首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the frame of the International DORIS Service (IDS), the Laboratoire d’Etudes en Géophysique et Océanographie Spatiales (LEGOS)/Collecte Localisation Satellites (CLS) Analysis Center (LCA) processes DORIS measurements from the SPOT, TOPEX/Poseidon and Envisat satellites and provides weekly station coordinates of the whole network to the IDS. Based on DORIS measurements, the horizontal and vertical velocities of 57 DORIS sites are computed. The 3D positions and velocities of the stations with linear motion are estimated simultaneously from the 12-year (1993–2004) combined normal equation matrix. We include 35 DORIS sites assumed to be located in the stable zones of 9 tectonic plates. For the motion of these plates, we propose a model (LCAVEL-1) of angular velocities in the ITRF2000 reference frame. Based on external comparison with the most recent global plate models (PB2002, REVEL, GSRM-1 and APKIM2000) and on internal analysis, we estimate an average velocity error of the DORIS solution of less than 3 mm/year. The LCAVEL-1 model presents new insights of the Somalia/Nubia pair of plates, as the DORIS technique has the advantage of having a few stations located on those two plates. We also computed (and provide in this article) the horizontal motion of the sites located close to plate boundaries or in the deformation zones defined in contemporary models. These computations could be used in further analysis for these particular regions of the Earth not moving as rigid plates.  相似文献   

2.
The 2008 DGFI realization of the ITRS: DTRF2008   总被引:11,自引:11,他引:0  
A new realization of the International Terrestrial System was computed at the ITRS Combination Centre at DGFI as a contribution to ITRF2008. The solution is labelled DTRF2008. In the same way as in the DGFI computation for ITRF2005 it is based on either normal equation systems or estimated parameters derived from VLBI, SLR, GPS and DORIS observations by weekly or session-wise processing. The parameter space of the ITRS realization comprises station positions and velocities and daily resolved Earth Orientation Parameters (EOP), whereby for the first time also nutation parameters are included. The advantage of starting from time series of input data is that the temporal behaviour of geophysical parameters can be investigated to decide whether the parameters can contribute to the datum realization of the ITRF. In the same way, a standardized analysis of station position time series can be performed to detect and remove discontinuities. The advantage of including EOP in the ITRS realization is twofold: (1) the combination of the coordinates of the terrestrial pole—estimated from all contributing techniques—links the technique networks in two components of the orientation, leading to an improvement of consistency of the Terrestrial Reference Frame (TRF) and (2) in their capacity as parameters common to all techniques, the terrestrial pole coordinates enhance the selection of local ties as they provide a measure for the consistency of the combined frame. The computation strategy of DGFI is based on the combination of normal equation systems while at the ITRS Combination Centre at IGN solutions are combined. The two independent ITRS realizations provide the possibility to assess the accuracy of ITRF by comparison of the two frames. The accuracy evaluation was done separately for the datum parameters (origin, orientation and scale) and the network geometry. The accuracy of the datum parameters, assessed from the comparison of DTRF2008 and ITRF2008, is between 2–5?mm and 0.1–0.8?mm/year depending on the technique. The network geometry (station positions and velocities) agrees within 3.2?mm and 1.0?mm/year. A comparison of DTRF2008 and ITRF2005 provides similar results for the datum parameters, but there are larger differences for the network geometry. The internal accuracy of DTRF2008—that means the level of conservation of datum information and network geometry within the combination—was derived from comparisons with the technique-only multi-year solutions. From this an internal accuracy of 0.32?mm for the VLBI up to 3.3?mm for the DORIS part of the network is found. The internal accuracy of velocities ranges from 0.05?mm/year for VLBI to 0.83?mm/year for DORIS. The internal consistency of DTRF2008 for orientation can be derived from the analysis of the terrestrial pole coordinates. It is estimated at 1.5–2.5?mm for the GPS, VLBI and SLR parts of the network. The consistency of these three and the DORIS network part is within 6.5?mm.  相似文献   

