首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Sulagiri meteorite fell in India on 12 September 2008,LL6 chondrite class is the largest among all the Indian meteorites.Isotopic compositions of noble gases(He,Ne,Ar,Kr and Xe) and nitrogen in the Sulagiri meteorite and cosmic ray exposure history are discussed.Low cosmogenic(~(22)Ne/~(21)Ne)_c ratio is consistent with irradiation in a large body.Cosmogenic noble gases indicate that Sulagiri has a 4πcosmic-ray exposure(CRE) age of 27.9 ± 3.4 Ma and is a member of the peak of CRE age distribution of IX chondrites.Radiogenic ~4He and ~(40)Ar concentrations in Sulagiri yields the radiogenic ages as 2.29 and4.56 Ca,indicating the loss of He from the meteorite.Xenon and krypton are mixture of Q and spallogenic components.  相似文献   

2.
1IntroductionOnthenorthernmarginoftheNorthChinaplatformislocatedoneofthemostimportantAu Ag polymetallicore concentratedzones,wherethereareavarietyoforetypes .Soithasbeenat tractingeverincreasingattentionofmanygeologists (PeiRongfuetal.,1 998;ShenBaofengetal.,1 994 ;LuSongnianetal.,1 997;HuShouxietal.,1 994 ;ChenYuchuan ,1 999;ZhaiYushengetal.,1 999) .Manyscholarspresentedtheirresearchresultsinvariousaspects.How ever ,thesourceofore formingmaterialshaslongbeenafocusofdiscussion .Studieso…  相似文献   

3.
Two examined fragments of the Kaidun meteorite principally differ in the concentrations of isotopes of noble gases and are very heterogeneous in terms of the isotopic composition of the gases. Because these fragments belong to two basically different types of meteoritic material (EL and CR chondrites), these characteristics of noble gases could be caused by differences in the cosmochemical histories of the fragments before their incorporation into the parent asteroid. As follows from the escape kinetics of all gases, atoms of trapped and cosmogenic noble gases are contained mostly in the structures of two carrier minerals in the samples. The concentrations and proportions of the concentrations of various primary noble gases in the examined fragments of Kaidun are obviously unusual compared to data on most currently known EL and CR meteorites. In contrast to EL and CR meteorites, which contain the primary component of mostly solar provenance, the elemental ratios and isotopic composition of Ne and He in the fragments of Kaidun correspond to those typical of the primary components of A and Q planetary gases. This testifies to the unique conditions under which the bulk of the noble gases were trapped from the early protoplanetary nebula. The apparent cosmic-ray age of both of the Kaidun fragments calculated based on cosmogenic isotopes from 3He to 126Xe varies from 0.027 to 246 Ma as a result of the escape of much cosmogenic isotopes at relatively low temperatures. The extrapolated cosmic-ray age of the Kaidun meteorite, calculated from the concentrations of cosmogenic isotopes of noble gases, is as old as a few billion years, which suggests that the material of the Kaidun meteorite could be irradiated for billions of years when residing in an unusual parent body.  相似文献   

4.
Heat flow and the origin of helium in natural gases from fault basins of the continental rift-valley in eastern China are discussed in terms of helium isotope geochemistry.3He/4He ratios in natural gases from the rift-valley range from 2.23 × 10−7 to 7.21 × 10−6, which are directly proportional to the concentration of helium and ΣNHC/ΣHC ratio in natural gases. Geological and isotope geochemical data suggest that helium in natural gases consists predominantly of crustal radio-genic and upper mantle-derived helium. In a simple mixing pattern between crustal He and mantle-derived He, mantle-derived helium in natural gases would account for 10–60%. Calculated values for heat flow (Q) range from 59.7 to 82.4mWm−2, of which about 60 percent in the rift-valley is derived from the upper mantle. Natural helium reservoirs would be found in the areas where the upper mantle uplifted greatly and heat flow is large in the continental rift-valley. The project is financially supported by the National Natural Science Foundation of China.  相似文献   

