratio of the augite, which is out of equilibrium with the glass, the highly variable alkali content and the Na/K ratio of the glasses are incompatible with the standard model that states that SNC meteorites are all igneous rocks formed from basaltic magmas. Our results on re-melted glasses suggest a more complex and possibly non-magmatic genesis of Nakhla. Both types of glass-bearing inclusions (those hosted by augite or olivine) could represent heterogeneously trapped mineral + glass inclusions. Those hosted by augites mimic at least in part parental melt inclusions. However, the quenched glass is out of equilibrium with the host with respect to the Fe/Mg ratio and has too much compositional variation to be representative of a parental melt.
Zusammenfassung Glasführende Einschlüsse im Augit von Nakhla (SNC-Meteorit): Heterogeneingeschlossene Phasen Augite und Olivine im Achondriten Nakhla enthalten h?ufig glasführende Einschlüsse. Im Gegensatz zu den Olivinen enthalten die Augite nur einen Typ Multiphasen-Einschlu?, welcher aus idiomorphem bis subidiomorphem Augit, Ti-Magnetit, Pigeonit und einem SiO2-reichen Glas mit Blase besteht. Diese Einschlüsse sind nicht von Sprüngen umgeben, was es wahrscheinlich macht, dass sie ihre ursprüngliche Zusammensetzung unver?ndert erhalten haben. Erstmals wurden Schmelz-Experimente mit Endtemperaturen von 1150 °C an Nakhla Augiten durchgeführt. In diesen Experimenten schmolz das Glas der Einschlüsse, l?ste die koexistierenden kristallinen Phasen auf und ?nderte dabei seine chemische Zusammensetzung. Das durch Abschrecken dieser Schmelze erzeugte Glas ist ?rmer an SiO2 und Al2O3 und reicher an CaO, FeO und MgO als das ursprüngliche Einschlu?glas. Diese in situ-Analyse erlaubt eine Absch?tzung der ursprünglichen Zusammensetzung einer Schmelze im Gleichgewicht mit Nakhla Augit bei 1150 °C und 1 atm Druck. Einige Eigenschaften von Nakhla, wie das hohe Fe/Mg-Verh?ltnis des Augites, welches nicht im Gleichgewicht mit dem Glas ist, die variablen Alkali-Gehalte und die Na/K-Verh?ltnisse im Glas sind inkompatibel mit dem Standard-Modell für die SNC-Meteorite, welches diese als magmatische Gesteine basaltischer Herkunft sieht. Unsere Ergebnisse weisen auf eine komplexe, m?glicherweise nicht-magmatische Entstehung von Nakhla hin. Sowohl die glasführenden Einschlüsse im Olivin als auch jene im Augit von Nakhla k?nnten Produkte eines heterogenen Aufsammelns von Mineral plus Glas sein. Die Einschlüsse im Augit imitieren zumindest zum Teil Schmelzeinschlüsse. Allerdings sind sie mit ihrem Fe/Mg – Verh?ltnis nicht im Gleichgewicht mit dem Augit und sind auch in ihrer Zusammensetzung zu inhomogen, um für ein m?gliches Mutter-Magma repr?sentativ zu sein.


