首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
The continental margin north of Alaska, as interpreted from seismic reflection profiles, is of the Atlantic type and consists of three sectors of contrasting structure and stratigraphy. The Chukchi sector, on the west, is characterized by the deep late Mesozoic and Tertiary North Chukchi basin and the Chukchi Continental Borderland. The Barrow sector of central northern Alaska is characterized by the Barrow arch and a moderately thick continental terrace build of Albian to Tertiary clastic sediment. The terrace sedimentary prism is underlain by lower Paleozoic metasedimentary rocks. The Barter Island sector of northeastern Alaska and Yukon Territory is inferred to contain a very thick prism of Jurassic, Cretaceous and Tertiary marine and nonmarine clastic sediment. Its structure is dominated by a local deep Tertiary depocenter and two regional structural arches.We postulate that the distinguishing characteristics of the three sectors are inherited from the configuration of the rift that separated arctic Alaska from the Canadian Arctic Archipelago relative to old pre-rift highlands, which were clastic sediment sources. Where the rift lay relatively close to northern Alaska, in the Chukchi and Barter Island sectors, and locally separated Alaska from the old source terranes, thick late Mesozoic and Tertiary sedimentary prisms extend farther south beneath the continental shelf than in the intervening Barrow sector. The boundary between the Chukchi and Barrow sectors is relatively well defined by geophysical data, but the boundary between the Barrow and Barter Island sectors can only be inferred from the distribution and thickness of Jurassic and Cretaceous sedimentary rocks. These boundaries may be extensions of oceanic fracture zones related to the rifting that is postulated to have opened the Canada Basin, probably beginning during the Early Jurassic.  相似文献   

2.
The Kaapvaal intrageosyncline, one of the oldest cratonic basins of the Precambrian shield areas, offers an almost complete record of deposition and diastrophism that occurred between c. 1,4 and 3,0 Ga B.P. Its tectonic development started after the consolidation of the Early Archaean crustal structure when sequences such as the Pongola, Dominion Reef and Witwatersrand accumulated in a tectonically stable environment between c. 2,4 and 3,0 Ga B.P. This early epeirogenic or platformal stage was followed by a period of deposition of the Ventersdorp, Transvaal and Waterberg-Matsap sequences between c. 1,4 and 2,4 Ga B.P. Gravity-induced deformation which culminated in post-Matsap folding in the northern Cape and in post-Waterberg faulting in parts of the northern Transvaal and Botswana, affected portions of the basin situated close to the boundary of the craton with surrounding mobile belts. In Late Precambrian times the tectonic activity was either insignificant or it was again confined to the marginal zones of the craton (e. g. partial tectonic reactivation of the Lower Proterozoic sequences in the foreland of the Namaqua Mobile Belt between c. 0,9 and 1,25 Ga B.P.).Although the Kaapvaal basin represents an epeirogenic feature, the structure of its marginal parts displays some of the characteristics of orogenic belts (e. g. the linearity of fold structures in the Matsap synclinorium in the northern Cape and its uniform vergence towards the axis of the Waterberg-Matsap basin). However, the deformation of sequences in the Kaapvaal basin was not associated with magma generation, and the metamorphism operative in the basin during the Lower Proterozoic was only of burial type.The depositional and deformational history of the platform cover in the tectonically labile marginal zones of the Kaapvaal Craton is related to the tectonic evolution of the adjoining mobile belts. This can be shown by the example of the Namaqua Belt and its foreland in the northern Cape where continuity of certain geological units and tectonic structures exists across the front of the mobile belt. This continuity, together with the similar timing of the tectonic events in the mobile belt and on the craton, points to a common cause for the broad movements of uplift and subsidence on the craton, and for the profound deformation in restricted zones along its margin and in adjoining mobile belts.
Zusammenfassung Die Kaapvaal-Intrageosynkline ist eines der ältesten bekannten kratonischen Becken, und ihre Entwicklungsgeschichte kann über einen Zeitraum von 1,6 Milliarden Jahren verfolgt werden.Das Becken entstand in einem früh-epigenetischen oder Plattform-Stadium, als die Pongola-, Dominion-Reef- und Witwatersrand-Schichten vor ca. 3,0 bis 2,4 Milliarden Jahren auf die konsolidierte frühpräkambrische Kruste abgelagert wurden. In einem weiteren Sedimentationszyklus folgten die Ventersdorp-, Transvaal- und Waterberg-Matsap-Schichten vor 2,4 bis 1,4 Milliarden Jahren. Gravitationsfaltung, die ihren Höhepunkt mit der Matsap-Deformation in der nördlichen Kapprovinz erreichte, und Störungsbewegungen im nördlichen Transvaal und in Botswana haben das Becken randlich im Grenzbereich zwischen Kraton und den umgebenden mobilen Zonen beeinflußt. Tektonische Bewegungen im Spätpräkambrium waren entweder unbedeutend oder sie spielten sich wiederum im Randbereich des Beckens ab (z. B. tektonische Rejuvenation von frühproterozoischen Gesteinen im Vorland des Namaqua-Mobile-Belt von ca 0,9 bis 1,25 Milliarden Jahren).Obwohl das Kaapvaal-Becken epirogenen Charakter aufweist, so zeigen doch die Strukturen in seinem Randbereich oft orogene Züge. Die Deformation im Beckeninneren war jedoch nicht von Magmaintrusionen begleitet, und während des Frühproterozoikums wurde die Beckenfüllung lediglich von einer geringen Versenkungsmetamorphose erfaßt.Die Sedimentations- und Deformationsgeschichte der Plattform-Serien im tektonisch labilen Randbereich des Kaapvaal-Kratons ist eng mit der strukturellen Entwicklung in den benachbarten mobilen Zonen verbunden. Dies wird am Beispiel des Namaqua-Mobile-Belt und seines Vorlandes in der nördlichen Kapprovinz gezeigt, wo bestimmte geologische Einheiten und Strukturen vom mobilen Bereich in den kratonischen Bereich verfolgt werden können. Diese Kontinuität und der zeitliche Zusammenhang zwischen Deformation immobile belt und auf dem Kraton deuten auf eine gemeinsame Ursache für die weitgespannten epirogenetischen Bewegungen im Beckenbereich und die orogene Tektonik am Rande des Kratons hin.Der Unterschied zwischen stabilen und mobilen Bereichen ist wahrscheinlich auf unterschiedliche Krustendicke und -stärke zurückzuführen, so daß die gleichen tektonischen (orogenen) Bewegungen einerseits zu alpinotypen Strukturen führen, während sie in starken (d. h. schon verfestigten) Krustenteilen germanotype Verformung und Epirogenese zur Folge haben. Orogene oder epirogene Bewegungen hängen daher entweder von verschiedenartiger tektonischer Beanspruchung benachbarter Krustenteile während eines bestimmten Zeitraumes ab, oder sie spiegeln fundamentale Veränderungen in einem bestimmten Krustenbereich im Laufe seiner Entwicklungsgeschichte wider.Ein Beispiel für den ersten Fall ist die in vorliegender Arbeit beschriebene unterschiedliche Entwicklung des Kaapvaal-Beckens und des benachbarten Namaqua-Mobile-Belt im Frühproterozoikum, während letzterer Fall durch die spätarchaische Kratonisierung des Kaapvaal-Grundgebirges und die nachfolgende Evolution der Kaapvaal-Plattform charakterisiert ist.

