首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three-dimensional seismic data from the Faeroe-Shetland Basin provides detailed information on the relationships between sills, dykes, laccoliths and contemporaneous volcanic activity. The data shows that sills are predominantly concave upwards, being complete or partial versions of radially or bilaterally symmetrical forms that possess flat inner saucers connected to a flat outer rim by a steeply inclined sheet. Such morphologies are only partially modified by pre-existing faults. Sills can be sourced from dykes or the steep climbing portions of deeper sills. Both sills and dykes can provide magma to overlying volcanic fissures and sills can be shown to feed shallow laccoliths. Magma flow patterns, as revealed by opacity rendering, suggest that sills propagate upwards and outwards away from the magma feeder. As an individual sill can consist of several leaves emplaced at different stratigraphic levels, and as a sill or dyke can provide magma to volcanic fissures, other sills and laccoliths, the data suggests that neutral buoyancy concepts may not provide a complete explanation for the mechanism and level of sill emplacement. Instead, the data suggests that the presence of lithological contrasts, particularly ductile horizons such as overpressured shales may permit sill formation at any level below the neutrally buoyant level. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Ken Thomson–deceased, April 2007  相似文献   

2.
Saucer-shaped dolerite and sandstone intrusions are common in sedimentary basins world-wide. We have conducted a series of scaled experiments simulating the process of magma emplacement in sedimentary basins, with particular attention on the formation of saucer-shaped sills. The model materials were (1) cohesive fine-grained silica flour, representing brittle crust; and (2) molten low-viscosity oil, representing magma. The experiments were performed in both homogeneous and layered models. In all the experiments, oil injection resulted in doming of the surface. In the homogeneous models, the injected oil formed cone sheets and sub-vertical dykes. Cone sheets formed for shallow injection (1–3 cm), and vertical dykes formed for deeper injection (4–5 cm). In layered models, the injected oil always formed saucer-shaped intrusions. Our experimental results show that (1) sill intrusion results in the formation of a dome, with melt erupting at the rim; (2) layering controls the formation of sills and saucer-shaped sills; (3) saucer-shaped sills are fed from the bottom and the fluid flows upward and outward; and (4) the diameter of saucer-shaped sills increase with increasing emplacement depth. The systematic relation between domes and sills and the depth-dependence of sill diameters show that saucer-shaped intrusions result from the interaction between a growing flat-lying shallow sill and doming of the free surface. We conclude that saucer-shaped intrusions represent fundamental geometries formed by shallow magma intrusion in stratified basins.  相似文献   

3.
Neogene alkaline basaltic rocks in the western Pannonian Basin are eroded remnants of maars, tuff rings, tuff cones, scoria cones and lava fields. The erosion level of these volcanoes is deep enough to expose diatreme zones associated with the phreatomagmatic volcanoes. The erosion level is deeper yet in the west, exposing shallow dyke and sill swarms related to former intra-plate volcanoes. The basanitic sills are irregular in shape and their lateral extent is highly variable. Individual sills reach a thickness of a few tens of metres and they commonly form dome-like structures with rosette-like radial columnar joint patterns. The largest sill system identified in this region is traceable over kilometres, and forms a characteristic ridge running north-east to south-west. Elevation differences in the position of the basanitic sills within an otherwise undisturbed “layer cake-like” siliciclastic succession indicate emplacement of the basanite magma at multiple levels over kilometre-scale distances. The margins of sills in the system are irregular at a dm-to-mm-scale. Undulating contacts of the sills together with gentle thermal alteration in the host sediment over cm-to-dm distances indicate the soft, but not necessarily wet state of the host deposits at the time sills were intruded. Parts of the sill complex show a complicated relationship with the host sediment in form of peperitic zones and irregularly shaped, disrupted, peperite textures. This is interpreted to reflect inhomogenities in water content and rheology of the siliciclastic deposits during intrusion. The current summit of the longest continuous ridge preserves a small diatreme that seems to cut through an otherwise disk-like sill indicating of relationship between sill emplacement and phreatomagmatic explosive eruptions.  相似文献   

