首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Soil erosion is a major threat to our terrestrial ecosystems and an important global environmental problem. The Loess Plateau in China is one of the regions that suffered more severe soil erosion and undergoing climate warming and drying in the past decades. The vegetation restoration named Grain-to-Green Program has now been operating for more than 10 years. It is necessary to assess the variation of soil erosion and the response of precipita- tion and vegetation restoration to soil erosion on the Loess Plateau. In the study, the Revised Universal Soil Loss Equation (RUSLE) was applied to evaluate annual soil loss caused by water erosion. The results showed as follows. The soil erosion on the Loess Plateau between 2000 and 2010 averaged for 15.2 t hm-2 a 1 and was characterized as light for the value less than 25 t hm-2 a-1. The severe soil erosion higher than 25 t hm-2 a-~ was mainly distributed in the gully and hilly regions in the central, southwestern, and some scattered areas of earth-rocky mountainous areas on the Loess Plateau. The soil erosion on the Loess Plateau showed a deceasing trend in recent decade and reduced more at rates more than 1 t hm 2 a 1 in the areas suffering severe soil loss. Benefited from the improved vegetation cover and ecological construction, the soil erosion on the Loess Plateau was significantly declined, es- pecially in the east of Yulin, most parts of Yah'an prefectures in Shaanxi Province, and the west of Luliang and Linfen prefectures in Shanxi Province in the hilly and gully regions. The variation of vegetation cover responding to soil erosion in these areas showed the relatively higher contribution than the precipitation. However, most areas in Qingyang and Dingxi pre- fectures in Gansu Province and Guyuan in Ningxia Hui Autonomous Region were predomi- nantly related to precipitation.  相似文献   

2.
The capacity of soil and water conservation measures, defined as the maximum quantity of suitable soil and water conservation measures contained in a region, were determined for the Loess Plateau based on zones suitable for establishing terraced fields, forestland and grassland with the support of geographic information system(GIS) software. The minimum possible soil erosion modulus and actual soil erosion modulus in 2010 were calculated using the revised universal soil loss equation(RUSLE), and the ratio of the minimum possible soil erosion modulus under the capacity of soil and water conservation measures to the actual soil erosion modulus was defined as the soil erosion control degree. The control potential of soil erosion and water loss in the Loess Plateau was studied using this concept. Results showed that the actual soil erosion modulus was 3355 t·km~(–2)·a~(–1), the minimum possible soil erosion modulus was 1921 t·km~(–2)·a~(–1), and the soil erosion control degree was 0.57(medium level) in the Loess Plateau in 2010. In terms of zoning, the control degree was relatively high in the river valley-plain area, soil-rocky mountainous area, and windy-sandy area, but relatively low in the soil-rocky hilly-forested area, hilly-gully area and plateau-gully area. The rate of erosion areas with a soil erosion modulus of less than 1000 t·km~(–2)·a~(–1) increased from 50.48% to 57.71%, forest and grass coverage rose from 56.74% to 69.15%, rate of terraced fields increased from 4.36% to 19.03%, and per capita grain available rose from 418 kg·a~(–1) to 459 kg·a~(–1) under the capacity of soil and water conservation measures compared with actual conditions. These research results are of some guiding significance for soil and water loss control in the Loess Plateau.  相似文献   

3.
Serious soil erosion has already resulted in degradation of the Loess Plateau of China. Soil erosion is commonly accompanied by extensive soil nutrient loss. Because of enrichment processes,sediment nutrient content is often higher than that of natural soil. The objective of this study is to determine the enrichments of organic matter and total nitrogen in sediment in hilly and gully loess areas on the Loess Plateau of China. Measurements of enrichment ratios (ER) of organic matter (EROM) and total nitrogen (ERTN) in sediment as affected by rainfall, slope gradient, tillage, and fertilization were made in the field under natural rainfall conditions. The results showed that the enrichment of clay in sediment resulted in the enrichment of organic matter (OM) and total nitrogen(TN) in sediment. The averages of sediment clay ER, EROM and ERTN for the various slope gradients were 1.77, 2.09 and 1.61, respectively. The soil erosive module was negatively correlated with EROM and ERTN. Our results indicate that measures to reduce soil erosion, i.e. reducing rainfall erosivity, decreasing soil slope gradient, decreasing fertilizer use, and using level trenches, may increase EROM and ERTN. Both quantity and quality of sediment yield should be considered when implementing erosion control measures.  相似文献   