3.
DORIS (Détermination d’Orbite et Radiopositionnement Intégrés par Satellite) is a system used for precise orbit determination (POD) and ground-station positioning. It has been implemented on-board various satellites: the SPOT (Système pour l’Observation de la Terre) remote sensing satellites SPOT-2, SPOT-3, SPOT-4, SPOT-5, TOPEX/Poseidon and more recently on its successors Jason-1 and ENVISAT. DORIS is also a terrestrial positioning system that has found many applications in geophysics and geodesy; in particular, it contributes to the realization of the International Terrestrial Reference Frame, ITRF2000 and the forthcoming ITRF2005. Although not its primary objective, DORIS can bring information on Earth orientation monitoring, mainly polar motion and length of day (LOD) variations that complement other astrogeodetic techniques. In this paper, we have analyzed various recent polar motion solutions derived from independent analysis centers using different software packages and applying various analysis strategies. Comparisons of these solutions to the International Earth Rotation and Reference Systems Service (IERS) C04 solution are performed. Depending on the solutions, the accuracy of DORIS polar components are in the range of 0.5–1 mas corresponding to a few centimeters on the Earth’s surface. This is approximately ten times larger than results derived from GPS, which are typically 0.06 mas in both components. This does not allow DORIS results to be taken into account in the IERS–EOP combinations. A gain in the precision could come from technical improvements to the DORIS system, in addition to improvement of the orbit, tropospheric, ionospheric and Earth gravity field modeling.  相似文献   

4.
IGS08: the IGS realization of ITRF2008   总被引:22,自引:6,他引:16  
On April 17, 2011, the International GNSS Service (IGS) stopped using the IGS05 reference frame and adopted a new one, called IGS08, as the basis of its products. The latter was derived from the latest release of the International Terrestrial Reference Frame (ITRF2008). However, the simultaneous adoption of a new set of antenna phase center calibrations by the IGS required slight adaptations of ITRF2008 positions for 65 of the 232 IGS08 stations. The impact of the switch from IGS05 to IGS08 on GNSS station coordinates was twofold: in addition to a global transformation due to the frame change from ITRF2005 to ITRF2008, many station coordinates underwent small shifts due to antenna calibration updates, which need to be accounted for in any comparison or alignment of an IGS05-consistent solution to IGS08. Because the heterogeneous distribution of the IGS08 network makes it sub-optimal for the alignment of global frames, a smaller well-distributed sub-network was additionally designed and designated as the IGS08 core network. Only 2?months after their implementation, both the full IGS08 network and the IGS08 core network already strongly suffer from the loss of many reference stations. To avoid a future crisis situation, updates of IGS08 will certainly have to be considered before the next ITRF release.  相似文献   

5.
The EUREF [International Association of Geodesy (IAG) Reference Frame Sub-Commission for Europe] network of continuously operating GPS stations (EPN) was primarily established for reference frame maintenance, and also plays an important role for geodynamical research in Europe. The main objective of this paper is to obtain an independent homogeneous time series of the EPN station coordinates, which is also available in SINEX format. A new combined solution of the EPN station coordinates was computed. The combination was performed independently for every week, in three steps: (1) the stated constraints on the coordinates were removed from the individual solutions of the Analysis Centers; (2) the de-constrained solutions were aligned to ITRF2000; (3) the resulting solutions were combined using the Helmert blocking technique. All the data from GPS weeks 900 to 1302 (April 1997–December 2004) were used. We investigated in detail the behavior of the transformation parameters aligning the new combined solution to ITRF2000. In general, the time series of the transformation parameters show a good stability in time although small systematic effects can be seen, most likely caused by station instabilities. A comparison of the new combined solution to the official EUREF weekly combined solution is also presented.  相似文献   