5.
Spinel lherzolite found in Damaping, northern Zhangjiakou, Hebei Province occurs as xenoliths in the Hannuoba basalts that consist of alkali basalt and tholeiite. Spinel lherzolites contain 50%–70% olivine (Fo: 90%), 10%–20% clinopyroxene (predominantly Di), 10%–30% orthopyroxene (predominantly En), and less than 5% spinel.3He/4He and40Ar/38Ar ratios in the olivine are 7.56×10−7 and 299.1, respectively.3He/4He and40Ar/38Ar ratios in the orthopyroxene (enstatite) are 9.1×10−7 and 307, respectively. Olivine grains are fractured irregularly, and pyroxene grains characterized by well developed cleavages, which would have resulted from explosion during the rapid eruption of lava from the deep interior to the surface. The lower isotope ratios of helium and argon may indicate that the spinel lherzolite xenoliths were derived from the strongly degassed and depleted upper mantle, and that the mantle is inhomogeneous.3He losses to some extent might affect the helium isotope ratios. The project was financially supported by the National Natural Science Foundation of China (No. 49273185).  相似文献   

6.
The age-accumulation effect of 40Ar in hydrocarbon source rocks was discussed in accordance with the decay law of radioactive elements. In terms of the mean values of 40Ar/36Ar, the old Sinian gas reservoirs (mean values of 40Ar/36Ar: 7009) were definitely distinguished from the Permian gas reservoirs (mean values of 40Ar/36Ar: 1017) in Weiyuan, Sichuan Province, and the gas source of the Permian gas reservoir (mean values of 40Ar/36Ar: 5222) in well Wei-7 with the Weiyuan structure is defined as the Sinian system. Based on the values of 40Ar/36Ar, the coal-type gases (The source rocks are of the C-P system; mean values of 40Ar/36Ar: 1125) are definitely distinguished from the oil-type gases (The source rocks are of the Tertiary system; mean values of 40Ar/36Ar: 590) in the Tertiary reservoirs of the Zhongyuan Oilfield. Besides, 40Ar/36Ar values also have a positive effect on the oil-source correlation of oil reservoirs in ancient hidden mountains. According to the crust-mantle interchange information reflected by 3He/4He values, petroliferous provinces in China can be divided into three major tectonic regions. (1) The eastern active region: The crust-mantle volatile matter exchanges actively, and the 3He/4He values are mainly around 10-6, partly around 10-7. (2) The central stable region: The 3He/4He values are all around 10-8. (3) The western sub-stable region: The 3He/4He values are mainly around 10-8, and around 10-7 on the edges of the basins. Helium contents of some gas wells in China’s eastern petroliferous region reach the industrial abundance (He≈0.05%–0.1%), the 3He/4He values reach 10-6, and the equivalent values for the mantle-source components in helium gas can reach 30%–50%. As viewed from this, a new type of crust-mantle composite helium resources has been proposed. Geneses of some CO2 gas reservoirs in the east of China and some issues concerning mantle-source methane were discussed in the light of the helium and carbon isotopes of CO2 and CH4 in natural gases. In the discussion on helium isotopic characteristics of inclusions in the reservoirs, it was discovered that the 3He/4He values are close to those in natural gases. That is to say, this phenomenon is related to regional tectonism. The 3He/4He, CO2/3He and CH4/3He data were used to discuss the tectonic activities of fault zones in a certain number of regions in China.  相似文献   

7.
A method for selective annealing of cosmic-ray tracks has been developed, permitting determination of fission-track ages in the presence of a large background of cosmic-ray tracks. The mesosiderite Bondoc contains 41 fission tracks/cm2, of which about 75% are due to neutron-induced fission of U235 during cosmic-ray exposure. Its net fission-track age is 140 ± 40 Myr, nearly identical to its cosmic-ray exposure age of 150 Myr. The mesosiderite Mincy has a fission-track age of 1500 ± 400 Myr.Nakhla (nakhlite) contains an excess of apparent fission tracks, which may be either genuine fission tracks from Pu244 or etch pits mimicking fission tracks in length, thermal stability, random orientation, and other characteristics. On the assumption that they are fission tracks, the Pu244/U238 ratio at the onset of track retention in Nakhla was (3.1 ± 1.3) × 10?3, nearly an order of magnitude lower than the initial solar system ratio. This may reflect a chemical fractionation of Pu and U, or a late impact or magmatic event. Different minerals of the Washougal howardite have different Pu244/U238 ratios, from (24 ± 7) × 10?3 to (2.3 ± 0.7) × 10?3. This may imply a succession of impacts over a period of time. Additionally, Pu and U may have been chemically fractionated from each other in this meteorite.Shocked meteorites show no consistent pattern in the retentivity of fission tracks and of fissiogenic or radiogenic noble gases. Some meteorites, e.g. Bondoc, Serra de Magé, and Mincy, retain gases more completely than tracks; others, e.g. Nakhla and Allende, retain them less completely.Uranium was determined in feldspar and/or pyroxene from 19 Ca-rich achondrites and mesosiderites. For most, only upper limits of 0.01–0.03 ppb were obtained. Apparently the uranium in these meteorites resides almost exclusively in minor phases, as in terrestrial and lunar rocks.  相似文献   