Résumé Le Kaapvaal intragéosynclinal, un des plus vieux bassins cratoniques connus des boucliers précambriens, apporte un record presque complet de sédimentation et de diastrophisme qui apparut entre 1400 Ma et 3000 Ma. Son développement tectonique commença après la stabilisation tectonique de la croûte de l'Archéen moyen quand des séries telles que le Pongola, le Dominion Reef et le Witwatersrand se furent déposées dans un milieu tectoniquement stable entre 2400 Ma et 3000 Ma. Cette époque épéiro-génique précoce fut suivie par la période de sédimentation des séries du Ventersdorp, du Transvaal et du Waterberg-Matsap, entre 1400 Ma et 2400 Ma. Le plissement par gravitation qui culmina avec la déformation de Matsap dans le Nord de la province du Cap et par le décrochement post-Waterberg dans certaines parties du Nord du Transvaal et du Botswana, influença les parties du bassin placées en bordure entre le craton et les zones mobiles qui l'entouraient.L'activité tectonique entre 1400 Ma et 600 Ma fut ou insignifiquante ou à nouveau se limita aux parties marginales du craton (c'est à dire une réactivation tectonique partielle des séries du Protérozoïque inférieur dans l'avant-pays de la zone mobile du Namaqualand, entre 900 Ma et 1250 Ma).Bien que le bassin de Kaapvaal montre un caractère épirogénique, les structures des parties marginales montrent cependant quelques traits caractéristiques pour les ceintures orogéniques. La déformation des séries de l'intérieur du bassin du Kaapvaal ne fut cependant pas accompagnée d'intrusions magmatiques, et pendant le Protérozoïque ancien le comblement du bassin fut affecté seulement d'un léger métamorphisme d'enfouissement.L'histoire de la sédimentation et de la déformation des séries de plateforme dans le domaine marginal tectoniquement labile du craton du Kaapvaal est mis en relation avec l'évolution structurale des zones mobiles voisines. C'est ce que montre l'exemple du «Namaqua Mobile Belt» et de son avant-pays dans la province septentrionale du Cap où s'établit la continuité entre la zone mobile et le craton. Cette continuité, et aussi la liaison dans le temps entre la déformation dans la zone mobile et dans le craton, indiquent une cause commune pour les grands mouvements de soulèvement et de subsidence dans le domaine du bassin et pour la déformation profonde en bordure du craton.La différence entre les domaines stables et mobiles est à rapporter vraissemblablement à des épaisseurs et à des résistances différentes de la croûte, de sorte que les mêmes mouvements tectoniques (orogéniques) d'une part conduisent à des structures alpinotypes, tandis que d'autre part dans les parties de la croûtes suffisamment fortes (c'est-à-dire déjà consolidées) ils ont pour effet une déformation germanotype et une épirogenèse. Les mouvements orogéniques ou épirogéniques ou bien dépendent de sollicitations tectoniques de type différent entre parties de la croûte voisines pendant une durée déterminée, ou bien ils reflètent des modifications fondamentales dans un domaine déterminé de la croûte au cours de son développement historique.Un exemple du premier cas est donné par le développement différentiel, décrit dans le présent travail du bassin du Kaapvaal et de la Ceinture mobile du Namaque, voisine, au cours du Protérozoïque ancien, tandis que le dernier cas est donné par la cratonisation, à la fin de l'Archéen, du socle du Kaapvaal et par l'évolution de la plateforme du Kaapvaal qui l'a suivie.

