首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
We examine the possibility of the decay of the vacuum energy into a homogeneous distribution of a thermalized cosmic microwave background (CMB), which is characteristic of an adiabatic vacuum energy decay into photons. It is shown that observations of the primordial density fluctuation spectrum, obtained from CMB and galaxy distribution data, restrict the possible decay rate. When photon creation due to an adiabatic vacuum energy decay takes place, the standard linear temperature dependence   T ( z ) = T 0(1 + z )  is modified, where T 0 is the present CMB temperature, and can be parametrized by a modified CMB temperature dependence     . From the observed CMB and galaxy distribution data, a strong limit on the maximum value of the decay rate is obtained by placing a maximum value  βmax≃ 3.4 × 10−3  on the β parameter.  相似文献   

2.
We derive analytic expressions for the leading-order corrections to the polarization induced in the cosmic microwave background (CMB) owing to scattering of photons off hot electrons in galaxy clusters along the line of sight. For a thermal distribution of electrons with kinetic temperature k B T e∼10 keV and bulk peculiar velocity V ∼1000 km s−1, the dominant corrections to the polarization induced by the primordial CMB quadrupole and the cluster peculiar velocity arise from electron thermal motion and are at the level of ∼10 per cent in each case, near the peak of the polarization signal. When more sensitive measurements become feasible, these effects will be significant for the determination of transverse peculiar velocities, and the value of the CMB quadrupole at the cluster redshift, via the cluster polarization route.  相似文献   

3.
The locations of the peaks of the cosmic microwave background (CMB) spectrum are sensitive indicators of cosmological parameters, yet there is no known analytic formula which accurately describes their dependence on them. We parametrize the location of the peaks as   l m = l A( m - φ m )  , where l A is the analytically calculable acoustic scale and m labels the peak number. Fitting formulae for the phase shifts φ m for the first three peaks and the first trough are given. It is shown that in a wide range of parameter space, the acoustic scale l A can be retrieved from actual CMB measurements of the first three peaks within 1 per cent accuracy. This can be used to speed up likelihood analysis. We describe how the peak shifts can be used to distinguish between different models of dark energy.  相似文献   

4.
We study cosmic microwave background (CMB) secondary anisotropies produced by inhomogeneous reionization by means of cosmological simulations coupled with the radiative transfer code crash . The reionization history is consistent with the Wilkinson Microwave Anisotropy Probe Thomson optical depth determination. We find that the signal arising from this process dominates over the primary CMB component for   l ≳ 4000  and reaches a maximum amplitude of   l ( l + 1) Cl /2π≃ 1.6 × 10−13  on arcmin scales (i.e. l as large as several thousands). We then cross-correlate secondary CMB anisotropy maps with neutral hydrogen 21-cm line emission fluctuations obtained from the same simulations. The two signals are highly anticorrelated on angular scales corresponding to the typical size of H  ii regions (including overlapping) at the 21-cm map redshift. We show how the CMB/21-cm cross-correlation can be used: (i) to study the nature of the reionization sources; (ii) to reconstruct the cosmic reionization history; (iii) to infer the mean cosmic ionization level at any redshift. We discuss the feasibility of the proposed experiment with forthcoming facilities.  相似文献   

5.
We examine the use of the TE cross-correlation power spectrum of the cosmic microwave background (CMB) as a complementary test to detect primordial gravitational waves (PGWs). The first method used is based on the determination of the lowest multipole, ℓ0, where the TE power spectrum,   C TE  , first changes sign. The second method uses Wiener filtering on the CMB TE data to remove the density perturbations contribution to the TE power spectrum. In principle this leaves only the contribution of PGWs. We examine two toy experiments (one ideal and another more realistic) to see their ability to constrain PGWs using the TE power spectrum alone. We found that an ideal experiment, one limited only by cosmic variance, can detect PGWs with a ratio of tensor to scalar metric perturbation power spectra   r = 0.3  at 99.9 per cent confidence level using only the TE correlation. This value is comparable with current constraints obtained by the Wilkinson Microwave Anisotropy Probe based on the 2σ upper limits to the B-mode amplitude. We demonstrate that to measure PGWs by their contribution to the TE cross-correlation power spectrum in a realistic ground-based experiment when real instrumental noise is taken into account, the tensor-to-scalar ratio, r , should be approximately three times larger.  相似文献   