4.
The Linglong granitoid complex (LGC) is composed of four major plutonic units that intruded and cooled in the Middle Jurassic (170-155 Ma). Gravity-anomaly modeling indicates that the LGC is a sheet-like laccolith, less than 10 km thick, that dips shallowly below the surface toward the Tancheng-Lujiang (Tan-Lu) fault, a major lithospheric structure in Eastern China. Measurements of foliation in the field and measurements of planar and linear magnetic fabrics from the study of anisotropy of magnetic susceptibility in the LGC indicate that foliation is dominantly shallowly dipping and magnetic lineation is mainly parallel to the dip direction of the laccolith toward the Tan-Lu fault zone. The trend of lineations is consistent with flow of magma up the thrust to reach shallower levels. The magma of the LGC probably originated by crustal melting within the Tan-Lu fault zone and the emplacement of magma occurred along a shallowly-dipping thrust that drained the Tan-Lu fault zone, the mechanism of which is mainly dike-fed model.  相似文献   

5.
A 150-m-long, wedge-shaped unit of folded and faulted marly siltstone crops out between undeformed sedimentary rocks on the north flank of the Coso Range, California. The several-meter-thick blunt end of this wedge abuts the north margin of a basaltic sill of comparable thickness. Chaotically deformed siltstone crops out locally at the margin of this sill, and at one locality breccia pipes about one meter in diameter crosscut the sill. The sill extends about 1 km south up the paleoslope, where it merges through continuous outcrop with a lava flow that in turn extends 1.4 km to a vent area marked by more than 100 m of agglutinate and scoria. Apparently, lava extruded at this vent flowed onto unconsolidated sediments, burrowed into them, and fed a sill at about 40 m depth within the sedimentary sequence. The sill initially propagated by wedging between sedimentary beds, but eventually began to push some beds ahead of itself, forming a remarkable train of folds in the process. The sediments apparently were wet at the time of sill emplacement, because hydrothermal alteration is common near the contact between the two rock types and because the breccia pipes that crosscut the sill apparently resulted from phreatic explosions of pore water heated at the base of the cooling sill. Comparison of deformation of the host material at the Coso locality with that reportedly caused by emplacement of sills elsewhere indicates that the character of deformation differs greatly among the various localities. The specific response of host material depends upon such parameters as initial properties of magma and host material, rate of sill growth and attendant rate of strain of host material, and depth of sill emplacement. Some properties may change considerably during an intrusive-deformational episode, thus complicating accurate reconstruction of such an event.  相似文献   

6.
Structural, geomorphological, geophysical and volcanological data have been processed for the implementation of a dedicated GIS through which the structural evolution of the Pleistocene trachytic Cimini volcano (central Italy) has been reconstructed. The evolution of the Cimini complex includes three main close-in time phases: (1) intrusion of a shallow laccolith, rising along NW and NE trending faults and stagnating at the contact between the Mesozoic-Cenozoic and the Pliocene-Pleistocene sedimentary units constituting the bedrock of the volcano; (2) emplacement of lava domes along radial and tangential fractures formed by the swelling induced by the laccolith growth; (3) ignimbrite eruptions and final effusion of olivine-latitic lavas. Domes are both of Pelean and low lava dome type and their morphology was controlled by the location on the inclined surface of the swelled area. Some domes show to have uplifted upper Pliocene thermally metamorphosed clay sediments, suggesting a cryptodome-like growth. Comparison of the top of the Mesozoic-Cenozoic units with the top of the upper Pliocene-Pleistocene sedimentary complex, suggests that the laccolith emplaced in a graben of the Mesozoic-Cenozoic sedimentary complex filled by the Pliocene–Pleistocene sediments uplifted by the shallow intrusion. Stress patterns acting on the Cimini area have been deduced analysing the drainage network and the morphotectonic lineaments. Rose diagrams show a large dispersion of the lineaments reflecting the local presence of radial and tangential fractures. The most frequent extensional NW and NE trending lineaments have regional significance and controlled the magma uprise leading to the laccolith emplacement.  相似文献   