— ; 1,6 . - , , , 3,0 2,4 , - . — 2,4 1,4 — , -. — —, , . , . - 0,9–1,25 .) , , . , , , . . , . , . , , — . , , . , — .
  相似文献   

3.
Crustal deformation due to fault slip depends strongly on fault geometry, and fault geometry is changed by the deformation of the crust. This feedback mechanism causes the geometrical evolution of the fault system. We have studied the progress of the geometrical evolution of a plate interface–branch fault system through numerical simulation, based on elastic–viscoelastic dislocation theory. If the plate interface is smooth, no significant change occurs in fault geometry. If the plate interface has a ramp, we observe the gradual horizontal motion of the ramp toward the hanging-wall side of the interface at half the plate convergence rate. The offset of the ramp decreases with time. The dip-angle of thrust faults branching from the plate interface increases more rapidly as the dip of the fault increases. We have applied these results to the plate interface–branch fault system at the India–Eurasia collision boundary and obtained a scenario for the tectonic development of the Himalayas for the last 30 Myr.  相似文献   

4.
Ancient stream-dominated (‘wet’) alluvial fan deposits have received far less attention in the literature than their arid/semi-arid counterparts. The Cenozoic basin fills along the Denali fault system of the northwestern Canadian Cordillera provide excellent examples of stream-dominated alluvial fan deposits because they developed during the Eocene-Oligocene temperate climatic regime in an active strike-slip orogen. The Amphitheatre Formation filled several strike-slip basins in Yukon Territory and consists of up to 1200 m of coarse siliciclastic rocks and coal. Detailed facies analysis, conglomerate: sandstone percentages (C:S), maximum particle size (MPS) distribution, and palaeocurrent analysis of the Amphitheatre Formation in two of these strike-slip basins document the transition from proximal, to middle, to distal and fringing environments within ancient stream-dominated alluvial-fan systems. Proximal fan deposits in the Bates Lake Basin are characterized by disorganized, clast-supported, boulder conglomerate and minor matrix(mud)-supported conglomerate. Proximal facies are located along the faulted basin margins in areas where C:S = 80 to 100 and where the average MPS ranges from 30 to 60 cm. Proximal fan deposits grade into middle fan, channelized, well organized cobble conglomerates that form upward fining sequences, with an average thickness of 7 m. Middle fan deposits grade basinward into well-sorted, laterally continuous beds of normally graded sandstone interbedded with trough cross-stratified sandstone. These distal fan deposits are characteristic of areas where C:S = 20 to 40 and where the average MPS ranges from 5 to 15 cm. Fan fringe deposits consist of lacustrine and axial fluvial facies. Palaeogeographic reconstruction of the Bates Lake Basin indicates that alluvial-fan sedimentation was concentrated in three parts of the basin. The largest alluvial-fan system abutted the strike-slip Duke River fault, and prograded westward across the axis of the basin. Two smaller, coarser grained fans prograded syntaxially northward from the normal-faulted southern basin margin. Facies analysis of the Burwash Basin indicates a similar transition from proximal to distal, stream-dominated alluvial fan environments, but with several key differences. Middle-fan deposits in the Burwash Basin define upward coarsening sequences 50 to 60 m thick composed of fine-grained lithofacies and coal in the lower part, trough cross-stratified sandstone in the middle, and conglomerate in the upper part of the sequence. Upward-coarsening sequences, 90–140 m thick, also are common in the fan fringe lacustrine deposits. These sequences coarsen upward from mudstone, through fine grained, ripple-laminated sandstone, to coarse grained trough cross-stratified sandstone. The upward-coarsening sequences are basinwide, facies independent, and probably represent progradation of stream-dominated alluvial-fan depositional systems. Coal distribution in the Amphitheatre Formation is closely coupled with predominant depositional processes on stream-dominated alluvial fans. The thickest coal seams occur in the most proximal part of the basin fill and in marginal lacustrine deposits. Coal development in the intervening middle and distal fan areas was suppressed by the high frequency of unconfined flow events and lateral channel mobility.  相似文献   