4.
Cropping systems worldwide have been affected by the current trend in global warming and the optimization of cropping systems is an important area of research in the transition of agricultural land. The Loess Plateau is a typical ecologically fragile region with the most serious soil erosion in China. We carried out a field experiment in Yan’an city on the Loess Plateau to explore the effect of sowing date on crop growth and yield. We then analyzed the feasibility of a double-cropping system by ...  相似文献   

5.
Effective soil particle size composition can more realistically reflect the particle size sorting process of erosion. To reveal the individual contributions of rainfall intensity and slope to splash erosion, and to distinguish the enrichment ratio of each size and the critical size in splash, loessial soil collected on the Loess Plateau in May 2019 was tested under different rainfall intensities(60, 84, 108, 132, 156 mm h-1) and slopes(0°, 5°, 10°, 15°, 20°). The results demonstrated ...  相似文献   

6.
梯田建设和淤地坝淤积对土壤侵蚀影响的定量分析(英文)   总被引:2,自引:1,他引:2  
To study the influences of terraced field construction and check-dam siltation on soil erosion of a watershed,we built a simplified watershed model for the Loess Plateau hilly-gully region including terraced fields,slope farmlands,steep-slope grasslands,and dam farmlands,and defined three states of watershed(i.e.,pioneer,intermediate,and climax stages,respectively).Then,the watershed soil erosion moduli at various stages were studied by using a revised universal soil loss equation.Our results show that the pioneer and climax stages are the extreme states of watershed soil-and-water conservation and control;in the pioneer stage,the soil erosion modulus was 299.56 t ha-1 a-1 above the edge of gully,136.64 t ha-1 a-1 below the edge of gully,and 229.74 t ha-1 a-1 on average;in the climax stage,the soil erosion modulus was 39.10 t ha-1 a-1 above the edge of gully,1.10 t ha-1 a-1 below the edge of gully,and 22.81 t ha-1 a-1 on average;in the intermediate stage,the soil erosion modulus above the edge of gully exhibited an exponential decline along with the increase in terraced field area percentage,while the soil erosion modulus below the edge of gully exhibited a linear decline along with the increase in siltation height.  相似文献   

7.
Intense freezing and thawing actions occur in the Qinghai–Tibet Plateau because of its high elevation and cold temperature. The plateau's unique environment makes it easy to generate wind erosion under dry, windy weather conditions, resulting in the emergence of desertification. As a major form of freeze–thaw erosion, freeze–thaw and wind erosion is displayed prominently on the Qinghai–Tibet Plateau. Therefore, in this study, soil samples were collected from the surface of the plateau to undergo freeze–thaw and wind erosion simulation experiments. Results show that wind erosion strength increases with an increasing number of freeze–thaw cycles, water content in the freezing–thawing process, and the difference in freeze–thaw temperatures. Therefore, in the conditions of water participation, the main reason for the freeze–thaw and wind erosion in the Qinghai–Tibet Plateau is the damage to the soil structure by repeated, fierce freeze–thaw actions, and the sand-bearing wind is the main driving force for this process. The research results have theoretical significance for exploring the formation mechanism of freeze–thaw and wind erosion in the Qinghai–Tibet Plateau, and provide a scientific basis for freeze–thaw desertification control in the plateau.  相似文献   

8.
Slope is one of the crucial terrain variables in spatial analysis and land use planning, especially in the Loess Plateau area of China which is suffering from serious soil erosion. DEM based slope extracting method has been widely accepted and applied in practice. However slope accuracy derived from this method usually does not match with its popularity. A quantitative simulation to slope data uncertainty is important not only theoretically but also necessarily to applications. This paper focuses on how resolution and terrain complexity impact on the accuracy of mean slope extracted from DEMs of different resolutions in the Loess Plateau of China. Six typical geomorphologic areas are selected as test areas, representing different terrain types from smooth to rough. Their DEMs are produced from digitizing contours of 1:10,000 scale topographic maps. Field survey results show that 5 m should be the most suitable grid size for representing slope in the Loess Plateau area. Comparative and math-simulation methodology was employed for data processing and analysis. A linear correlativity between mean slope and DEM resolution was found at all test areas, but their regression coefficients related closely with the terrain complexity of the test areas. If taking stream channel density to represent terrain complexity, mean slope error could be regressed against DEM resolution (X) and stream channel density (S) at 8 resolution levels and expressed as(0.0015S2 0.031S-0.0325)X-0.0045S2-0.155S 0.1625, with a R2 value of over 0.98. Practical tests also show an effective result of this model in applications. The new development methodology applied in this study should be helpful to similar researches in spatial data uncertainty investigation.  相似文献   