8.
We have investigated the distribution and isotopic composition of nitrogen and noble gases, and the Ar-Ar chronology of the Bencubbin meteorite. Gases were extracted from different lithologies by both stepwise heating and vacuum crushing. Significant amounts of gases were found to be trapped within vesicles present in silicate clasts. Results indicate a global redistribution of volatile elements during a shock event caused by an impactor that collided with a planetary regolith. A transient atmosphere was created that interacted with partially or totally melted silicates and metal clasts. This atmosphere contained 15N-rich nitrogen with a pressure ?3 × 105 hPa, noble gases, and probably, although not analyzed here, other volatile species. Nitrogen and noble gases were re-distributed among bubbles, metal, and partly or totally melted silicates, according to their partition coefficients among these different phases. The occurrence of N2 trapped in vesicles and dissolved in silicates indicates that the oxygen fugacity (fO2) was greater than the iron-wüstite buffer during the shock event. Ar-Ar dating of Bencubbin glass gives an age of 4.20 ± 0.05 Ga, which probably dates this impact event. The cosmic-ray exposure age is estimated at ∼40 Ma with two different methods. Noble gases present isotopic signatures similar to those of “phase Q” (the major host of noble gases trapped in chondrites) but elemental patterns enriched in light noble gases (He, Ne and Ar) relative to Kr and Xe, normalized to the phase Q composition. Nitrogen isotopic data together with 40Ar/36Ar ratios indicate mixing between a 15N-rich component (δ15N = +1000‰), terrestrial N, and an isotopically normal, chondritic N.Bencubbin and related 15N-rich meteorites of the CR clan do not show stable isotope (H and C) anomalies, precluding contribution of a nucleosynthetic component as the source of 15N enrichments. This leaves two possibilities, trapping of an ancient, highly fractionated atmosphere, or degassing of a primitive, isotopically unequilibrated, nitrogen component. Although the first possibility cannot be excluded, we favor the contribution of primitive material in the light of the recent finding of extremely 15N-rich anhydrous clasts in the CB/CH Isheyevo meteorite. This unequilibrated material, probably carried by the impactor, could have been insoluble organic matter extremely rich in 15N and hosting isotopically Q-like noble gases, possibly from the outer solar system.  相似文献   

9.
Bulk meteorite samples of various chemical classes and petrologic types (mainly carbonaceous chondrites) were systematically investigated by the stepped combustion method with the simultaneous isotopic analysis of carbon, nitrogen, and noble gases. A correlation was revealed between planetary noble gases associating with the Q phase and isotopically light nitrogen (δ15N up to –150‰). The analysis of this correlation showed that the isotopically light nitrogen (ILN) is carried by Q. In most meteorites, isotopically heavy nitrogen (IHN) of organic compounds (macromolecular material) is dominant. The ILN of presolar grains (diamond and SiC) and Q can be detected after separation from dominant IHN. Such a separation of nitrogen from Q and macromolecular material occurs under natural conditions and during laboratory stepped combustion owing to Q shielding from direct contact with oxygen, which results in Q oxidation at temperatures higher than the temperatures of the release of most IHN. There are arguments that ILN released at high temperature cannot be related to nanodiamond and SiC. The separation effect allowed us to constrain the contents of noble gases in Q, assuming that this phase is carbon-dominated. The directly measured 36Ar/C and 132Xe/C ratios in ILN-rich temperature fractions are up to 0.1 and 1 × 10–4 cm3/g, respectively. These are only lower constraints on the contents. The analysis of the obtained data on the three-isotope diagram δ15N–36Ar/14N showed that Q noble gases were lost to a large extent from most meteorites during the metamorphism of their parent bodies. Hence, the initial contents of noble gases in Q could be more than an order of magnitude higher than those directly measured. Compared with other carbon phases, Q was predominantly transformed to diamond in ureilites affected by shock metamorphism. The analysis of their Ar–N systematics showed that, similar to carbonaceous chondrites, noble gases were lost from Q probably before its transformation to diamond.  相似文献   