5.
Only one access road leads into Denali Park. The serviceability and safety of this gravel road is obviously of paramount importance to the National Park Service (NPS). Since the late 1950s and mid1960s major icings and a landslide, respectively, have occurred along the Denali Park access road. During the summer of 1990 the landslide activity intensified. The central section of the Park through which the access road traverses is designated as a wilderness area. Consequently, off road field exploration required to quantify the hazards and remediation activities that may be proposed to mitigate icings and stabilize the landslide, are severely restricted and closely scrutinized by the NPS. The results of an evaluation of (1) the current state-of-the-practice to control icings, and (2) thaw stabilization techniques that could be appiled to the northwest corner of the landslide are presented herein. The recommendations which followed, respecting the wilderness area designation for the Park, are also presented.  相似文献   

6.
塔里木盆地塔中低凸起北斜坡古生代断裂展布与构造演化   总被引:8,自引:2,他引:8  
李传新 《地质学报》2009,83(8):1065-1073
通过对塔中低凸起北斜坡4500km2三维地震数据体的精细解析,根据不整合面和生长地层分析以及断层与地层之间的接触关系,厘定划分出四期不同应力性质的断裂体系,分别为寒武-早奥陶世拉张断裂,晚奥陶世冲断挤压和北西向走断裂,志留-泥盆纪北东向走滑断裂以及二叠纪的岩浆刺穿。寒武-早奥陶世拉张断裂展布形态和发育规模奠定了后期构造活动的基础;晚奥陶世断裂呈发散的帚状,向东南方向收敛,断裂分布具有明显的分带和分段性,东部主要为逆冲断裂,中西部发育北西向走滑断裂,晚奥陶世断裂体系可划分为六组呈北西向展布的弧型断裂带,各弧形断裂带由多条断裂组成,其形成可能与古生代阿尔金北缘北西向冲断挤压有关;塔中志留-泥盆纪走滑断裂体系主要是在挤压应力环境下形成的,呈北东向展布,走滑断裂体系由三部分组成:主干边界断裂、尾端羽列断裂和拉分地堑,其中主干断裂剖面上表现为高角度近似直立断面,直插基底,延伸较远,剖面上呈花状构造,尾端羽列断裂在主干断层的尾端发育,主要位于主干断裂的北端,拉分地堑平面上呈菱形,受多级断层控制;二叠纪岩浆刺穿在塔中三维区呈点状或条带状,岩浆刺穿对早期断裂进行叠置和改造,岩浆侵入和底辟作用致使地层隆升,形成一系列逆断层性质的“正花状构造”。构造活动决定了断裂发育,早古生代塔里木盆地及其周缘地区伸展-聚敛构造演化构成了一个较为完整的威尔逊旋回,寒武纪-早奥陶世塔里木周缘古大洋拉张裂解,早奥陶世末-晚奥陶世部分古大洋俯冲消减,晚奥陶世-泥盆纪周缘大洋部分闭合,发生弧陆或陆陆碰撞,二叠纪岩浆活动代表了另一个构造旋回的开始。  相似文献   