6.
The DORIS Doppler measurements collected by Jason-1 are abnormally perturbed by the influence of the South Atlantic Anomaly (SAA). The DORIS ultra-stable oscillators on-board Jason-1 are not as stable as they should be; their frequency is sensitive both to the irradiation rate and to the total irradiation encountered in orbit. The consequence is that not only are the DORIS measurement residuals higher than they ought to be, but also large systematic positioning errors are introduced for stations located in the vicinity of the SAA. In this paper, we present a method that has been devised to obtain a continuous observation of Jason-1 frequency offsets. This method relies on the precise determination of the station frequency and troposphere parameters via the use of other DORIS satellites. More than 3 years of these observations have then been used to construct a model of response of the oscillators of Jason-1 to the SAA. The sensitivity of the Jason-1 oscillators to the SAA perturbations has evolved over time, multiplied by a factor of four between launch and mid-2004. The corrective performances of the model are discussed in terms of DORIS measurement residuals, precise orbit determination and station positioning. The average DORIS measurement residuals are decreased by more than 7 % using this model. In terms of precise orbit determination, the 3D DORIS-only orbit error decreases from 5 to 4.2 cm, but the DORIS+SLR orbit error is almost unaffected, due to the already good quality of this type of orbit. In terms of station positioning, the model brings down the average 3D mono-satellite monthly network solution discrepancy with the International Terrestrial Reference Frame ITRF2000 from 11.3 to 6.1 cm, and also decreases the scatter about that average from 11.3 to 3.7 cm. The conclusion is that, with this model, it is possible to re-incorporate Jason-1 in the multi-satellite geodetic solutions for the DORIS station network.  相似文献   

7.
维持中国地心坐标系的基准站数据处理   总被引:1,自引:0,他引:1  
本文介绍了中国地心坐标系维持数据处理过程。基于"中国地壳运动观测网络"工程1999-2005年共7年的24个GPS连续运行基准站观测数据,并联合47个国际IGS核心站,获得了这些点于2000.0历元在ITRF2000框架中的坐标及速度,以及其相对于NNR-NUVEL1A板块模型的速度,以此作为维持中国地心坐标系的基准点。  相似文献   

8.
Global sea-level rise and its relation to the terrestrial reference frame   总被引:4,自引:3,他引:1  
We examined the sensitivity of estimates of global sea-level rise obtained from GPS-corrected long term tide gauge records to uncertainties in the International Terrestrial Reference Frame (ITRF) realization. A useful transfer function was established, linking potential errors in the reference frame datum (origin and scale) to resulting errors in the estimate of global sea level rise. Contrary to scale errors that are propagated by a factor of 100%, the impact of errors in the origin depends on the network geometry. The geometry of the network analyzed here resulted in an error propagation factor of 50% for the Z component of the origin, mainly due to the asymmetry in the distribution of the stations between hemispheres. This factor decreased from 50% to less than 10% as the geometry of the network improved using realistic potential stations that did not yet meet the selection criteria (e.g., record length, data availability). Conversely, we explored new constraints on the reference frame by considering forward calculations involving tide gauge records. A reference frame could be found in which the scatter of the regional sea-level rates was limited. The resulting reference frame drifted by 1.36 ± 0.22? mm/year from the ITRF2000 origin in the Z component and by ?0.44 ± 0.22?mm/year from the ITRF2005 origin. A bound on the rate of global sea level rise of 1.2 to 1.6?mm/year was derived for the past century, depending on the origin of the adopted reference frame. The upper bound is slightly lower than previous estimates of 1.8?mm/year discussed in the IPCC fourth report.  相似文献   

9.
利用空间大地测量数据探测地球膨胀效应   总被引:5,自引:2,他引:3  
地球自转服务局(IERS)采用多种高精度的空间探测技术综合解算得到的国际地球参考框架(ITRF)是国际上公认的精度高、稳定性好的参考框架。为了研究地球的膨胀或收缩效应,本文采用ITRF2000的站坐标和速度,利用Delaunay算法生成的三角网逼近地球形体,计算出了地球的体积变化。  相似文献   

10.
王鹏  吕志平  张西光 《四川测绘》2010,33(1):3-6,21
详细探讨了相似变换在地球参考框架的基准定义实施中的相关模型及方法。利用四种空间大地测量技术(GPS、SLR、DORIS、VLBI)在2000.0历元的站坐标组文件,对ITRF2005的内符精度进行了实验评价。  相似文献   