7.
An ~22-m-thick saucer-shaped sill occurs near Mahad and is exposed as a curvilinear, miniature ridge within the Deccan Traps. The sill has variable dips (42–55°). It has a 7.1-km long axis and 5.3 km short axis (aspect ratio of 1.4) and is larger than the MV sill of the Golden Valley sill complex, South Africa and the Panton sill, Australia. The sill has distinct glassy upper and lower chilled margins with a coarse-grained highly jointed core. The samples from the margin are invariably fractured and iron stained because of deuteric alteration. The rock from the sill is plagioclase-phyric basalt. At least three thick sill-like apophyses emanate from the base of the main sill. The apophyses change direction because of bending and thinning from a horizontal concordant sheet at the top to a discordant inclined form that bends again to pass into a lower horizontal concordant sheet. We interpret such features as ‘nascent saucer-shaped sills’ that did not inflate to form nested sills. Geochemically, the sill consists of poorly differentiated tholeiitic basalt that has a restricted geochemical range. Critical trace element ratios and primitive mantle normalised trace and REE patterns indicate that the sills have geochemical affinities to the Poladpur chemical type and that the pahoehoe flow they intrude belongs to the Bushe Formation. Calculated magmatic overpressures during sill emplacement range from 8.4 to 11.3 MPa (for Young’s modulus E?=?5 GPa) and 16.7 to 22.5 MPa (for E=10 GPa) and depth to magma chamber ranges from 8.5 to 11.5 km (E?=?5 GPa) and 17.1 to 22.9 km (E?=?10 GPa), consistent with petrological and gravity modelling. The volume of the Mahad sill is approximately 276 km3 and is constant irrespective of the variations in the values of host-rock Young’s modulus. In 1980, Cox (J Petrol 21:629–650, 1980) proposed a conceptual model of the crust–mantle section beneath the Karoo CFB which is considered as the fundamental model for flood basalt volcanism. Our paper confirms the presence of a sill plus the inferred substructure beneath Mahad that are compatible with predictions of that model. In LIPS, saucer-shaped sills are formed in areas experiencing extensional tectonics where processes such as the Cook–Gordon delamination and Dundurs elastic extensional mismatch between layered sedimentary rocks or lava flows are responsible for the deflection of dykes into sills. A similar process is envisaged for the formation of the Mahad sill.  相似文献   

8.
Two Miocene basaltic andesite pillowed sills in the Shimane Peninsula, SW Japan, were intruded into wet marine sediments, plastically deforming them. The pillows are elongated, constricted, interconnected and relatively closely packed. Individual pillows have a poorly to moderately vesiculated, somewhat crystalline rind thinner than a few centimeters and a moderately to well vesiculated, more crystalline core; contraction cracks and spreading cracks are poorly developed. The pillows in the sills morphologically resemble pillow lava flows, and during sill intrusion, the magma bifurcated into pillow lobes in a manner similar to pillow lavas. Formation of pillows in sill probably occurs when the magma is intruded into wet sediments and protrudes fingers by the instability of the magma-sediment interface with little turbulence of magma flow.  相似文献   

9.
The Tongling area is one of the most important ore cluster areas in the middle to lower Yangtze River metallogenic belt. The ore-forming process in Tongling region was mainly resulted from the me- dium-acidic magma intrusion activity during Yansha- nian epoch[1―4]. Lots of research of the structure sys- tem and intrusion series were carried out in recent decades and the following aspects were mainly fo- cused on: (1) Accurate determination of the petrologic structure, chemical composition a…  相似文献   

10.
A cross-sectional non-hydrostatic model with idealized topography was used to examine the processes influencing tidal mixing in the region of sills. Initial calculations with appropriate parameters for the sill at the entrance to Loch Etive showed that the model could reproduce the main features of the observed mixing in the region. In particular, the hydraulic jump in the sill region was reproduced, as was an intense mid-water jet that was observed to separate from the lee side of the sill. Shear instabilities associated with the jet appeared to be a source of mixing within the thermocline. In addition, internal lee waves were generated on the lee side of the sill, with the observed amplification because of trapping during the flood stage. Their magnitude and hence the mixing increased with increasing Froude number (F r). In the case of vertically varying buoyancy frequency, its value near the sill top determined the F r number, with its value below influencing internal waves magnitude at depth. At high F r values particularly with strong currents, short waves and overturning occurred.  相似文献   