6.
We compare and combine likelihood functions of the cosmological parameters Ωm, h and σ 8, from peculiar velocities, cosmic microwave background (CMB) and type Ia supernovae. These three data sets directly probe the mass in the Universe, without the need to relate the galaxy distribution to the underlying mass via a 'biasing' relation. We include the recent results from the CMB experiments BOOMERANG and MAXIMA-1. Our analysis assumes a flat Λ cold dark matter (ΛCDM) cosmology with a scale-invariant adiabatic initial power spectrum and baryonic fraction as inferred from big-bang nucleosynthesis. We find that all three data sets agree well, overlapping significantly at the 2 σ level. This therefore justifies a joint analysis, in which we find a joint best-fitting point and 95 per cent confidence limits of     (0.17,0.39),     (0.64,0.86) and     (0.98,1.37). In terms of the natural parameter combinations for these data     (0.40,0.73),     (0.16,0.27). Also for the best-fitting point,     and the age of the Universe is 13.2 Gyr.  相似文献   

7.
In an attempt to detect cosmic microwave background (CMB) anisotropy on arcmin scales, we have made an 8.7-GHz image of a sky region with a resolution of 2 arcmin and high surface brightness sensitivity using the Australia Telescope Compact Array (ATCA) in an ultracompact configuration. The foreground discrete-source confusion was estimated from observations with higher resolution at the same frequency and in a scaled array at a lower frequency. Following the subtraction of the foreground confusion, the field shows no features in excess of the instrument noise. This limits the CMB anisotropy flat-band power to Q flat < 23.6 μ K with 95 per cent confidence; the ATCA filter function (which is available at the website www.atnf.csiro.au/Research/cmbr/cmbr_atca.html) F l in multipole l -space peaks at l eff = 4700 and has half-maximum values at l  = 3350 and 6050.  相似文献   

8.
A principal-component analysis of cosmic microwave background (CMB) anisotropy measurements is used to investigate degeneracies among cosmological parameters. The results show that a degeneracy with tensor modes – the 'tensor degeneracy'– dominates uncertainties in estimates of the baryon and cold dark matter densities,   ω bb  h 2  ,   ω cc  h 2  , 1 from an analysis of CMB anisotropies alone. The principal-component analysis agrees well with a maximum-likelihood analysis of the observations, identifying the main degeneracy directions and providing an impression of the effective dimensionality of the parameter space.  相似文献   

9.
Electron scattering induces a polarization in the cosmic microwave background (CMB) signal measured in the direction of a galaxy cluster owing to the presence of a quadrupole component in the CMB temperature distribution. Measuring the polarization towards distant clusters provides the unique opportunity to observe the evolution of the CMB quadrupole at moderate redshifts, z ∼0.5–3. We demonstrate that for the local cluster population the polarization degree will depend on the cluster celestial position. There are two extended regions in the sky, which are opposite to each other, where the polarization is maximal, ∼0.1( τ /0.02) μK in the Rayleigh–Jeans part of the CMB spectrum ( τ being the Thomson optical depth across the cluster). This value exceeds the polarization introduced by the cluster transverse peculiar motion if v t<1300 km s−1. One can hope to detect this small signal by measuring a large number of clusters, thereby effectively removing the systematic contribution from other polarization components produced in clusters. These polarization effects, which are of the order of ( v t c )2 τ , ( v t c ) τ 2 and ( kT e m e c 2) τ 2, as well as the polarization owing to the CMB quadrupole, were previously given by Sunyaev and Zel'dovich for the Rayleigh–Jeans part of the spectrum. We fully confirm their earlier results and present exact frequency dependences for all these effects. The polarization degree is considerably higher in the Wien region.  相似文献   