9.
In areas with topographic heterogeneity, land use change is spatially variable and influenced by climate, soil properties, and topography. To better understand this variability in the high-sediment region of the Loess Plateau in which soil loss is most severe and sediment diameter is larger than in other regions of the plateau, this study builds some indicators to identify the characteristics of land use change and then analyze the spatial variability as it is affected by climate, soil property, and topography. We build two indicators, a land use change intensity index and a vegetation change index, to characterize the intensity of land use change, and the degree of vegetation restoration, respectively. Based on a subsection mean method, the two indicators are then used to assess the spatial variability of land use change affected by climatic, edaphic, and topographic elements. The results indicate that: 1) Land use changed significantly in the period 1998-2010. The total area experiencing land use change was 42,302 km2, accounting for 22.57%of the study area. High-coverage grassland, other woodland, and forest increased significantly, while low-coverage grassland and farmland decreased in 2010 compared with 1998.2) Land use change occurred primarily west of the Yellow River, between 35 and 38 degrees north latitude. The four transformation types, including (a) low-coverage grassland to medium-coverage grassland, (b) medium-coverage grassland to high-coverage grassland, (c) farmland to other woodland, and (d) farmland to medium-coverage grassland, were the primary types of land use change, together constituting 60% of the area experiencing land use change. 3) The spatial variability of land use change was significantly affected by properties of dryness/wetness, soil conditions and slope gradient. In general, land use changed dramatically in semi-arid regions, remained relatively stable in arid regions, changed significantly in clay-rich soil, remained relatively stable in clay-poor soil, changed dramatically in steeper slopes, and remained relatively stable in tablelands and low-lying regions. The increase in vegetation coincided with increasing changes in land use for each physical element. These findings allow for an evaluation of the effect of the Grain to Green Program, and are applicable to the design of soil and water conservation projects on the Loess Plateau of China.  相似文献   

10.
Soil erosion by wind is one of the most important processes in the changing the earth’s surface in semi-arid areas,Thus it is of great importance to study soil-erosion action.Using integrated technologies of remote sensing and geochemistry radioactivity iso-tope to extract regional soil-erosion information and to calculate quantity of soil erosion is accomplished successfully in this paper by means of beneficial experiments in the Talatan region of the Gonghe Basin,which is located in northeastern Qinghai-Tibet Pla-teau in China.The results show that the soil erosion by wind is not intensive in this region;the erosion types belong to the classes of very-soft erosion and soft-erosion type,which account for 47.12 percent and 35.58 percent,respectively,of the total study area.In total,two kinds of soil erosion account for 82.70 percent of the study area;only a small area belongs to the classes of severe erosion and very-severe erosion;this area is about 22.14 km2.Severe deposition activity has taken place in this region,and has appeared in a large area(322.67 km2),which accounts for 11.78 percent of the total study area.The results of this study show that soil erosion and deposition inventories are 870,000-1,150,000 tons and 550,000-780,000 tons,respectively,per year.The soil in-ventory shows about 320,000-370,000 tons from Talatan to Longyangxia reservoir per year.Using remote-sensing technology and 137Cs techniques is a valid means to analyze and to evaluate the quantity of soil erosion by wind in semi-arid environments.  相似文献   