7.
In western Tasmania, Precambrian sedimentary sequences form the basement for narrow trough accumulations of Eocambrian and younger sequences. The main trough, the meridional Dundas Trough, is flanked to the west by the Rocky Cape region of Precambrian rocks within which major, apparently stratiform, exhalative magnetite-pyrite deposits are intercalated with metabasaltic volcanics and ultramafic bodies.The Eocambrian-Cambrian troughs apparently developed during extension of Precambrian continental crust. Early shallow-water deposition includes thick dolomite units in some troughs. Deepening of the troughs was accompanied by turbidite sedimentation, with minor limestone, and submarine basaltic volcanism with associated minor disseminated native copper. Ultramafic and related igneous rocks were tectonically emplaced in some troughs during a mild compressional phase. They contain only minor platinoids, copper-nickel sulphides and asbestos, but are source rocks for Tertiary secondary deposits of platinoids, chromite and lateritic nickel.In the Dundas Trough, Eocambrian-Early Cambrian rocks are separated by an inferred erosional surface from structurally conformable overlying Middle to Late Cambrian fossiliferous turbidite sequences. The structural conformity continues through overlying Ordovician to Early Devonian terrestrial and shallow-marine stable shelf deposits.A considerable pile of probable Middle Cambrian felsic volcanics accumulated between the sedimentary deposits of the Dundas Trough and the Tyennan region of Precambrian rocks to the east. A lava-dominated belt within the volcanics hosts major volcanogenic massive sulphide deposits, including those of the exhalative type, which in the south are enriched in copper, gold and silver, whereas in the north they are rich in zine, lead, copper, gold and silver. Cambrian movements along faults near the margin of the Tyennan region resulted in erosion of the mineralized volcanics, locally exposing sub-volcanic granitoids. Above the local unconformities occur unmineralized volcaniclastic sequences that pass conformably into Ordovician to Early Devonian shelf deposits. Ordovician limestone locally hosts stratabound disseminated and veined base metal sulphide deposits.Pre-Middle Devonian rocks of western Tasmania differ, for most part, from those in the northeast where deeper marine turbidite quartz-wacke sequences were deposited during the Ordovician and Early Devonian.The Eocambrian to Early Devonian rocks of Tasmania were extensively deformed in the mid-Devonian. The Precambrian regions of western Tasmania behaved as relatively competent blocks controlling early fold patterns. In northeastern Tasmania, folding is of similar age but resulted from movements inconsistent with those affecting rocks of equivalent age in western Tasmania.The final metallogenic event is associated with high-level granitoid masses emplaced throughout Tasmania during the Middle to Late Devonian. In northeastern Tasmania, extensive I-type granodiorite and S-type granite, with alkali-feldspar granites, are associated with mainly endogranitic stanniferous grelsens and wolframite ± cassiterite vein deposits. In contrast, scheelite-bearing skarns and cassiterite stannite pyrrhotite carbonate replacement deposits are dominant in western Tasmania, associated mainly with S-type granites. Several argentiferous lead-zinc vein deposits occur in haloes around tin-tungsten deposits. A number of gold deposits are apparently associated with I-type granodiorite, but some have uncertain genesis.The contrasting regions of western and northeastern Tasmania have probably been brought together by lateral movement along an inferred fracture. Flat-lying, Late Carboniferous and younger deposits rest on the older rocks, and the only known post-Devonian primary mineralization is gold associated with Creta ceous syenite.  相似文献   

8.
藏南侏罗纪残留洋弧的地球化学特征及其大地构造意义   总被引:3,自引:6,他引:3  
沿雅鲁藏布江缝合带残留一系列中生代洋弧,厘定这些洋弧的形成时代和地球化学性质对于理解新特提斯洋的消减过程、确定南拉萨地体的组成和限定印度-欧亚板块的碰撞时限等都具有重要的意义。泽当微地体位于雅鲁藏布江缝合带东段,主要由英云闪长岩、花岗闪长岩和角闪岩组成。SHRIMP锆石U-Pb定年结果表明,位于泽当西部的花岗闪长岩(简称泽当花岗闪长岩)形成于157.5±1.4Ma,与东部的英云闪长岩形成时代相近。全岩元素和同位素(Sr和Nd)地球化学分析结果表明泽当花岗闪长岩具有以下地球化学特征:(1)较高的SiO2(64.4%~68.4%)和Al2O3(16.9%~18.4%);(2)较高的Na2O/K2O比值(>2.1),显示富钠的特征;(3)富集LREE,亏损HREE,从Ho到Lu稀土分布样式上翘((Ho/Yb)N=0.69~0.90)和明显的Eu负异常;(4)较低的Y(<7.19×10-6)和Yb(<0.88×10-6),较高的Sr/Y>119.7和La/Yb>22.4,在Sr/Y-Y和La/Yb-Yb图解中,泽当花岗闪长岩都落入埃达克岩区域内;(5)87Sr/86Sr(t)(0.704065~0.704439)值较低,εNd(t)(+5.1~+6.1)值较高,显示其来自亏损地幔的特征;(6)亏损Zr、Hf、Ti和Y等高场强元素,富集大离子亲石元素,显示了岛弧岩浆岩的典型特征。上述数据表明,泽当花岗闪长岩不仅具有明显的岛弧岩浆岩的特征,而且具有显著的埃达克质特征,可能是在来自地幔楔部分熔融体的板底垫托作用下,新生基性下地壳重熔的产物。泽当微地体是一个残留的晚侏罗纪洋弧系统,是中生代新特提斯洋洋内俯冲系统的残留。  相似文献   

9.
It is shown that in two-dimensional and three-dimensional deformation accommodated by fracture, the symmetry of the fault patterns is an intrinsic attribute because it reflects the symmetry of either stress or strain tensors. The deformation accommodated by sliding along pre-existing planes, when there is kinematic interaction between that planes, forms multiple fault pattern and multiple slickenline sets during a single deformation event. These fault patterns have no restrictions with respect to symmetry, number of fault sets or fault orientation.