10.
A key prediction of cosmological theories for the origin and evolution of structure in the Universe is the existence of a 'Doppler peak' in the angular power spectrum of cosmic microwave background (CMB) fluctuations. We present new results from a study of recent CMB observations which provide the first strong evidence for the existence of a 'Doppler peak' localized in both angular scale and amplitude. This first estimate of the angular position of the peak is used to place a new direct limit on the curvature of the Universe, corresponding to a density of Ω = 0.7+0.8−0.5, consistent with a flat universe. Very low-density 'open' universe models are inconsistent with this limit unless there is a significant contribution from a cosmological constant. For a flat standard cold dark matter dominated universe we use our results in conjunction with big bang nucleosynthesis constraints to determine the value of the Hubble constant as H 0 = 30 − 70 km s−1 Mpc−1 for baryon fractions Ωb = 0.05 to 0.2. For H 0 = 50 km s−1 Mpc−1 we find the primordial spectral index of the fluctuations to be n  = 1.1 ± 0.1, in close agreement with the inflationary prediction of n  ≃ 1.0.  相似文献   

11.
We test the consistency of estimates of the non-linear coupling constant f NL using non-Gaussian cosmic microwave background (CMB) maps generated by the method described in the work of Liguori, Matarrese & Moscardini. This procedure to obtain non-Gaussian maps differs significantly from the method used in previous works on the estimation of f NL. Nevertheless, using spherical wavelets, we find results in very good agreement with Mukherjee & Wang, showing that the two ways of generating primordial non-Gaussian maps give equivalent results. Moreover, we introduce a new method for estimating the non-linear coupling constant from CMB observations by using the local curvature of the temperature fluctuation field. We present both Bayesian credible regions (assuming a flat prior) and proper (frequentist) confidence intervals on f NL, and discuss the relation between the two approaches. The Bayesian approach tends to yield lower error bars than the frequentist approach, suggesting that a careful analysis of the different interpretations is needed. Using this method, we estimate   f NL=−10+270−260  at the 2σ level (Bayesian) and   f NL=−10+310−270  (frequentist). Moreover, we find that the wavelet and the local curvature approaches, which provide similar error bars, yield approximately uncorrelated estimates of f NL and therefore, as advocated in the work of Cabella et al., the estimates may be combined to reduce the error bars. In this way, we obtain   f NL=−5 ± 85  and   f NL=−5 ± 175  at the 1σ and 2σ level respectively using the frequentist approach.  相似文献   

12.
We present a Gaussianity analysis of the Wilkinson Microwave Anisotropy Probe ( WMAP ) 5-yr cosmic microwave background (CMB) temperature anisotropy data maps. We use several third-order estimators based on the spherical Mexican hat wavelet. We impose constraints on the local non-linear coupling parameter f nl using well-motivated non-Gaussian simulations. We analyse the WMAP maps at resolution of 6.9 arcmin for the Q , V , and W frequency bands. We use the KQ 75 mask recommended by the WMAP team which masks out 28 per cent of the sky. The wavelet coefficients are evaluated at 10 different scales from 6.9 to 150 arcmin. With these coefficients, we compute the third order estimators which are used to perform a  χ2  analysis. The  χ2  statistic is used to test the Gaussianity of the WMAP data as well as to constrain the f nl parameter. Our results indicate that the WMAP data are compatible with the Gaussian simulations, and the f nl parameter is constrained to  −8 < f nl < +111  at 95 per cent confidence level (CL) for the combined   V + W   map. This value has been corrected for the presence of undetected point sources, which add a positive contribution of  Δ f nl= 3 ± 5  in the   V + W   map. Our results are very similar to those obtained by the WMAP team using the bispectrum.  相似文献   