11.
We analyse geodetically estimated deformation across the Nepal Himalaya in order to determine the geodetic rate of shortening between Southern Tibet and India, previously proposed to range from 12 to 21 mm yr?1. The dataset includes spirit-levelling data along a road going from the Indian to the Tibetan border across Central Nepal, data from the DORIS station on Everest, which has been analysed since 1993, GPS campaign measurements from surveys carried on between 1995 and 2001, as well as data from continuous GPS stations along a transect at the logitude of Kathmandu operated continuously since 1997. The GPS data were processed in International Terrestrial Reference Frame 2000 (ITRF2000), together with the data from 20 International GNSS Service (IGS) stations and then combined using quasi- observation combination analysis (QOCA). Finally, spatially complementary velocities at stations in Southern Tibet, initially determined in ITRF97, were expressed in ITRF2000. After analysing previous studies by different authors, we determined the pole of rotation of the Indian tectonic plate to be located in ITRF2000 at 51.409±1.560° N and ?10.915±5.556°E, with an angular velocity of 0.483±0.015°. Myr?1. Internal deformation of India is found to be small, corresponding to less than about 2 mm yr?1 of baseline change between Southern India and the Himalayan piedmont. Based on an elastic dislocation model of interseismic strain and taking into account the uncertainty on India plate motion, the mean convergence rate across Central and Eastern Nepal is estimated to 19±2.5 mm yr?1, (at the 67% confidence level). The main himalayan thrust (MHT) fault was found to be locked from the surface to a depth of about 20 km over a width of about 115 km. In these regions, the model parameters are well constrained, thanks to the long and continuous time-series from the permanent GPS as well as DORIS data. Further west, a convergence rate of 13.4±5 mm yr?1, as well as a fault zone, locked over 150 km, are proposed. The slight discrepancy between the geologically estimated deformation rate of 21±1.5 mm yr?1 and the 19±2.5 mm yr?1 geodetic rate in Central and Eastern Nepal, as well as the lower geodetic rate in Western Nepal compared to Eastern Nepal, places bounds on possible temporal variations of the pattern and rate of strain in the period between large earthquakes in this region.  相似文献   

12.
The ground network is one of the major components of the DORIS system. Its deployment, managed by the French national mapping agency [Institut Géographique National, (IGN)], started in 1986 at a sustained pace that allowed it to reach 32 stations upon the launch of the first DORIS-equipped satellite (SPOT-2) in 1990. For the first generation of transmitting antennas, the installation procedures were adapted to the decimetre performance objective for the DORIS system. During the second era of the deployment of an even denser network, the antenna support layouts gradually evolved towards a better quality, thus improving the long-term stability of the antenna reference point, and a new antenna model allowed a more accurate survey. As the positioning accuracy of the DORIS system improved, it was necessary to review the antenna stability for the whole network. A first stability estimation, using criteria like antenna model and support design, was followed by a major renovation effort which started in 2000 and is now almost complete. In 6 years, through the renovation or installation of 43 stations and the implementation of new installation procedures to meet more stringent stability requirements, significant improvement in network quality was achieved. Later a more analytical approach, taking into account the characteristics of each element that support the antenna, has been taken to assess the potential stability of all DORIS occupations. IGN is also in charge of its operational maintenance, an intensive activity on account of the significant failure rate of the successive generations of equipment. Nevertheless, thanks to its unique density and homogeneity, DORIS has maintained a very good coverage rate of the satellite orbits. Through 38 well-distributed current co-locations with the Global Positioning System, Satellite Laser Ranging and Very Long Baseline Interferometry techniques in its current 56-station network, DORIS contributes significantly to the realisation of the International Terrestrial Reference System. DORIS stations in areas where no other space geodesy technique is available provide a significant contribution to the study of plate tectonics. Many stations co-located with tide gauges contribute to the monitoring of sea level changes. Although it has several advantages over similar techniques, there is still room for improvement in the DORIS network.  相似文献   