Received April 10, 2000; revised version accepted October 19, 2000  相似文献   

7.
High‐strain zones are potential pathways of melt migration through the crust. However, the identification of melt‐present high‐strain deformation is commonly limited to cases where the interpreted volume of melt “frozen” within the high‐strain zone is high (>10%). In this contribution, we examine high‐strain zones in the Pembroke Granulite, an otherwise low‐strain outcrop of volcanic arc lower crust exposed in Fiordland, New Zealand. These high‐strain zones display compositional layering, flaser‐shaped mineral grains, and closely spaced foliation planes indicative of high‐strain deformation. Asymmetric leucosome surrounding peritectic garnet grains suggest deformation was synchronous with minor amounts of in situ partial melting. High‐strain zones lack typical mylonite microstructures and instead display typical equilibrium microstructures, such as straight grain boundaries, 120° triple junctions, and subhedral grain shapes. We identify five key microstructures indicative of the former presence of melt within the high‐strain zones: (a) small dihedral angles of interstitial phases; (b) elongate interstitial grains; (c) small aggregates of quartz grains with xenomorphic plagioclase grains connected in three dimensions; (d) fine‐grained, K‐feldspar bearing, multiphase aggregates with or without augite rims; and (e) mm‐ to cm‐scale felsic dykelets. Preservation of key microstructures indicates that deformation ceased as conditions crossed the solidus, breaking the positive feedback loop between deformation and the presence of melt. We propose that microstructures indicative of the former presence of melt, such as the five identified above, may be used as a tool for recognising rocks formed during melt‐present high‐strain deformation where low (<5%) volumes of leucosome are “frozen” within the high‐strain zone.  相似文献   

8.
Martian meteorite Allan Hills (ALH) 84001 contains sub-micron magnetite grains, suggested to be of biogenic origin, in its globules of Fe-Mg carbonate mineral. There is disagreement on whether the low Mg content of the magnetite could only arise from biological metabolism ( [Treiman, 2003] and [Thomas-Keprta et al., 2009]). However, constraints on the magnetite’s biogenicity are far less certain than had been inferred. The thermochemical bases for the equilibrium calculations are reviewed in detail; there are inconsistencies and gaps in fundamental data for siderite, macromolecular carbons, and magnesioferrite. The calculations of Treiman (2003), assuming formation of magnetite via “siderite = magnetite + CO2 + CO”, are incorrect because of a flaw in the computer code used. The corrected location of this equilibrium (Thomas-Keprta et al., 2009) is no longer crucial, because of recent finds that the magnetite grains are associated with macromolecular carbon; this implies that the dominant magnetite-forming reaction was “siderite = magnetite + CO2 + C”. From the location of this equilibrium, using the corrected computer code and best available thermochemical data, the Mg-poor magnetite grains (and macromolecular carbon) in carbonates in ALH 84001 could have formed by decomposition of the carbonates at geologically reasonable pressures and temperatures. The low-Mg compositions of the magnetite grains remain consistent with an abiotic origin within the known geological history of ALH 84001.  相似文献   

9.
We present new whole rock trace element and Pb-isotope data for a suite of Neogene adakitic rocks that formed during the post-collisional stage of the India-Asia collision in an east-west- trending array along the Yalu Tsangpo suture. Compared to classic ‘adakites’ that form along certain active convergent plate margins, the Tibetan adakitic rocks show even stronger enrichment in incompatible elements (i.e. Rb, Ba, Th, K and LREEs) and even larger variation in radiogenic (Pb, Sr, Nd) isotope ratios. Tibetan adakitic rocks have extraordinarily low HREE (Yb: 0.34–0.61 ppm) and Y (3.71–6.79 ppm), high Sr/Y (66–196), high Dyn/Ybn and Lan/Ybn. They show strong evidence of binary mixing both in isotopic space (Sr-Nd, common Pb, thorogenic Pb) and trace element systematics. The majority of the adakitic rocks in south Tibet, including published and our new data, have variational Mg# (0.32–0.70), clear Nb (and HFSE) enrichment, the lowest initial 87Sr/86Sr and 206Pb/204Pb ratios, and the highest 144Nd/143Nd ratios of all Neogene volcanic rocks in south Tibet. These results indicate an involvement of slab melts in petrogenesis. Major and trace element characteristics of the isotopically more enriched adakites are compatible with derivation from subducted sediment but not with assimilation of crustal material. Thus, the south Tibetan adakitic magmas are inferred to have been derived from an upper mantle source metasomatised by slab-derived melts. An interesting observation is that temporally coeval and spatially related lamproites could be genetically related to the adakitic rocks in representing partial melts of distinct mantle domains metasomatised by subducted sediment. Our favoured geodynamic interpretation is that along-strike variation in south Tibetan post-collisional magma compositions may be related to release of slab melts and fluids along the former subduction zone resulting in compositionally distinct mantle domains.  相似文献   