11.
黄土丘陵林地土壤侵蚀与土壤性质变化   总被引:11,自引:0,他引:11  
查小春  唐克丽 《地理学报》2003,13(3):373-378
以黄土丘陵子午岭土壤侵蚀和生态环境观测站1989~1998年的观测资料为基础,研究分析了林地开垦10年内土壤侵蚀与生态环境变化的相互效应关系。分析指出:林地开垦人为改变侵蚀环境,引起的人为加速侵蚀速率为自然侵蚀速率的1000倍以上;以单位降雨侵蚀力引起的侵蚀量作为衡量指标,指出林地开垦地土壤侵蚀强度随侵蚀年限增长呈递增加剧趋势;通过分析土壤物理力学性质表明,林地开垦侵蚀10年土壤粘粒和物理性粘粒比林地分别减少2.74%和3.01%,土壤向粗骨化趋势发展,>0.25 mm水稳性团粒含量减少58.7%,土壤容重增大,抗剪强度下降,抵抗径流冲刷能力减弱,造成土壤侵蚀更易发生;应用相关分析表明,>0.25 mm水稳性团粒含量的改变对土壤侵蚀强度影响最大,其偏相关系数为0.9728,其次是土壤的粗粉粒和抗剪强度,偏相关系数分别为0.8879和0.6020;分析>0.25 mm水稳性团粒含量和抗剪强度与土壤侵蚀强度关系表明,林地开垦后侵蚀1年和侵蚀7年为土壤侵蚀加剧的转折年限,说明退化的侵蚀土壤和退化的生态环境加剧了土壤侵蚀的发生和发展。  相似文献   

12.
黄土丘陵区林区开垦地土壤退化研究   总被引:4,自引:2,他引:4  
以林地及其开垦地土壤颗粒组成、有机质含量、>0 .2 5mm水稳性团粒含量、土壤容及土壤抗强度等性质为基础 ,分析比较了林地及林地开垦后侵蚀 10年内土壤退化问题。研究结果表明 ,林地一旦开垦后随侵蚀年限的增长 ,土壤性质逐年退化 :侵蚀 10年土壤粘粒和物理性粘粒比林地分别减少 2 .74 %和 3.0 1% ,粗粉粒增加 ,土壤颗粒组成粗化 ;有机质含量从林地的 4 5 .2 g/kg下降到侵蚀 10年开垦地的 9.8g/kg ,>0 .2 5mm水稳性团粒含量从林地的 6 0 .19%下降到侵蚀第 10年开垦地的 2 8.6 0 % ,土壤容重增大 ,土壤的抗剪强度从 0 .12 3kg/cm3 下降到0 .0 74kg/cm3 ;并将林地和开垦地土壤性质与土壤侵蚀强度进行相关分析发现 ,>0 .2 5mm水稳性团粒含量对土壤侵蚀强度影响最大 ,偏相关系数为 0 .972 8,其次为土壤粗粉粒和抗剪强度 ,偏相关系数为 0 .8879和 0 .6 0 2 0 ,说明了林地开垦后侵蚀土壤的退化 ,恶化了土壤侵蚀环境 ,造成土壤侵蚀更易发生 ,加剧着土壤侵蚀强度 ,表明恢复和重建森林植被在防治黄土高原土壤侵蚀中具有举足轻重的作用  相似文献   

13.
土地利用方式对土壤有机碳和团聚体组分特征的影响   总被引:4,自引:0,他引:4  
以广东省内第四纪红色黏土、玄武岩和花岗岩母质发育的土壤为研究对象,采集不同土地利用方式(水田、旱地、林地、果园/草地)下表层(0~15 cm)和亚表层(15~30 cm)土壤,研究土壤有机碳及其组分(腐殖质碳、易氧化有机碳)、土壤团聚体及其稳定性,分析土壤有机碳及其组分与土壤团聚体及其稳定性之间的相互关系。结果表明:土地利用类型、成土母质等影响土壤有机碳及其组分。3种母质发育的土壤中,各腐殖质组分占有机碳的比例是胡敏酸碳(HAC)<富里酸碳(FAC)<胡敏素碳(HMC),第四纪红色黏土母质发育土壤腐殖酸碳(HAC+FAC)以草地最高、水田最低;玄武岩、花岗岩母质发育土壤腐殖酸碳以果园最高。土壤中易氧化有机碳所占比例均高于惰性态,第四纪红色黏土母质发育土壤易氧化有机碳占有机碳比例以草地最高、旱地最低;玄武岩、花岗岩为果园最高、林地最低。3种母质发育土壤团聚体(湿筛)主要以<0.25 mm微团聚体为主,表层土壤>0.25 mm团聚体所占比例、团聚体平均重量直径(MWD)、团聚体破坏率(PAD)大于亚表层。土壤有机碳各组分均随着有机碳质量分数的增加而增加,>0.25 mm团聚体质量分数和团聚体MWD随着土壤有机碳及其组分质量分数的增加而增大;PAD随着土壤易氧化碳组分质量分数增加而降低,易氧化有机碳组分有利于土壤中形成较大的团聚体,并增加团聚体水稳性。  相似文献   