13.
CGCS2000板块模型构建   总被引:1,自引:0,他引:1  
基于中国地壳运动观测网络2001—2010年跨度长达10年的观测数据,采用基准优选、变异点数据分段处理等策略,计算获得ITRF2005框架下高精度速度场。同时针对国际上现有的NNR NUVEL1A、APKIM2005、PB2002等板块模型在中国区域适应性差,基于中国地质构造特性及实际速度场解算结果,构建了中国20个二级板块模型CPM-CGCS2000。采用本文提出的用板块模型参数将站点归算至CGCS2000的方法对板块模型进行外部检核,并用此方法验证所建的二级块体模型,精度可达2~3 cm。与国际上现有比较成熟的速度场模型———ITRF2005、APKIM2005、PB2002、NUVEL1A及国内文献[1—2]的板块模型进行的比较表明,CPM-CGCS2000板块模型实际精度优于目前现有的模型。  相似文献   

14.
This paper focuses on the investigation of the deterministic and stochastic parts of the Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) weekly time series aligned to the newest release of ITRF2014. A set of 90 stations was divided into three groups depending on when the data were collected at an individual station. To reliably describe the DORIS time series, we employed a mathematical model that included the long-term nonlinear signal, linear trend, seasonal oscillations and a stochastic part, all being estimated with maximum likelihood estimation. We proved that the values of the parameters delivered for DORIS data are strictly correlated with the time span of the observations. The quality of the most recent data has significantly improved. Not only did the seasonal amplitudes decrease over the years, but also, and most importantly, the noise level and its type changed significantly. Among several tested models, the power-law process may be chosen as the preferred one for most of the DORIS data. Moreover, the preferred noise model has changed through the years from an autoregressive process to pure power-law noise with few stations characterised by a positive spectral index. For the latest observations, the medians of the velocity errors were equal to 0.3, 0.3 and 0.4 mm/year, respectively, for the North, East and Up components. In the best cases, a velocity uncertainty of DORIS sites of 0.1 mm/year is achievable when the appropriate coloured noise model is taken into consideration.  相似文献   

15.
We examine the contribution of the Doppler Orbit determination and Radiopositioning Integrated by Satellite (DORIS) technique to the International Terrestrial Reference Frame (ITRF2005) by evaluating the quality of the submitted solutions as well as that of the frame parameters, especially the origin and the scale. Unlike the previous versions of the ITRF, ITRF2005 is constructed with input data in the form of time-series of station positions (weekly for satellite techniques and daily for VLBI) and daily Earth orientation parameters (EOPs), including full variance–covariance information. Analysis of the DORIS station positions’ time-series indicates an internal precision reaching 15 mm or better, at a weekly sampling. A cumulative solution using 12 years of weekly time-series was obtained and compared to a similar International GNSS Service (IGS) GPS solution (at 37 co-located sites) yielding a weighted root mean scatter (WRMS) of the order of 8 mm in position (at the epoch of minimum variance) and about 2.5 mm/year in velocity. The quality of this cumulative solution resulting from the combination of two individual DORIS solutions is better than any individual solution. A quality assessment of polar motion embedded in the contributed DORIS solutions is performed by comparison with the results of other space-geodetic techniques and in particular GPS. The inferred WRMS of polar motion varies significantly from one DORIS solution to another and is between 0.5 and 2 mas, depending on the strategy used and in particular estimating or not polar motion rate by the analysis centers. This particular aspect certainly needs more investigation by the DORIS Analysis Centers.  相似文献   

16.
We have used up to 12 years of data to assess DORIS performance for geodynamics applications. We first examine the noise characteristics of the DORIS time-series of weekly station coordinates to derive realistic estimates of velocity uncertainties. We find that a combination of white and flicker noise best explains the DORIS time-series noise characteristics. Second, weekly solutions produced by the Institut Géographique National/Jet Propulsion Laboratory (IGN/JPL) DORIS Analysis Centre are combined to derive a global velocity field. This solution is combined with two independent GPS solutions, including 11 sites on Nubia and 5 on the Somalia plate. The combination indicates that DORIS horizontal velocities have an average accuracy of 3 mm/year, with best-determined sites having velocity accuracy better than 1 mm/year (one-sigma levels). Using our combined velocity field, we derive an updated plate kinematics model with a focus on the Nubia–Somalia area. Including DORIS data improves the precision of the angular velocity vector for Nubia by 15%. Our proposed model provides robust bounds on the maximum opening rates along the East African Rift (4.7–6.7 mm/year). It indicates opening rates 15 and 7% slower than values predicted by NUVEL-1A for the southern Atlantic Ocean and Indian Ocean, respectively. These differences are likely to arise from the fact that NUVEL-1A considered Africa as a single non-deforming plate, while here we use a more refined approach.  相似文献   