10.
11.
The Larkman Nunatak (LAR) 06319 olivine-phyric shergottite is composed of zoned megacrysts of olivine (Fo76-55 from core to rim), pyroxene (from core to rim En70Fs25Wo5, En50Fs25Wo25, and En45Fs45Wo10), and Cr-rich spinel in a matrix of maskelynite (An52Ab45), pyroxene (En30-40Fs40-55Wo10-25,), olivine (Fo50), Fe-Ti oxides, sulfides, phosphates, Si-rich glass, and baddeleyite. LAR 06319 experienced equilibration shock pressures of 30-35 GPa based on the presence of localized shock melts, mechanical deformation of olivine and pyroxene, and complete transformation of plagioclase to maskelynite with no relict birefringence. The various phases and textures of this picritic basalt can be explained by closed system differentiation of a shergottitic melt. Recalculated parent melt compositions obtained from melt inclusions located in the core of the olivine megacrysts (Fo>72) resemble those of other shergottite parent melts and whole-rock compositions, albeit with a lower Ca content. These compositions were used in the MELTS software to reproduce the crystallization sequence. Four types of spinel and two types of ilmenite reflect changes in oxygen fugacity during igneous differentiation. Detailed oxybarometry using olivine-pyroxene-spinel and ilmenite-titanomagnetite assemblages indicates initial crystallization of the megacrysts at 2 log units below the Fayalite-Magnetite-Quartz buffer (FMQ - 2), followed by crystallization of the groundmass over a range of FMQ - 1 to FMQ + 0.3. Variation is nearly continuous throughout the differentiation sequence.LAR 06319 is the first member of the enriched shergottite subgroup whose bulk composition, and that of melt inclusions in its most primitive olivines, approximates that of the parental melt. The study of this picritic basalt indicates that oxidation of more than two log units of FMQ can occur during magmatic fractional crystallization and ascent. Some part of the wide range of oxygen fugacities recorded in shergottites may consequently be due to this process. The relatively reduced conditions at the beginning of the crystallization sequence of LAR 06319 may imply that the enriched shergottite mantle reservoir is slightly more reduced than previously thought. As a result, the total range of Martian mantle oxygen fugacities is probably limited to FMQ − 4 to − 2. This narrow range could have been generated during the slow crystallization of a magma ocean, a process favored to explain the origin of shergottite mantle reservoirs.  相似文献   

12.
Amino acids in the Murchison meteorite   总被引:1,自引:0,他引:1  
Continued investigation of the Murchison meteorite by gas chromatography combined with mass spectrometry has led to the characterization of at least 17 amino acids in addition to the 18 identified in earlier work. The total population consists of a wide variety of linear and cyclic difunctional and polyfunctional amino acids, of which the linear difunctional amino acids show a general decrease in concentration as the number of carbon atoms in the amino acid molecule increases. These results are consistent with the hypothesis that the amino acids are present as the result of an extraterrestrial, abiotic synthesis.  相似文献   