14.
运用分形理论探讨了杉木拟杨混交林 6种不同模式土壤结构的分形特征 ,计算了土壤团聚体、策团聚体与机械组成的分形维数 ,并建立分形维数与 >0 .2 5mm水稳定性团聚体、土壤结构体破坏率、土壤结构系数、土壤分散系数、>0 .0 1mm水稳定性微团聚体及 >0 .0 1mm土壤机械组成等土壤肥力指标之间的回归模型。结果表明 :>0 .2 5mm土壤水稳定团聚体、>0 .0 1mm土壤水稳定性微团聚体含量越大 ,团粒结构的分形维数越小 ,土壤肥力越高 ;在 6种杉木杨混交林模式中 ,以杉木拟赤杨 3∶1与拟赤杨纯林培肥土壤能力最佳 ,杉木纯林最差 ;所建立的分形维数与各土壤肥力指标之间的模型均存在显著的回归关系 ,因此 ,分形维数可以作为表征土壤肥力的一个新指标 ,从而为山地土壤肥力的科学评价提供了有力的手段。  相似文献   

15.
宫阿都  何毓蓉 《山地学报》2001,19(3):213-219
云南金沙江干热河谷区是我国典型的土壤退化区域。通过分析土壤机械组成、团聚体及微团聚体组成、孔隙分布状况等指标,探讨了土壤结构对土壤退化的影响机制。研究发现:1.采用分散率、侵蚀率、团聚度、团聚状况、结构体破坏率、受蚀性指数EVA、孔隙度等量化指标可以较好反映土壤退化程度;2.土壤颗粒分散特性、土壤水稳性团聚体稳定性、土壤孔隙度是土壤结构稳定性评价的三个重要方面,也可反映土壤退化特征。  相似文献   

16.
重庆喀斯特地区土地覆被类型对土壤特征的影响   总被引:2,自引:0,他引:2  
1 Introduction The karst region of Southwest China, with Guizhou Province as the center, extends across Yunnan Province, Guangxi Zhuang Autonomous Region, Sichuan Province, Chongqing, western Hunan Province, Hubei Province, and Guangdong Province, coveri…  相似文献   

17.
Oasisization is a process of converting a natural desert into a man-made oasis in order to satisfy social needs under certain economical and technical conditions. This paper substitutes space for time in order to study physical property changes of oasis soil along the oasisization in about a 1,000-year period. This research focuses on providing the bases for better understanding the process of oasisization. The results show: (1) In about 1,000-year chronological scale, the bulk density and the saturated soil hydraulic conductivity of the surface layer (0-20 cm) significantly reduced with the increase of land reclamation time, while soil porosity, stability of aggregates, and silt content significantly increased. The soil bulk density of the unreclaimed filed (0 year) and the reclaimed field (about 1,000 years) in the surface layer (0-20 cm) are 1.51 g/cm3 and 1.35 g/cm3, the total porosity are 43.16% and 49.27%, the capillary porosity are 38.73% and 47.10%, the water-stable aggregate (0.25 mm) content are 24.60% and 49.59%, the sand content are 85.42% and 61.56%, the clay content are 3.93% and 4.80%, the specific surface area are 128 cm2/g and 231 cm2/g, and the saturated hydraulic conductivity are 0.74 cm/h and 0.34 cm/h, respectively. (2) In the first 30 years of the oasis reclamation, the changes are relatively fast, and the rates of the saturated soil hydraulic conductivity, dry aggregate (0.25 mm), water-stable aggregate (0.25 mm) content, and specific surface area are 0.01 cm/h·yr, 0.58%/yr, 0.50%/yr, and 1.48 cm2/g yr, respectively.  相似文献   