11.
The importance of using a non-hydrostatic model to compute tidally induced mixing and flow in the region of a sill is examined using idealized topography representing the sill at the entrance to Loch Etive. This site is chosen since detailed measurements were recently made there. Calculations are performed with and without the inclusion of non-hydrostatic dynamics using a vertical slice model for a range of sill widths corresponding to typical sill regions. Initial non-hydrostatic calculations showed that the model could reproduce the observed flow characteristics in the region. However, when calculations were performed using the model in hydrostatic form, the significant artificial convective mixing that occurred in order to remove density inversions led to excessively high vertical mixing. This influenced the computed temperature field and the intensity of the current jet that separated from the sill on its lee side. In addition it affected the magnitude and spatial characteristics of the lee waves generated on the lee side of the sill. Calculations with a range of sill widths, showed that as the sill width decreased the difference between the solution computed with the non-hydrostatic and hydrostatic model increased.  相似文献   

12.
Intrusions of ultramafic bodies into the lower density continental crust are documented for a large variety of tectonic settings spanning continental shields, rift systems, collision orogens and magmatic arcs. The intriguing point is that these intrusive bodies have a density higher by 300-500 kg m−3 than host rocks. Resolving this paradox requires an understanding of the emplacement mechanism. We have employed finite differences and marker-in-cell techniques to carry out a 2D modeling study of intrusion of partly crystallized ultramafic magma from sublithospheric depth to the crust through a pre-existing magmatic channel. By systematically varying the model parameters we document variations in intrusion dynamics and geometry that range from funnel- and finger-shaped bodies (pipes, dikes) to deep seated balloon-shaped intrusions and flattened shallow magmatic sills. Emplacement of ultramafic bodies in the crust lasts from a few kyr to several hundreds kyr depending mainly on the viscosity of the intruding, partly crystallized magma. The positive buoyancy of the sublithospheric magma compared to the overriding, colder mantle lithosphere drives intrusion while the crustal rheology controls the final location and the shape of the ultramafic body. Relatively cold elasto-plastic crust (TMoho = 400 °C) promotes a strong upward propagation of magma due to the significant decrease of plastic strength of the crust with decreasing confining pressure. Emplacement in this case is controlled by crustal faulting and subsequent block displacements. Warmer crust (TMoho = 600 °C) triggers lateral spreading of magma above the Moho, with emplacement being accommodated by coeval viscous deformation of the lower crust and fault tectonics in the upper crust. Strong effects of magma emplacement on surface topography are also documented. Emplacement of high-density, ultramafic magma into low-density rocks is a stable mechanism for a wide range of model parameters that match geological settings in which partially molten mafic-ultramafic rocks are generated below the lithosphere. We expect this process to be particularly active beneath subduction-related magmatic arcs where huge volumes of partially molten rocks produced from hydrous cold plume activity accumulate below the overriding lithosphere.  相似文献   