The kinematic analysis developed here shows that an interacting system is formed by two cross cutting faults and three slickenlines. One slickenline must be parallel to the intersection line between the planes. Also, it is demonstrated that the slickenlines generally do not correspond to the shear stress solution on the planes. Thus, the interaction between planes does not satisfy the assumption of parallelism between shear stress and slip vector. We conclude that the inversion methods to calculate paleostress tensors can lead to erroneous interpretations in structurally complex zones with many pre-existing planes of weakness.

We propose four possibilities to form multiple fault patterns: (1) two or more events of faulting obeying Coulomb's law with a change of orientation of the principal stresses in each event; (2) reactivation of non-interacting planes according to the Bott (1959) model; (3) one three-dimensional strain event that obeys the “Slip Model”; this mechanism will form an orthorhombic four-fault pattern and two slickenline sets in a single strain event; and (4) one or more events obeying the interacting block model proposed here, with or without rotation of the principal stresses. We propose the last origin as the most common in continental regions.  相似文献   


10.
贺兰山南部构造特征及其与固原-青铜峡断裂的关系   总被引:2,自引:0,他引:2  
贺兰山南部的变形从经历的时间及方式上与贺兰山中北部有比较明显的区别.从构造和地层等方面论证了固原-青铜峡断裂通过贺兰山的具体地点,该断裂通过贺兰山后逐渐转为东西向;宁夏中部地区东西向构造是古生代弧型构造的一部分,由于后期的改造而成为现今的形式.黄河断裂和固原-青铜峡断裂控制了贺兰山南部的构造发育,由这两断层夹持的块体(卫宁北山)在新生代向东运动,在该块体的东部由于东西向的挤压形成了许多构造,一些山体隆起的原因可能是来自西部卫宁北山向东的挤压.  相似文献   

11.
西昆仑康西瓦断裂带西延特征及其构造意义   总被引:2,自引:0,他引:2  
青藏高原西北部康西瓦走滑断裂带(Karakax fault)为一条经过长期演化且现今仍在活动的重要大型断裂带,该断裂对该地区形成演化起到至关重要的控制作用。目前大多学者们认为该断裂在东段沿喀拉喀什河谷大致呈东西走向延伸,后在其西段麻扎地区向北西方向延伸。然而,通过详细的野外地质调查在该断裂带西段的麻扎地区新发现了一条NEE-SWW向的断裂,将之命名为麻塔断裂。实测地质剖面和显微构造分析发现麻塔断裂与康西瓦断裂具有相似的几何学和运动学特征,同样经历了早期右旋逆冲的韧性走滑变形和后期左旋脆性走滑变形,理应划分为一条断裂,前者是后者自麻扎向西的延伸部分。麻塔-康西瓦断裂共同参与调节了自古生代以来板块碰撞拼合在青藏高原西北部的构造变形,现今西昆仑-帕米尔地区的构造地貌格局正是康西瓦和喀喇昆仑等大型断裂新生代活动而形成的。  相似文献   

12.
晓天—磨子潭断裂作为北大别带与北淮阳带的地表分界线,是大别造山带内重要的折返边界之一。本次工作在详细的野外观察、糜棱岩化过程中温-压条件的计算、糜棱岩中石英C轴组构分析等一系列工作的基础上,计算晓天—磨子潭断裂内同造山糜棱岩化过程的运动学涡度和应变速率。变形温-压条件指示糜棱岩形成于30~40km的深部,明显大于早白垩世以来的剥蚀深度,指示断裂带糜棱岩化过程发生于同造山折返过程中。涡度分析表明,断裂带的涡度值大于0.9,指示其变形以简单剪切变形为主,并说明大别造山带同造山晚期折返的驱动力表现为浮力。显微构造与石英C轴组构分析均指示了一致的上盘向NW的运动方式。断裂带同造山糜棱岩化过程的应变速率为10-10s-1左右,表明造山带峰期变质之后的折返过程是非常快速的。  相似文献   