13.
We study the effect of primordial isocurvature perturbations on non-Gaussian properties of cosmic microwave background (CMB) temperature anisotropies. We consider generic forms of the non-linearity of isocurvature perturbations which can be applied to a wide range of theoretical models. We derive analytical expressions for the bispectrum and the Minkowski Functionals for CMB temperature fluctuations to describe the non-Gaussianity from isocurvature perturbations. We find that the isocurvature non-Gaussianity in the quadratic isocurvature model, where the isocurvature perturbation S is written as a quadratic function of the Gaussian variable  σ,  S =σ2−〈σ2〉  , can give the same signal-to-noise ratio as   f NL= 30  even if we impose the current observational limit on the fraction of isocurvature perturbations contained in the primordial power spectrum α. We give constraints on isocurvature non-Gaussianity from Minkowski Functionals using the Wilkinson Microwave Anisotropy Probe ( WMAP ) 5-year data. We do not find a significant signal of isocurvature non-Gaussianity. For the quadratic isocurvature model, we obtain a stringent upper limit on the isocurvature fraction  α < 0.070  (95 per cent CL) for a scale-invariant spectrum which is comparable to the limit obtained from the power spectrum.  相似文献   

14.
We implement the theory of resonant scattering in the context of cosmic microwave background (CMB) polarization anisotropies. We compute the changes in the E-mode polarization (EE) and temperature E-mode (TE) CMB power spectra introduced by the scattering on a resonant transition with a given optical depth τX and polarization coefficient E 1. The latter parameter, accounting for how anisotropic the scattering is, depends on the exchange of angular momentum in the transition, enabling observational discrimination between different resonances. We use this formalism in two different scenarios: cosmological recombination and cosmological re-ionization. In the context of cosmological recombination, we compute predictions in frequency and multipole space for the change in the TE and EE power spectra introduced by scattering on the Hα and Pα lines of hydrogen. This constitutes a fundamental test of the standard model of recombination, and the sensitivity it requires is comparable to that needed in measuring the primordial CMB B-mode polarization component. In the context of re-ionization, we study the scattering off metals and ions produced by the first stars, and find that polarization anisotropies, apart from providing a consistency test for intensity measurements, give some insight on how re-ionization evolved. Since polarization anisotropies have memory of how anisotropic the line scattering is, they should be able to discern the O  i 63.2-μm transition from other possible transitions associated to O  iii , N  ii , N  iii , etc. The amplitude of these signals are, however, between 10 and 100 times below the (already challenging) level of CMB B-mode polarization anisotropies.  相似文献   

15.
We use the preliminary results of a new survey of radio sources made using the Ryle Telescope at 15.2 GHz, to estimate the impact of foreground sources on cm-wave cosmic microwave background (CMB) images. This is the highest frequency survey that is relevant to the issue of radio source contamination in CMB experiments. The differential source count of the 66 sources found in 63 deg2 is     , from ≈20 to ≈500 mJy. Extrapolating this to 34 GHz (where many cm-wave CMB experiments operate) gives an estimated temperature contribution of sources     in a CMB image, with a beam corresponding to multipole     . A means of source subtraction is evidently necessary, otherwise the signal-to-noise ratio in CMB images will be limited to 4 or 5, becoming worse at higher resolution. We compare the population of sources observed in this new survey to that predicted by extrapolation from lower frequency surveys, finding that source flux densities, and indeed the existence of many sources, cannot be determined by extrapolation.  相似文献   

16.
We have constructed the first all-sky cosmic microwave background (CMB) temperature and polarization lensed maps based on a high-resolution cosmological N -body simulation, the Millennium Simulation (MS). We have exploited the lensing potential map obtained using a previously developed map-making procedure which integrates along the line-of-sight the MS dark matter distribution by stacking and randomizing the simulation boxes up to   z = 127  , and which semi-analytically supplies the large-scale power in the angular lensing potential that is not correctly sampled by the N -body simulation. The lensed sky has been obtained by properly modifying the latest version of the LensPix code to account for the MS structures. We have also produced all-sky lensed maps of the so-called  ψ E   and  ψ B   potentials, which are directly related to the electric and magnetic types of polarization. The angular power spectra of the simulated lensed temperature and polarization maps agree well with semi-analytic estimates up to   l ≤ 2500  , while on smaller scales we find a slight excess of power which we interpret as being due to non-linear clustering in the MS. We also observe how non-linear lensing power in the polarized CMB is transferred to large angular scales by suitably misaligned modes in the CMB and the lensing potential. This work is relevant in view of the future CMB probes, as a way to analyse the lensed sky and disentangle the contribution from primordial gravitational waves.  相似文献   