13.
Spinifex-textured sills (i.e., veins) characterized by komatiitic magmas that have intruded their own volcanic-piles have long been recognized. For instance, in the early 1970s, Pyke and coworkers, in their classic work at Pyke Hill in Munro Township, noted that not all spinifex-bearing ultramafic rocks formed as lava flows, rather some were clearly emplaced as small dikes and sills. Several hypotheses have been proposed to explain spinifex-textured sills: intrusion into a cold host, filter pressing, or drainage of residual liquid. However, these do not satisfactorily explain the phenomenon. Field and petrographic observations at Pyke Hill and Serpentine Mountain demonstrate that spinifex-bearing komatiite sills and dikes were emplaced during channel inflation processes when new magma was intruded into a cooler, semi-consolidated but permeable cumulate material. Komatiitic liquids were intruded into the olivine cumulate rocks near the boundary between the spinifex and the cumulate zones of well-organized to organized komatiite flows. Spinifex-textured sills are generally tabular in morphology, stacked one above another, with curviplanar contacts sub-parallel to stratigraphy. Some sills exhibit complex digitated apophyses. Thinner sills typically have a random olivine spinifex texture similar, though generally composed of coarser crystals, to that of komatiite lava flows. Thicker sills exhibit more complex organization of their constituent crystals characterized by zones of random olivine spinifex, overlying zones of organized coarse spinifex crystals similar to those found in lava flows. They have striking coarse dendritic spinifex zones composed of very large olivine crystals, up to several centimetres long and up to 1 cm wide that are not observed in lava flows. Typically, at the sill margins, the cumulate material of the host flow is composed of euhedral to subhedral olivine crystals that are larger than those distal to the contact. Many of these margin-crystals have either concentric overgrowth shells or dendritic olivine overgrowths that grew from the cumulate-sill contact toward the sill interior. The dendrites grew on pre-existing olivine cumulate at the contact in response to a sharp temperature gradient imposed by the intrusion of hot material, whereas the concentric overgrowths formed as new melt percolated into the unconsolidated groundmass of the host-flow cumulate material. Spinifex-textured sills and dikes occur in well-organized to organized flows that are interpreted to have formed by “breakouts” above and peripheral to lava pathways (channels/conduits) as a result of inflation that accompanied voluminous komatiitic eruptions responsible for the construction and channelization of komatiitic flow fields. The spinifex-textured dikes and sills represent komatiitic lava that was originally emplaced into the channel roof during periods of episodic inflation that resulted in lava breakouts and was subsequently trapped in the “roof rocks” during periods of channel deflation. Accordingly, the occurrence of spinifex-textured sills and dikes may indicate proximity to, and aid in the identification and delineation of lava channel-ways that could potentially host Ni–Cu–(PGE) mineralization within komatiitic lava flow-fields.  相似文献   

14.
Measurements of velocity and density profiles were used to describe the tidal and mean flow structure across and along a sill in Refugio Channel, a fjord-like inlet in Southern Chile (43.9°S). These are the first oceanographic measurements of any kind effected in Refugio Channel. Current profiles were obtained with a 307.2-kHz acoustic Doppler current profiler during two semidiurnal cycles along a repeated triangular circuit. Two along-channel transects formed the sides of the triangle that crossed the sill and were identified as the western and eastern transects. One cross-channel transect, the base of the triangle, was located on the seaward side of the sill. Density profiles were obtained at the corners of the triangle. The longitudinal mean flow in the western transect showed a two-layer exchange structure over the landward side of the sill. The structure of net seaward flow at the surface and landward flow at depth was disrupted by the sill in such a way that over the seaward side of the sill, only seaward flow was observed throughout the water column. This likely resulted from the blocking of landward net flow by the sill. In the eastern transect, two-layer exchange dominated over most of the transect and was consistent with the observed density profiles. Over the seaward side of the sill, a surface layer, ∼10m deep, flowed landward as a third layer. This feature should have been caused by river input further seaward (to the north) and produced a surface convergence region over the sill. In terms of tidal flows, the greatest tidal current amplitudes were 40cm s−1 over the sill as the flow accelerated through the reduced cross-sectional area of the channel. Near-surface flow convergences were identified over both along-channel transects.  相似文献   

15.
Geothermal aspects of the hypothesis, relating the earthquake swarms in the West Bohemia/Vogtland seismoactive region to magmatic activity, are addressed. A simple 1-D geothermal model of the crust was used to assess the upper limit of the subsurface heating caused by magma intrusion at the assumed focal depth of 9 km. We simulated the process by solving the transient heat conduction equation numerically, considering the heat of magma crystallization to be gradually released in the temperature interval 1100°C to 900°C. The temperature field prior to the intrusion was in steady-state with a surface temperature of 10°C and heat flow of 80 mWm –2 , the temperature at the 9 km depth was 270°C. The results suggest that the temperature and heat flow in the uppermost 1 km of the crust begin to grow 100 ka after the intrusion emplacement only, and that the amplitudes of the changes for the realistic lateral extent (a few kilometres) of the intrusion are very small. It was also found that the rate of magma solidification depends strongly on the thickness of the intrusion. It takes about 100 years for a 50 m thick sill to cool down from 1100°C to 600°C, which value represents the lower limit of the solidus temperature. The same cooling takes only 60 days if the sill is 2 m thick. If the nature of the strongly reflected boundaries, interpreted from the January 1997 Nový Kostel seismograms, is connected with the fresh emplacement of magma, the calculated cooling rates have a predictive potential for the temporal changes of the waveforms.  相似文献   