13.
Mineralogical and petrographic studies of a wide variety of refractory objects from the Murchison C2 chondrite have revealed for the first time melilite-rich and feldspathoid-bearing inclusions in this meteorite, but none of these is identical to any inclusion yet found in Allende. Blue spinel-hibonite spherules have textures indicating that they were once molten, and thus their SiO2-poor bulk composition requires that they were exposed to higher temperatures (>1550°C) than those deduced so far from any Allende inclusion. Melilite-rich inclusions are similar to Allende compact Type A's, but are more Al-, Ti-rich. One inclusion (MUCH-1) consists of a delicate radial aggregate of hibonite crystals surrounded by alteration products, and probably originated by direct condensation of hibonite from the solar nebular vapor. The sinuous, nodular and layered structures of another group of inclusions, spinel-pyroxene aggregates, suggest that these also originated by direct condensation from the solar nebular gas. Each type of inclusion is characterized by a different suite of alteration products and/or rim layers from all the other types, indicating modification of the inclusions in a wide range of different physico-chemical environments after their primary crystallization. All of these inclusions contain some iron-free rim phases. These could not have formed by reaction of the inclusions with fluids in the Murchison parent body because the latter would presumably have been very rich in oxidized iron. Other rim phases and alteration products could have formed at relatively low temperatures in the parent body, but some inclusions were not in the locations in which they were discovered when this took place. Some of these inclusions are too fragile to have been transported from one region to another in the parent body, indicating that low temperature alteration of these may have occurred in the solar nebula.  相似文献   

14.
Isovaline is present in the Murchison meteorite as a racemic mixture (about equal concentrations of the R and S enantiomers). Since isovaline does not have a hydrogen atom on its asymmetric α-carbon atom, the racemic mixture could not have formed by commonly accepted mechanisms of racemization. Thus, isovaline in the meteorite most probably was synthesized as a racemic mixture and is not the result of the racemization of either the R or S enantiomer. Other chiral amino acids in the meteorite are present as racemic mixtures, and were probably synthesized in a similar manner by abiotic, extraterrestrial processes.  相似文献   

15.
Two examined fragments of the Kaidun meteorite principally differ in the concentrations of isotopes of noble gases and are very heterogeneous in terms of the isotopic composition of the gases. Because these fragments belong to two basically different types of meteoritic material (EL and CR chondrites), these characteristics of noble gases could be caused by differences in the cosmochemical histories of the fragments before their incorporation into the parent asteroid. As follows from the escape kinetics of all gases, atoms of trapped and cosmogenic noble gases are contained mostly in the structures of two carrier minerals in the samples. The concentrations and proportions of the concentrations of various primary noble gases in the examined fragments of Kaidun are obviously unusual compared to data on most currently known EL and CR meteorites. In contrast to EL and CR meteorites, which contain the primary component of mostly solar provenance, the elemental ratios and isotopic composition of Ne and He in the fragments of Kaidun correspond to those typical of the primary components of A and Q planetary gases. This testifies to the unique conditions under which the bulk of the noble gases were trapped from the early protoplanetary nebula. The apparent cosmic-ray age of both of the Kaidun fragments calculated based on cosmogenic isotopes from 3He to 126Xe varies from 0.027 to 246 Ma as a result of the escape of much cosmogenic isotopes at relatively low temperatures. The extrapolated cosmic-ray age of the Kaidun meteorite, calculated from the concentrations of cosmogenic isotopes of noble gases, is as old as a few billion years, which suggests that the material of the Kaidun meteorite could be irradiated for billions of years when residing in an unusual parent body.  相似文献   

16.
Petrographic study of 124 chondrules in the Hallingeberg (L-3) chondrite and electron probe microanalyses of olivine and low-Ca pyroxene in 96 of them reveal patterns of variation like those encountered previously in Sharps (H-3). Chondrule mineralogy, mineral composition, and the incidence of shock-related textures vary systematically with chondrule type. This fact and evidence of recrystallization in at least a fourth of the chondrules studied indicate that the pre-accretion histories of chondrules included complex and overlapping episodes of magmatic crystallization, burial, metamorphism and exhumation, in which impact shock was heavily involved. Data for Hallingeberg and Sharps suggest that orthopyroxene accompanies or replaces clinoenstatite in some chondrules and that its presence is due, in part at least, to pre-accretion recrystallization. A comparison of modes for chondrules in Sharps and Hallingeberg shows the former to contain more olivine, on the average, than the latter. It appears that the mean compositions of chondrules in H- and L-group chondrites reflect bulk chemical differences between the two groups, and that chondrule formation followed the siderophile fractionation which differentiated H-, L- and LL-group ordinary chondrites.  相似文献   