10.
The He isotope composition as an indicator of mantle-derived component was studied in gases from mineral springs, stratal waters, and mud volcanoes developed west of the Teberda River valley (10 objects) and two springs in the central segment of the Greater Caucasus orogen between the active El’brus and Kazbek volcanoes. In the western segment of the orogen, the values of 3He/4He = Rcorr vary in the range of (46–114) × 10−8 = (0.33–0.81)Ratm, where Ratm =1.4 × 10−6 is the atmospheric ratio. They are substantially lower as compared with values in the vicinity of El’brus and Kazbek and close to those in samples from the central segment equal to (70–134) × 10−8 = (0.50–0.96)Ratm, as well as to the values previously recorded in the Caucasian Mineral Waters (CMW) area. Moreover, the content of 3He in them is notably higher as compared with its crustal radiogenic level characteristic of mud volcanoes in the Taman Peninsula, where R = (1.4–2.8) × 10−8 = (0.01–0.02)Ratm. Nitrogen-methane gas from northern piedmonts of the western Caucasus also contain nonatmogenic components, including the radiogenic 40Ar (40Ar/36Ar = 900), “excess” nitrogen (∼87% of the total N2 concentration in sample) and the mantle He. These data specify the distribution of mantle derivates along the orogen strike and age of intrusive magmatic activity in its different segments.  相似文献   

11.
Abundances of cosmic ray-produced noble gases and 26Al, including some new measurements, have been compiled for some 23 stone meteorites with exposure ages of < 3 × 106 yr. Concentrations of cosmogenic He, Ne, and Ar in these meteorites have been corrected for differences in target element abundances by normalization to L-chondrite chemistry. Combined noble gas measurements in depth samples of the Keyes and St. Séverin chondrites are utilized to derive equations for normalizing the production rates of cosmogenic 3He, 21Ne, and 38Ar in chondrites to an adopted ‘average’ shielding: 22Ne21Ne = 1.114. The measured unsaturated 26Al concentrations and the calculated equilibrium 26Al for these meteorites are combined to estimate exposure ages. These exposure ages are statistically compared with chemistry- and shielding-corrected concentrations of cosmogenic He, Ne, and Ar to derive absolute production rates for these nuclides. For L-chondrites, at ‘average’ shielding, these production rates (in 10?8 cm3/g 106 yr) are: 3He = 2.45,21Ne = 0.47, and 38Ar = 0.069, which are ~ 25% higher than production rates used in the past. From these production rates and relative chemical correction factors, production rates for other classes of stone meteorites are derived.  相似文献   

12.
He, Ne, Ar and Xe were measured in aliquots of 11 H-chondrites, to complement trace element studies on the same meteorites (Laulet al., 1972). Bielokrynitschie, Charsonville, Pultusk and Supuhee have lost radiogenic gases before cosmic-ray exposure and Doroninsk, during exposure.  相似文献   