17.
Recent tentative findings of non-Gaussian structure in the COBE -DMR data set have triggered renewed attention on candidate models from which such intrinsic signature could arise. In the framework of slow-roll inflation with built-in non-linearities in the inflaton field evolution, we present expressions for both the cosmic microwave background (CMB) skewness and the full angular bispectrum 123 in terms of the slow-roll parameters. We use an estimator for the angular bispectrum recently proposed in the literature and calculate its variance for an arbitrary ℓ i multipole combination. We stress that a real detection of non-Gaussianity in the CMB would imply that an important component of the anisotropies arises from processes other than primordial quantum fluctuations. We further investigate the behaviour of the signal-to-(theoretical) noise ratio and demonstrate for generic inflationary models that it decreases in the limited range of small ℓs considered for increasing multipole ℓ, while the opposite applies for the standard s.  相似文献   

18.
A new method arising from a gauge-theoretic approach to general relativity is applied to the formation of clusters in an expanding universe. The three cosmological models (0=1, =0), (0=0.3, =0.7) and (0=0.3, =0) are considered, which extends our application in two previous papers. A simple initial velocity and density perturbation of finite extent is imposed at the epoch z =1000, and we investigate the subsequent evolution of the density and velocity fields for clusters observed at redshifts z =1, z =2 and z =3. Photon geodesics and redshifts are also calculated so that the cosmic microwave background (CMB) anisotropies arising from collapsing clusters can be estimated. We find that the central CMB temperature decrement is slightly stronger and extends to larger angular scales in the non-zero case. This effect is strongly enhanced in the open case. Gravitational lensing effects are also considered, and we apply our model to the reported microwave decrement observed towards the quasar pair PC 1643+4631 A&B.  相似文献   

19.
We study the generation of a stochastic gravitational wave (GW) background produced from a population of core-collapse supernovae, which form black holes in scenarios of structure formation. We obtain, for example, that the formation of a population (Population III) of black holes, in cold dark matter scenarios, could generate a stochastic GW background with a maximum amplitude of   h BG≃10−24  and corresponding closure energy density of  ΩGW∼10−7  , in the frequency band   ν obs≃30–470 Hz  (assuming a maximum efficiency of generation of GWs, namely,   ɛ GWmax=7×10−4)  for stars forming at redshifts   z ≃30–10  . We show that it will be possible in the future to detect this isotropic GW background by correlating the signals of a pair of 'advanced' LIGO observatories (LIGO III) at a signal-to-noise ratio of ≃40. We discuss what astrophysical information could be obtained from a positive (or even a negative) detection of such a GW background generated in scenarios such as those studied here. One of them is the possibility of obtaining the initial and final redshifts of the emission period from the observed spectrum of GWs.  相似文献   

20.
We find that at redshifts   z ≳ 10, HD  line cooling allows strongly shocked primordial gas to cool to the temperature of the cosmic microwave background (CMB). This temperature is the minimum value attainable via radiative cooling. Provided that the abundance of HD, normalized to the total number density, exceeds a critical level of  ∼10−8  , the CMB temperature floor is reached in a time which is short in comparison to the Hubble time. We estimate the characteristic masses of stars formed out of shocked primordial gas in the wake of the first supernovae, and resulting from the virialization of dark matter haloes during hierarchical structure formation to be  ∼10 M  . In addition, we show that cooling by HD enables the primordial gas in relic H  ii regions to cool to temperatures considerably lower than those reached via H2 cooling alone. We confirm that HD cooling is unimportant in cases where the primordial gas does not go through an ionized phase, as in the formation process of the very first stars in   z ≳ 20  minihaloes of mass  ∼106 M  .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号