13.
喀喇昆仑断裂的变形特征及构造演化   总被引:28,自引:1,他引:28       下载免费PDF全文
喀喇昆仑断裂的变形特征、形成时代、构造演化以及它的构造意义一直存在着争议。在喀喇昆仑断裂东南段阿伊拉日居山地区,沿断裂出露具右旋剪切应变的糜棱岩和糜棱岩化片麻岩-花岗岩,显微构造研究表明其存在高温右旋剪切变形特征,并伴随淡色同构造花岗岩的产生,同构造结晶锆石所记录的U-Pb同位素年龄,暗示了喀喇昆仑断裂的形成时代在23-25Ma以前,其连续变形作用持续到-12Ma,之后伴随阿伊拉日居山的快速隆升以及噶尔盆地开始形成。综合分析表明喀喇昆仑断裂生长过程可能是由南东向北西扩展的过程,是印度板块与欧亚大陆持续碰撞的结果。断裂的累积位移量至少为280km,其长期平均滑移速率约为11mm/a。通过块体间运动学分析,表明在-23-25Ma以后青藏高原物质以约16.2mmn/a的速率向-N108°方向挤出。  相似文献   

14.
宁夏南部晚更新世沉积物沉积特征及其构造意义   总被引:1,自引:0,他引:1       下载免费PDF全文
徐涛  杨家喜  刘源  施炜  魏巍 《地学前缘》2013,20(4):36-45
通过研究宁夏南部第四纪沉积物类型及沉积作用,结合沉积物年代学分析,初步确定宁夏南部晚更新世发育众多沉积盆地。其沉积学特征研究表明,晚更新世沉积盆地主要发育冲积扇沉积物、湖相泥质粉砂质沉积物、盆地边缘斜坡岩相组合、现代河流一级阶地沉积物以及黄土等几种沉积物。沉积作用特点显示,晚更新世沉积盆地的大范围出现主要受构造伸展作用控制,表明青藏高原北东扩展过程中,宁夏南部地区于晚更新世期间还存在较明显的构造伸展活动,从而证实青藏高原隆升及其北东向扩展具明显的阶段性。  相似文献   

15.
苏皖境内滁河断裂的演化与大地构造背景   总被引:2,自引:0,他引:2  
滁河断裂从古生代以来记录了下扬子地区的动力学特征。该断裂震旦纪—志留纪是滁县—全椒深水盆地与巢县—含山浅水盆地的分界线 ;晚泥盆世—中三叠世其北侧未见沉积 , 南侧表现出由于扬子板块向北俯冲而导致的陆内拉张断陷 ;晚三叠世时成为大别—胶南造山带南侧前陆冲断褶带中一条重要的逆冲断层 , 随后卷入郯庐断裂系的左行走滑剪切 ;晚白垩世—早第三纪时表现为垒堑构造的调整边界 , 控制着滁全红色盆地的发展。新生代以来再次表现为逆冲推覆特征。  相似文献   

16.
唐渊  刘俊来 《岩石学报》2010,26(6):1925-1937
青藏高原隆升、周边地貌形成是新生代时期印度-欧亚板块碰撞后的重要响应。在滇西北地区发育了一系列由晚新生代(上新世以来)活动断裂所控制的盆地,例如宾川盆地、洱海盆地、鹤庆盆地、弥渡盆地等。宾川盆地是近南北向程海左行走滑断裂在走滑剪切作用下产生的北西向正断层和北东向走滑断层共同作用而形成的一个较大的拉分盆地。洱海盆地是由两组陡立的共轭张剪性(Transtensional)断层组限定的,为一伸展断陷盆地,总体上反映了近E-W向的区域伸展。滇西北地区发育的其它晚新生代盆地,如弥渡盆地、鹤庆盆地、剑川盆地等,也为区域走滑断裂及其分支断裂所控制,并且这些分支断裂在区域上为一组NE-SW和NW-SE向的共轭正断裂,反映了该区域近E-W向的伸展。将藏东南三江地区发育的活动断裂按照其走向分为三组:(1)NW-SE走向的断裂,如红河断裂、无量山-营盘山断裂等;(2)近N-S向断裂系,以程海断裂、小江断裂等为代表;(3)NE-SW走向的断裂,如丽江-剑川断裂、鹤庆-洱源断裂和南定河断裂等。这些断裂的震源机制解表明地震断裂活动性或者是走滑性质或者是伸展属性,它们的组合型式也揭示出藏东南三江地区在上新世以来表现为近E-W向的伸展。区域上,在藏东北部地区发育的断层构造组合普遍反映了以近E-W向挤压为主导的应力场。推测这一现象为上新世以来藏东地区上地壳围绕喜马拉雅东构造结做顺时针旋转所致,区域上受印度-欧亚会聚过程中印度板块顺时针旋转诱发的差异性应力场制约。  相似文献   