13.
This study is focused on geothermal heat flow and the origin of non-hydrocarbons in natural gases in terms of the isotope geochemical characteristics of Ar, He, CO2 and N2 in natural gases from the Sanshui Basin, Guangdong Province. China.3He/4He ratios are of (1.60-6.39) × 10-6, and40Ar/36Ar ratios of 450–841. The carbon isotopic composition (δl3C PDB) of carbon dioxide ranges from -20‰ to -2‰. δl5N(air) ratios have a wider range of-57 ‰- +95 ‰. The isotope geochemical characteristics of non-hydrocarbons indicate that He, Ar and N2 in the gas reservoirs enriched in non-hydrocarbons were derived largely from the upper mantle. Non-hydrocarbons in gaseous hydrocarbon reservoirs consist mainly of crustal radiogenic He and40Ar and some mantle-derived He and Ar, as well as of13C-depleted carbon dioxide and nitrogen generated as a result of thermal decomposition of organic matter in strata. Carbon dioxide enriched in13C was derived largely from carbonate rocks and partially from the lower crust and upper mantle. Based on the relationship between geothermal heat flow (Q) and3He/4 He ratio in natural gases, the Q values for the area studied have been calculated. Similar Q values are reported from the upper mantle uplift area (77 mWm-2) in Huabei and the Tancheng-Lujiang Rift Zone (88 mWm-2). More than 60 percent of geothermal heat flow in the Sanshui Basin may have been derived from the upper mantle. The project is financially supported by the National Natural Science Foundation of China.  相似文献   

14.
Noble gas isotopes of HIMU and EM ocean island basalts from the Cook-Austral and Society Islands were investigated to constrain their origins. Separated olivine and clinopyroxene (cpx) phenocrysts were used for noble gas analyses. Since samples are relatively old, obtained from the oceanic area and showing chemical zoning in cpx phenocrysts, several tests on sample preparation and gas extraction methods were performed. First, by comparing heating and crushing methods, it has been confirmed that the crushing method is suitable to obtain inherent magmatic noble gases without radiogenic and cosmogenic components which were yielded after eruption, especially for He and Ne analyses. Second, noble gas compositions in the core and the rim of cpx phenocrysts were measured to evaluate the zoning effect on noble gases. The result has been that noble gas concentrations and He and Ne isotope ratios are different between them. The enrichment of noble gases in the rim compared to the core is probably due to fractional crystallization. Difference of He and Ne isotope ratios is explained by cosmogenic effect, and isotope ratios of the trapped component seem to be similar between the rim and the core. Third, leaching test reveals no systematic differences in noble gas compositions between leached and unleached samples.3He/4He ratios of HIMU samples in the Cook-Austral Islands are uniform irrespective of phenocryst type (olivine and cpx) and age of samples (10–18 Ma), and lower (average 6.8 RA) than those of the Pacific MORB. On the other hand, 3He/4He of EM samples in the Cook-Austral Islands are similar to MORB values. EM samples in the Society Islands show rather higher 3He/4He than MORB. Ne, Kr and Xe isotope ratios are almost atmospheric within analytical uncertainties. 40Ar/36Ar are not so high as those of MORB. Anomalous noble gas abundance pattern such as He and Ne depletion and Kr and Xe enrichment relative to atmospheric abundances was observed. Furthermore, Ne/Ar and Kr/Ar show correlation with some trace elemental ratios like La/Yb.Lower 3He/4He of HIMU than MORB values requires relatively high time-integrated (U + Th)/3He for the HIMU source, which suggests that the HIMU source was produced from recycled materials which had been once located near the Earth’s surface. Moreover, extreme noble gas abundance pattern and strong correlation of Ne/Ar and Kr/Ar with La/Yb indicate that the HIMU endmember is highly depleted in light noble gases and enriched in heavy noble gases. Such feature is not common to mantle materials and is rather similar to the noble gas abundance patterns of the old oceanic crust and sediment, which supports the model that the HIMU source originates from subducted oceanic crust and/or sediment.If the HIMU source corresponds to the oceanic crust which subducted at 1–2 Ga as suggested by Pb isotope studies, however, the characteristic 3He/4He of HIMU (6.8 RA) would be too high because radiogenic 4He produced by U and Th decay should dramatically decrease 3He/4He. To overcome this problem, the He open system model is introduced which includes the effects of 4He production and diffusion between the HIMU source material and the surrounding mantle. This model favors that the HIMU source resides in the upper mantle, rather than in the lower mantle. Furthermore, this model predicts the thickness of the HIMU source to be in the order of 1 km.In contrast to low and uniform 3He/4He character of HIMU, 3He/4He of EM are rather variable. Entrainment of upper mantle material and/or a less-degassed component are required to explain the observed 3He/4He of EM in the Polynesian area. Participation of the less-degassed component would be related to the “superplume” below the Polynesian region.  相似文献   