18.
绿洲化过程中绿洲土壤物理性质变化研究   总被引:2,自引:4,他引:2  
王蕙  赵文智 《中国沙漠》2009,29(6):1109-1115
绿洲化是指在一定的经济、技术条件下,为满足社会需求,把原生荒漠改造成人工绿洲的过程。利用空间代替时间的方法研究了约1 000 a来随着绿洲化进程绿洲土壤物理性质的变化过程,旨在为深入认识绿洲化过程提供依据。结果表明:①在约1 000 a的时间尺度上,随绿洲土壤开垦年限的增加,表层(0~20 cm)土壤容重与饱和水力传导度随时间显著降低,与此同时,土壤孔隙度、团聚体稳定性、粉粒含量显著增加。未开垦(0 a)和开垦约1 000 a表层土壤容重分别为1.51 g·cm-3、1.35 g·cm-3,总孔隙度为43.16%、49.27%,毛管孔隙度为38.73%、47.10%,>0.25 mm水稳性团聚体含量为24.60%、49.59%,沙粒含量为85.42%、61.56%,粘粒含量为3.93%、4.80%,土壤比表面积为128 cm2·g-1、231 cm2·g-1,土壤饱和水力传导度为0.74 cm·h-1、0.34 cm·h-1。②绿洲土壤在开垦的最初30 a间土壤饱和水力传导度、>0.25 mm干团聚体、>0.25 mm水稳性团聚体、比表面积变化相对较快,分别为0.01 cm·h-1·a-1、0.58%·a-1、0.50%·a-1、1.48 cm2·g-1·a-1。  相似文献   

19.
黄河内蒙古段土壤风蚀特征模拟   总被引:1,自引:0,他引:1  
采集黄河内蒙古段风沙土、灰漠土、棕钙土和灌淤土,在室内进行土壤理化性质测定和风洞模拟试验。对比分析了4种土壤的理化性质和不同风速及含水量条件下的风蚀特征,并量化了不同土壤的风蚀强度与土壤理化性质间关系。结果表明:(1)相对于棕钙土和灌淤土,风沙土和灰漠土易蚀性颗粒含量较大,团聚体、有机质和碳酸钙含量较低,但相同风速和含水量条件下平均风蚀强度风沙土>棕钙土>灰漠土>灌淤土。(2)不同土壤风蚀强度与风速均呈较好的幂函数关系(R2≥0.85,P<0.05),尤其是风沙土和棕钙土,幂函数关系明显优于指数函数。(3)除灰漠土,土壤风蚀强度与土壤含水量均呈较好指数函数关系(R2>0.90,P<0.05),风沙土和灰漠土的风蚀强度突降的含水量临界点在4.5%左右,灌淤土和棕钙土无明显临界点。(4)不同土壤输沙率均随距地表高度的增加而急剧减少。在距地表10 cm范围内,不同土壤输沙率占总输沙率比例风沙土(82.67%)>灰漠土(80.77%)>灌淤土(74.07%)>棕钙土(73.77%),当距地表大于30 cm后,集沙仪中基本收集不到风沙土和灰漠土风蚀颗粒。当轴心风速为16 m·s-1时,不同土壤风沙流结构均表现为单峰曲线。(5)不同土壤风蚀强度与风速、含水量、团聚体、易蚀性颗粒和黏粒含量均呈较强的非线性相关关系(R2=0.76,P<0.05)。易蚀性颗粒含量是影响风蚀强度最主要的土壤属性,其次是干团聚体和黏粒含量。  相似文献   

20.
The 26 plots including natural forestland, secondary forestland, shrub-grassland, sloping cropland, artificial forest and abandoned field, were selected to discuss the impact of land cover on the soil characteristics in the three karst districts of Chongqing. The results showed that: (1) After the vegetation turned into secondary vegetation or artificial vegetation, or reclamation, soil physical properties would be degraded. In the surface-layer soil of sloping cropland, the contents of > 2 mm water-stable aggregates decreased obviously with apparent sandification. (2) The contents of soil organic matter and total nitrogen are controlled completely by vegetation type and land use intensity. The increasing trend is rather slow in the early days when over-reclamation is stopped and the land is converted to forest and pasture. (3) Herbaceous species increase and woody plants species decrease with the increase of land use intensity, therefore, the soil seed banks degrade more seriously. (4) The soil degradation index has been set up to describe the relative soil degradation degree under the conditions of different vegetation types. (5) Land cover has a significant effect on karst soil characteristics, land degradation in the karst ecosystem is essentially characterized by the different degradation of soil functions that serve as water banks, nutrient banks and soil seed banks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号