17.
由于复杂的构造叠加及严重的覆盖,人们对鄂尔多斯盆地早古生代深部结构的研究仍很薄弱。本文主要通过地震数据处理和解释,结合野外地质调查,发现在寒武纪时期,盆地的南缘发育了一套北东向和近东西向的正断裂系统。作者对这套断裂系统的平面及剖面特征进行了详细的描述和分析,并结合区域地质背景探讨了其成因机制,结果表明该套断裂系统主要是由于先存的元古宙北东向基底断层在寒武纪时期发生了继承性活动而形成,同时在断裂系统的局部区段派生出了东西向展布的小规模新生断层。这套断裂系统的发现可能对鄂尔多斯盆地南缘在寒武纪的演化认识及油气勘探具有一定的启示意义。  相似文献   

18.
Wood  Nathan J.  Peters  Jeff 《Natural Hazards》2015,75(2):1811-1831
Natural Hazards - Effective tsunami risk reduction requires an understanding of how at-risk populations are specifically vulnerable to tsunami threats. Vulnerability assessments primarily have been...  相似文献   

19.
A new method for controlling the dynamic shear stiffness of interblock contact during stick-slip is proposed. This method enables us to reveal changes in the mechanical properties of the contact long before the macroscopic slip will be recorded. In the experiments conducted, the time of precursor manifestation was about 1/3 of the duration of the “seismic cycle.”  相似文献   

20.
西秦岭北缘断层是青藏高原东北缘新生代盆地与西秦岭地块之间的边界断层,其构造变形的几何学-运动学特征和变形历史等研究对于重建青藏高原东北缘新生代以来的构造变形时空动力学过程,限定新生代盆地构造属性,揭示印度板块-欧亚板块碰撞汇聚的远程构造响应和青藏高原东北缘隆升等重大科学问题具有重要地质约束。本文通过对西秦岭北缘新生代盆地南边界F1断层的断层岩类型及分带、构造要素的几何学-运动学特征等较详细的构造解析,辨认出F1断层6期构造变形:第一期为北西西走向、向北倾斜的韧性-韧脆性伸展正断层作用;第二期为北西西走向、向北陡倾或近直立的高角度逆冲断层作用,指示近南北向挤压缩短作用;第三期为走向近南北、向东或向西陡倾的对冲断层作用,指示了近东西向的挤压缩短作用;第四期为北东向右旋和北西向左旋的走滑共轭断层系统,指示了近东西向的挤压作用;第五期为断层面近直立的北东向左旋、北西向右旋的共轭破裂系统,指示了近南北向挤压作用;第六期为断层面近直立的近东西向左旋和近南北向右旋走滑断层构成了几何学-运动学协调的共轭破裂系统,指示了北东向挤压作用。结合西秦岭北缘渐新世-中新世沉积盆地具有断陷盆地沉积序列特征和上新世具有类磨拉石的冲洪积扇粗砾岩特征以及F1断层多期变形对新生代盆地沉积地层的控制和改造作用分析,认为F1断层第一期韧性-脆韧性伸展正断作用始于渐新世,控制了渐新世-中新世伸展断陷盆地沉积;F1断层第二期高角度逆冲缩短变形使得渐新世-中新世断陷盆地封闭、靠近F1断层的底部砾岩层卷入了挤压逆冲断层作用,断层拖曳使地层产状翘起变陡,这期变形持续到上新世冲洪积扇粗砾岩出现;F1断层第三期与第四期虽然都为近东西向挤压,但第三期为东西向对冲挤出,而第四期为北东向和北西向斜向走滑挤出,其动力学机制是否与青藏高原东北缘西部地壳增厚隆升诱发的中-下地壳向东流动拖曳导致的上地壳东西向挤压缩短尚待证实,由于第三和第四期变形的构造形迹在上新统韩家沟砾岩不存在,因此,这两期变形的时代只能是发生在中新世末期或上新世早期;第五期北东和北西向共轭破裂系统和第六期南北向和东西向共轭破裂系统在渐新统-中新统沉积地层和上新统粗砾岩地层中都存在,其时代无疑是上新世末期或第四纪以来的构造变形,但第五期共轭断层指示的最大主压应力为近南北向,而第六期最大主压应力为北东-南西向,两者夹角约30°,指示两期变形最大主应力方向发生了30°的顺时针旋转,这可能与青藏高原东北缘变形重组过程中块体旋转有关。上述F1断层丰富且复杂的构造变形形迹揭示的断层变形方式和历史演变对于澄清青藏高原东北缘新生代红层盆地构造属性认识上的分歧和高原变形是均匀增厚变形和块体沿断层挤出滑移地壳变形机制的争论等提供了重要的构造依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号