15.
Solubilities of noble gases in magnetite were determined by growing magnetite in a noble-gas atmosphere between 450 and 700°K. Henry's law is obeyed at pressures up to 10?2 atm for He, Ne, Ar and up to 10?5 atm for Kr, Xe, with the following distribution coefficients at 500° (cc STP g?1 atm?5): He 0.042, Ne 0.016, Ar 3.6, Kr 1.3, Xe 0.88, some 102–105 times higher than previous determinations on silicate and fluoride melts. Apparent heats of solution in kcal/mole are: He ?2.42 ±0.12, Ne ?2.20 ±0.10, Ar ?15.25 ±0.25, Kr ?13.0 ±0.3, Xe ?12-5 ± 0.5. These values, too, stand in sharp contrast with earlier determinations on melts which were small and positive, but are comparable to the values for clathrates. Presumably the gases are held in anion vacancies.Extrapolation of the magnetite data to the formation temperature of C1 chondrites, 360°K, shows that the Arp36 content of Orgueil magnetite could be acquired by equilibrium solubility at a total nebular pressure of 4 × 10?6 atm. In the absence of data for silicates (the principal host phase of planetary gas), an attempt is made to estimate the solubilities required to account for planetary gases in meteorites. These values do not appear grossly unreasonable in the light of the magnetite data, when structural differences between the two minerals are taken into account. It seems that equilibrium solubility may be able to account for four features of planetary gas: elemental ratios, amounts, correlations with other volatiles and retentive siting. It cannot account for the isotopic fractionation of planetary gas, however.  相似文献   

16.
The concentrations of noble gas isotopes of He, Ne and Ar have been measured in eight mineral separates of the Bruderheim chondrite. The cosmic-ray-produced nuclides 21Ne and 38Ar were correlated by a computer least-squares fitting program with the elemental composition in each separate of potential targets for nuclear production yielding the following production equations: [21Ne, 10?8 cm3/g] = k(0.45[Mg] + 0.085[Si] + 0.060[S] + 0.017[Ca] + 0.0044[Fe + Ni]); [38Ar, 10?8 cm3/g] = k(2.6[K] + 0.37[Ca] + 0.08[Ti + Cr + Mn] + 0.021[Fe + Ni]) with elemental concentrations in weight per cent and k equal to the reciprocal of the cosmic-ray exposure age of Bruderheim. The P(S)/P(Cr + Mn + Fe + Ni) weight production ratio for 3He was determined to be 1.53; relative productions of 3He from O, Mg and Si and 21Ne from Al proved to be incalculable.  相似文献   

17.
We determined the He, Ne, and Ar isotopic abundances in the four acapulcoites Dhofar (DHO) 125, DHO 290, DHO 312, and Graves Nunataks 98028, the metal-rich diogenite Northwest Africa (NWA) 1982, and a unique achondrite, NWA 1058, that resembles the acapulcoites in its chemical composition. The noble gases in these meteorites consist of three components: trapped gases, cosmic-ray produced nuclides, and nuclides produced by K, Th, and U decay. The four acapulcoites yield cosmic-ray exposure (CRE) ages in the range of 5.0-5.7 Ma and confirm earlier conclusions concerning break-up of all acapulcoites from a common S-type parent asteroid, possibly in three events 4.9, 5.9, and 14.8 Ma ago. We also discuss the other characteristics (mineralogy, chemistry, formation ages, and oxygen and trapped noble gas isotopes) of all other acapulcoites and their relatives, the lodranites. We propose that the acapulcoite/lodranite parent asteroid had a shell structure similar to that of the H chondrites: The less metamorphosed acapulcoites correspond to the H3 and H4 chondrites and originate from the exterior layers, whereas the more severely metamorphosed lodranites, similar to the H5 and H6 chondrites, represent the inner regions of their parent body. Ungrouped achondrite NWA 1982, probably a diogenite, shows a CRE age of 18.9 ± 2.0 Ma that falls on the major exposure age cluster of the diogenites. The unique achondrite NWA 1058 differs in cosmic-ray exposure age (38.9 ± 4.0 Ma) and in oxygen-isotopic composition from the acapulcoites and lodranites and is probably a winonaite.  相似文献   