17.
 The first results of the International GLONASS Experiment 1998 (IGEX-98) campaign have provided significant material to illustrate the mutual benefits of the GLONASS system and the realization of the International Terrestrial Reference System (ITRS). A specific aspect, namely the relationship between the World Geodetic System 1984 (WGS 84) and the PZ-90 system using ITRS as a primary standard, is investigated. A review of current works is carried out. A transformation strategy is proposed for the three systems based on recent results from IGEX-98 and an independent set of transformation parameters derived by the Jet Propulsion Laboratory from ITRF97 and PZ-90 coordinates for 16 global stations. Received: 9 June 2000 / Accepted: 12 June 2001  相似文献   

18.
The Detection Identification Adaptation (DIA) procedure was applied to the coordinate time-series of some permanent GPS stations belonging to the Italian GPS Fiducial Network (IGFN), of the Italian Space Agency (ASI), to detect discontinuities and to reject outliers. The daily solutions of the stations of Cagliari, Genoa, Medicina, Noto, Turin, Perugia and Venice were computed for the period 1997.0–2003.0 using Bernese GPS software v.4.2. The data were interpolated using a model with a linear term and an annual periodic term. The parameters were estimated by least squares. The DIA procedure was organized to automatically detect discontinuities and outliers. Approximately, 70% of the discontinuities present in the coordinate time-series were identified and their magnitudes were estimated. The identified discontinuities are basically caused by equipment replacement and reference frame changes, but in a few cases the reason is still unknown. With regard to the outliers, roughly 6% of the data were rejected. These data were considered outliers on the base of the level of significance and of the power of the test adopted in this work. Except for the stations of Perugia and Venice, the estimated coordinates agree with ITRF2000 values at the 10 mm level, and the estimated velocities are within a few mm/year of the ITRF2000 values.  相似文献   

19.
The paper presents the results of crustal deformation, as evidenced by changed station coordinates, in the Tokyo metropolitan area detected by the satellite laser ranging (SLR) technique. The coordinates of two Key Stone SLR stations, Tateyama and Kashima, were determined from 4 weeks of orbital arcs of the LAGEOS-1 and LAGEOS-2 satellites with respect to 16 SLR stations kept fixed in the ITRF2000 reference frame. The station coordinates were calculated using the NASA GEODYN-II orbital program. The orbital RMS-of-fit for both satellites was 16 mm. The standard deviation of the estimated positions was 3 mm. A jump of about 5 cm in the baseline length between the Kashima and Tateyama stations was detected in June–August 2000 by VLBI and GPS techniques. This work confirms this crustal deformation as determined by SLR and vice versa. Analysis of coordinates of these stations shows that this effect was caused by a 4.5-cm displacement of the Tateyama station in the north-east direction. The change in the vertical component was not significant.  相似文献   

20.
基于全球板块运动模型分析大西洋扩张变化   总被引:1,自引:0,他引:1  
基于现代空间测量技术SLR、VLBI和GPS实测资料,解算出大西洋中脊海底扩张速率,其中北大西洋的东西向扩张速率平均为35mm/a,赤道大西洋东西向扩张速度分别为20-25mm/a,南大西洋东西向扩张速率为22-28mm/a,证实全球板块运动的存在及大西洋扩张学说,并基于全球几百万年地质模型NNR-NUVEL1A,北大西洋的东西向扩张速率平均为24.3mm/a,基于最新全球板块运动模型ITRF2000VEL,北大西洋的东西向扩张速率平均为20.8mm/a,总体上大西洋实测东西扩张速度与根据地学资料推出的地球板块运动模型和最新ITRF2000VEL模型的结果基本一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号