16.
Peperites formed by mixing of magma and wet sediment are well exposed along Punta China, Baja California, Mexico, where two sills intrude a section of lava flows, limestones, and volcaniclastic rocks. Irregular lobes and dikes extend from the sills several meters into host sediments, including highly comminuted flow top breccias (lithic lapilli tuff breccias) and shelly micrites, whereas intrusive contacts with lava flows are sharp and planar. Where one sill intruded both coarse-grained volcaniclastic rock and fine-grained limestone, textural differences between the hosts produced strikingly different styles of peperite. Blocky masses of the basaltic intrusions up to 1 m in size were dispersed for distances up to 3 m into host lithic lapilli tuff breccias; the blocks consequently underwent in situ fragmentation as they were rapidly quenched. The high degree of dispersion resulted from steam explosions as the magma enveloped pockets of water in the coarse-grained permeable host. Elutriation of fine-grained material from vertical pipes in tuff breccia above the lower sill provides evidence for meter-scale fluidization of the host. The contact zone between the basaltic magma and the shelly micrite host resembles a mixture of two viscous, immiscible fluids (fluidal peperite). Intrusion occurred behind a stable vapor film which entrained lime mud particles and carried them off grain by grain as magma advanced into the host. Thin-section-scale elutriation pipes formed. Microglobular peperite represents a frozen example of a fuel-coolant interaction (FCI) between basaltic magma and fluidized micrite host. The intimate intermixing of magma and host at the submillimeter level is attributed to fluid instabilities developed along the magma-vapor-host interface. Such intimate intermixing of magma and water-bearing fragmental debris is commonly a precursory step toward explosive hydrovolcanism.  相似文献   

17.
Igneous intrusions in coal seams are found in 80 % of coal mines in the Huaibei coalfield, China, and coal and gas outburst accidents have occurred 11 times under a 120-m-thick sill in the Haizi mining field. The magma’s heat had a significant controlling effect on coal seam gas occurrence. Based on theoretical analysis, experimental tests and site validation, we analyzed the temperature distribution following magma intrusion into coal measure strata and the variations in multiple physical parameters and adsorption/desorption characteristics between the underlying coal seams beneath the sill in the Haizi mining field and coal seams uninfluenced by magma intrusion in the adjacent Linhuan mining field. The research results show that the main factors controlling the temperature distribution of the magma and surrounding rocks in the cooling process include the cooling time and the thickness and initial temperature of the magmatic rock. As the distance from sill increases, the critical effective temperature and the duration of sustained high temperatures decrease. The sill in the Haizi mining field significantly promoted coal seam secondary hydrocarbon generation in the thermally affected area, which generated approximately 340 m3/t of hydrocarbon. In the magma-affected area, the metamorphic grade, micropore volume, amount of gas adsorption, initial speed of gas desorption, and amount of desorption all increase. Fluid entrapment by sills usually causes the gas pressure and gas content of the underlying coal seams to increase. As a result, the outburst risks from coal seams increases as well.  相似文献   