18.
In order to asses the importance of carbonatitic liquids in transporting noble gases in the mantle, the solubilities of He and Ar in carbonatitic liquids were estimated from analyses of calcium-potassium carbonate glasses that had been synthesized at 1 bar and temperatures between 850 and 950 °C under He or Ar enriched atmospheres. Despite poor reproducibility related to difficulties synthesizing carbonatite glass, we have been able to estimate He and Ar solubilities in carbonatite liquids to be 1 × 10−8 and 2 × 10−9 mol g−1 at 1 bar respectively (with ?50% uncertainty). Despite the significant uncertainties on these estimates, it is clear that the noble gases are not massively soluble in carbonatite liquids (within error, these solubilities are identical to their equivalent solubilities in tholeiitic melts). Assuming the results of these low pressure experiments can be applied to mantle conditions, it seems unlikely that carbonatite metasomatism per se transports noble gases within the mantle. It is nevertheless possible that partitioning of lithophile trace elements (including the important radioelements, U, K and Th) and noble gases between a carbonatitic melt and a silicate melt could effectively decouple lithophile and noble gas isotope systematics because the carbonatitic melt expressedly does not transport noble gases, yet is known to efficiently transport incompatible trace elements.  相似文献   

19.
The Northwest Shelf of the Delaware Basin, SE New Mexico is the site of several large and productive oil and gas fields. The most productive reservoirs are located in the late Pennsylvanian Morrow and early Permian Abo formations. Production from the latter more important play is predominately from fluvial Abo red beds of the Pecos Slope Field. The oxidizing conditions implied by the reddish color of the formation require an external hydrocarbon source. To test the existing migration model for the region and constrain the location of potential hydrocarbon sources, we measured the elemental and isotopic composition of noble gases produced along with the hydrocarbons. We found the hydrocarbons to be highly enriched in radiogenic 4He, 40*Ar and nucleogenic 21*Ne [F(4He) = 44,000-250,000; 40Ar/36Ar = 400-3145; 21Ne/22Ne = 0.044-0.071]. The greatest enrichments occur in the Pecos Slope gas fields. The hydrocarbons also contain three independent nonradiogenic noble gas components each with an atmospheric isotopic composition. One component is most likely air-saturated water (ASW). The second component is enriched in the heavy noble gases [F(130Xe) > 8.5] and is derived from the hydrocarbon sources. The third component is enriched in Ne [F(20Ne) > 0.8] that we believe is degassed from sources within the reservoirs. This component is correlated with but decoupled from the dominant source of radiogenic 4He and 40*Ar. Very high concentrations of 4He (up to ∼1% by volume) in the Pecos slope reservoirs require a source external to the reservoirs, such as the underlying Precambrian basement granites and sedimentary equivalents. Structural buckles cutting through the Pecos field may act as high flux vertical pathways for the radiogenic 4He. If the hydrocarbons in the Pecos slope fields have migrated northward from the deeper Delaware Basin, as suggested by compositional trends, then perhaps the buckles also play an important role in the distribution and filling of the Pecos slope reservoirs.  相似文献   

20.
新疆坡北镁铁-超镁铁质杂岩体由一个辉长岩体以及二十多个超镁铁质侵入体组成,其中坡一超镁铁质岩体稀有气体同位素组成揭示存在地幔柱的贡献。坡北杂岩体西端的坡一、坡四、坡十和坡十四等几个超镁铁质岩体的稀有气体同位素对比分析结果表明,岩浆矿物的3He/4He值(0.26~2.79Ra)分布于地壳与地幔值之间,较高的20Ne/22Ne和较低的21Ne/22Ne值分布于Ne质量分馏线(MFL)和L-K线之间,40Ar/36Ar=295~598。3He/4He与40Ar/36Ar比值揭示坡北杂岩体西端不同超镁铁质岩体形成过程中地幔(柱)、地壳和大气组分的贡献不同,岩体成因也可能不同。其中,坡一岩体具有地幔柱作用的贡献,其他三个岩体的岩石圈地幔及地壳流体组分的贡献较大。岩浆地幔源区由深部地幔柱物质叠加俯冲流体交代的岩石圈地幔物质所组成,大气与地壳物质组分可能由俯冲再循环洋壳带入到岩浆地幔源区以及围岩物质的混入。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号