17.
More than thirty polycyclic aromatic hydrocarbons, including nine heterocyclic aromatic compounds, have been identified in solvent extracts of the Murchison meteorite by gas chromatography-mass spectrometry using bonded-phase fused silica columns. Structural isomers of several alkylated aromatic hydrocarbons, including methylpyrene and methylphenanthrene were chromatographically separated, thus allowing calculations of the amount of alkyl substituted compounds in the solvent extracts. The ratio of odd-carbon number to even-carbon number was found to be approximately 0.1. Based on these data and literature data from model pyrolysis experiments, a temperature of 1000°C is suggested for the formation of polycyclic aromatic hydrocarbons in the solar nebula or premeteoritic body. The value of 1000°C is within the range of temperatures for the condensation of the nebular material from the initial high temperature phases to the lower temperature phases at which chemical and isotopic equilibria were frozen. A simple model for the abiotic synthesis of heterocyclic compounds from simple aliphatic precursors is also presented.  相似文献   

18.
Trapped and cosmogenic Ne and Ar were measured in Ca,Al-rich aggregates and chondrules, mafic chondrules, and bulk and matrix samples from the Allende C3V chondritic meteorite to investigate the possible occurrence of anomalous isotopic compositions of noble gases that would correlate with oxygen or magnesium isotopic anomalies previously found in this meteorite.Large enrichments of both 22Ne and 36Ar were observed in low-temperature release fractions from several Ca,Al-rich inclusions, but the enrichments are consistent with galactic cosmic-ray production of 22Ne by spallation from sodium and 36Ar by neutron capture on chlorine. Trapped neon in matrix samples is comprised of two distinctive compositions, with (20Ne/22Ne)t equal to 8.7 ± 0.1 and 10.4 ± 1.0, that appear to correlate with the two gas-rich trace phases chromite/carbon and ‘Q’ described by Lewis et al. (1975). Several Ca,Al-rich aggregates which have high contents of the volatile elements Na, Cl, K, and Rb also contain trapped neon. However, no neon-E has been identified in any of the samples studied, including samples of several inclusions known to contain isotopically anomalous oxygen and magnesium.  相似文献   

19.
丁毅  侯征  吴云霞 《地质论评》2021,67(3):67040019-67040019
本文综述了全球陨石坑研究的研究历史和最新成果、基本的概念、陨石坑的识别要点、世界著名的陨石坑、陨石撞击地球可能引起的岩浆活动、陨石撞击与生命演化等内容。确定一个陨石坑,要从有一定弧度的地貌开始,鉴别低平圆形地质体是陨石还是其它原因造成的,综合确定岩石的岩石学特征、岩石中是否有撞击变质矿物、残余陨石、重力异常。陨石撞击太阳系的所有行星。由于地球表面遭受严重的风化和侵蚀,地质学家很难发现陨石坑。截至2021年3月31日,全球陨石坑数据库中有190个经确认的陨石坑,但中国只有一个,中国地质学家在发现陨石坑方面应当积极努力。对一个陨石坑认识可能不很成熟,但往往能改变对一个地区的地质成因理论的认识,形成完整的陨石坑证据链可能需要几代科学家的不断努力。  相似文献   

20.
A fragment of the Murchison (C2) carbonaceous meteorite was analyzed for basic, N-heterocyclic compounds, by dual detector capillary gas chromatography as well as capillary gas chromatography/mass spectrometry, using two columns of different polarity. In the formic acid extract 2,4,6-trimethylpyridine, quinoline, isoquinoline, 2-methylquinoline and 4-methylquinoline were positively identified. In addition, a suite of alkylpyridines and quinolines and/or isoquinolines was tentatively identified from their mass spectra. The (iso)quinolines were found to contain methyl substituents exclusively. The distribution of the pyridines observed reveals a similarity to that observed from catalytic reactions of ammonia and simple aldehydes under conditions similar to those applied in Fischer-Tropsch type reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号