18.
The Highway–Reward massive sulphide deposit is hosted by a silicic volcanic succession in the Cambro-Ordovician Seventy Mile Range Group, northeastern Australia. Three principal lithofacies associations have been identified in the host succession: the volcanogenic sedimentary facies association, the primary volcanic facies association and the resedimented syn-eruptive facies association. The volcanogenic sedimentary facies association comprises volcanic and non-volcanic siltstone and sandstone turbidites that indicate submarine settings below storm wave base. Lithofacies of the primary volcanic facies association include coherent rhyolite, rhyodacite and dacite, and associated non-stratified breccia facies (autoclastic breccia and peperite). The resedimented volcaniclastic facies association contains clasts that were initially formed and deposited by volcanic processes, but then redeposited by mass-flow processes. Resedimentation was more or less syn-eruptive so that the deposits are essentially monomictic and clast shapes are unmodified. This facies association includes monomictic rhyolitic to dacitic breccia (resedimented autoclastic facies), siltstone-matrix rhyolitic to dacitic breccia (resedimented intrusive hyaloclastite or resedimented peperite) and graded lithic-crystal-pumice breccia and sandstone (pumiceous and crystal-rich turbidites). The graded lithic-crystal-pumice breccia and sandstone facies is the submarine record of a volcanic centre(s) that is not preserved or is located outside the study area. Pumice, shards, and crystals are pyroclasts that reflect the importance of explosive magmatic and/or phreatomagmatic eruptions and suggest that the source vents were in shallow water or subaerial settings.The lithofacies associations at Highway–Reward collectively define a submarine, shallow-intrusion-dominated volcanic centre. Contact relationships and phenocryst populations indicate the presence of more than 13 distinct porphyritic units with a collective volume of 0.5 km3. Single porphyritic units vary from <10 to 350 m in thickness and some are less than 200 m in diameter. Ten of the porphyritic units studied in the immediate host sequence to the Highway–Reward deposit are entirely intrusive. Two of the units lack features diagnostic of their emplacement mechanism and could be either lavas and intrusions. Direct evidence for eruption at the seafloor is limited to a single partly extrusive cryptodome. However, distinctive units of resedimented autoclastic breccia indicate the presence nearby of additional lavas and domes.The size and shape of the lavas and intrusions reflect a restricted supply of magma during eruption/intrusion, the style of emplacement, and the subaqueous emplacement environment. Due to rapid quenching and mixing with unconsolidated clastic facies, the sills and cryptodomes did not spread far from their conduits. The shape and distribution of the lavas and intrusions were further influenced by the positions of previously or concurrently emplaced units. Magma preferentially invaded the sediment, avoiding the older units or conforming to their margins. Large intrusions and their dewatered envelope may have formed a barrier to the lateral progression and ascent of subsequent batches of magma.  相似文献   

19.
In Sawmill Canyon, located near the eastern margin of the Tuolumne batholith, central Sierra Nevada, California, a series of petrologically and structurally complex, magmatic sheeted zones intrude older granodioritic units (Kuna Crest and equigranular Half Dome) and in one case truncate these units along a sharp contact. These sheeted zones (a) consist of numerous batches of (now frozen) magma, (b) display clear outward growth directions, (c) were actively deforming during and after emplacement resulting in magmatic folds, faults and multiple magmatic mineral fabrics, and (d) are the location of numerous, but localized magma flow structures (schlieren-bounded tubes, troughs, megacryst-rich pipes) and instabilities (load casts, flame structures, slumps, diapirs, ridge and pillar structures). Geochemical data indicate that the sheeted zones largely consist of magmas derived from the Half Dome granodiorite with some late Cathedral Peak granodiorite pulses, and with fractionation and flow sorting forming widespread layering in the above structures.  相似文献   

20.
The Early Permian mafic-ultramafic concentrically zoned Gaositai intrusion at Chengde, on the northern margin of the North China Craton (NCC), is a cumulative complex emplaced along a giant fracture that penetrates deeply into the continental lithosphere. Melt inclusions are present in chromite crystals from the inner dunite and chromitite zones of the Gaositai complex. The melt inclusions have experienced post-trap crystallization and resulted in multiple mineral phases, including melilite, garnet, phlogopite, magnesite and apatite, which can indicate the liquidus minerals of the primitive magma. The characteristics of the melilite+melanite+clinopyxene assemblage indicate that the primary parental magma was highly undersaturated and derived from an alkali-rich mantle source. The crystallization of phlogopite, magnesite and apatite suggests a primary magma rich in K, H2O and CO2. When compared with experimental data, the primary magma of the Gaositai intrusion is concordant with a kamafugite magma originating from partial melting of enriched mantle with H2O and CO2 at pressures greater than 2.7 GPa. This magmatic process would have been related to extensional thinning of the continental lithosphere. The Gaositai primary magmas have high Nb/La ratios, which are similar to those of ocean island basalts, but different from arc-related magmas. This suggests that the northern margin of the NCC was not an active continental margin of the Paleo-Asian Ocean subduction zone during the Early Permian: an extensional tectonic setting during the emplacement of the Gaositai intrusion is more likely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号