首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
东北黑土区土壤剖面地温和水分变化规律   总被引:2,自引:1,他引:2  
东北黑土区土壤侵蚀的结果使土壤在坡面上发生再分配,土壤腐殖质层厚度的空间变异增大。腐殖质层厚度的变化又引起地温和土壤水分等土壤物理性质的变化,地温和水分是影响和反映冻融侵蚀作用的重要因子,也是影响地表和土壤剖面物质运移的重要因素。本文通过实测不同厚度腐殖质层剖面的地温和土壤水分,分析了地温和水分随时间和土壤剖面深度的变化规律。结果显示腐殖质层厚度对土壤温度和含水量有显著影响,腐殖质层较厚的剖面解冻速度比薄层黑土区要慢,不同深度土层温度到达0℃的日期也不相同,腐殖质层较厚的剖面冻结时间要滞后1周左右。同时,腐殖质层较厚的黑土区土壤含水量明显大于薄层黑土区,土壤水分运移的深度范围也大。  相似文献   

2.
With the increasing sizes of digital elevation models (DEMs), there is a growing need to design parallel schemes for existing sequential algorithms that identify and fill depressions in raster DEMs. The Priority-Flood algorithm is the fastest sequential algorithm in the literature for depression identification and filling of raster DEMs, but it has had no parallel implementation since it was proposed approximately a decade ago. A parallel Priority-Flood algorithm based on the fastest sequential variant is proposed in this study. The algorithm partitions a DEM into stripes, processes each stripe using the sequential variant in many rounds, and progressively identifies more slope cells that are misidentified as depression cells in previous rounds. Both Open Multi-Processing (OpenMP)- and Message Passing Interface (MPI)-based implementations are presented. The speed-up ratios of the OpenMP-based implementation over the sequential algorithm are greater than four for all tested DEMs with eight computing threads. The mean speed-up ratio of our MPI-based implementation is greater than eight over TauDEM, which is a widely used MPI-based library for hydrologic information extraction. The speed-up ratios of our MPI-based implementation generally become larger with more computing nodes. This study shows that the Priority-Flood algorithm can be implemented in parallel, which makes it an ideal algorithm for depression identification and filling on both single computers and computer clusters.  相似文献   

3.
The average temperature of frozen soil wall is an essential parameter in the process of design, construction, and safety management of artificial ground freezing engineering. It is the basis of calculating frozen soil’s mechanical parameters, further prediction of bearing capacity and, ultimately, safety evaluation of the frozen soil wall. Regarding the average temperature of single-row-piped frozen soil wall, this paper summarizes several current calculation methods and their shortcomings. Furthermore, on the basis of Bakholdin’s analytical solution for the temperature field under straight single-row-piped freezing, two new calculation models, namely, the equivalent trapezoid model and the equivalent triangle model, are proposed. These two approaches are used to calculate the average temperature of a certain cross section which indicates the condition of the whole frozen soil wall. Considering the possible parameter range according to the freezing pipe layout that might be applied in actual construction, this paper compares the average temperatures of frozen soil walls obtained by the equivalent trapezoid method and the equivalent triangle method with that obtained by numerical integration of Bakholdin’s analytical solution. The results show that the discrepancies are extremely small and these two new approaches are better than currently prevailing methods. However, the equivalent triangle method boasts higher accuracy and a simpler formula compared with the equivalent trapezoid method.  相似文献   

4.
The simulation of soil temperature on the Tibetan Plateau (TP) plays a dominant role in the performance of both global climate and numerical weather forecast models. To improve the simulation of soil temperature on the TP, the Johansen soil thermal conductivity parameterization scheme was introduced into Community Land Model 3.5 (CLM3.5) and Regional Climatic Model 4 (RegCM4). The improved CLM3.5 and RegCM4-CLM were utilized to conduct offline and regional simulation experiments on the TP. Comparison of the new and old schemes revealed that CLM3.5 provides high thermal conductivity parameters of mineral soil solid on the TP. The Johansen scheme is more practical for the TP than the soil thermal conductivity parameterization in CLM3.5. The simulation of soil temperature and liquid water content was improved in offline experiment. The improved parameterization scheme can also reduce the simulation error of soil temperature in winter throughout the entire TP.  相似文献   

5.
利用气象站点1981—2011年逐日0 cm土壤温度和气温数据,运用基本统计、线性回归、累积距平和信噪比分析了川南山区6个分区地温和气温的空间分布、变化趋势以及突变特征,分析并对比了地温和气温的关系。结果表明:川南山区年均地、气温变化范围分别在15.6~20.5 ℃和12.2~17.2 ℃之间,呈现出北低南高、高山低河谷高的空间分布格局。31 a来6个分区的年均地、气温均有显著上升趋势,但季节变化差异明显,冬季地、气温的增温率高于夏季。从不同区域来看,高山地带(Ⅵ区)的年、季增温趋势最为显著,是其他区域的2~6倍,且地、气温在1990年左右发生突变;河谷地带(Ⅱ区)的年、季温度变化最小且未发生突变。各区地温和气温呈极显著正相关(P<0.01),具有较高的一致性,但也存在非对称增温现象。山地(Ⅲ、Ⅴ、Ⅵ区)的年均、季均地温和河谷(Ⅰ区)的春季地温增温比气温更加强烈,故地气温差出现显著上升趋势,甚至发生突变。  相似文献   

6.
Seasonal snow cover provides an effective insulating barrier, separating shallow soil (0.25 m) from direct localized meteorological conditions. The effectiveness of this barrier is evident in a lag in the soil temperature response to changing air temperature. The causal relationship between air and soil temperatures is largely because of the presence or absence of snow cover, and is frequently characterized using linear regression analysis. However, the magnitude of the dampening effect of snow cover on the temperature response in shallow soils is obscured in linear regressions. In this study the author used multiple linear regression (MLR) with dummy predictor variables to quantify the degree of dampening between air and shallow soil temperatures in the presence and absence of snow cover at four Greenland sites. The dummy variables defining snow cover conditions were z = 0 for the absence of snow and z = 1 for the presence of snow cover. The MLR was reduced to two simple linear equations that were analyzed relative to z = 0 and z = 1 to enable validation of the selected equations. Compared with ordinary linear regression of the datasets, the MLR analysis yielded stronger coefficients of multiple determination and less variation in the estimated regression variables.  相似文献   

7.
藏北高原土壤的温湿特征   总被引:15,自引:1,他引:14  
通过藏北高原两个站点(D110和安多)土壤温湿特性的分析,表明浅层土壤温度的变化幅度明显的比深层的要大,而且浅层土壤温度受地表随机天气过程的影响较大。浅层(20cm)土壤在未冻结前湿度的变化幅度不但受形成降水的地表随机天气过程的影响,而且受其下层土壤湿度状况的影响。下层土壤湿度越小,浅层(20cm)土壤湿度的变化幅度越大。土壤湿度和土壤温度之间存在着明显的相互关系,土壤的湿度状况能够影响土壤温度变化的幅度和土壤温度变化的趋势。  相似文献   

8.
Although Arabia hosts one of the largest deserts in the world, studies regarding aeolian erosional features in general and yardangs in particular are rare. The principal aim of this study is to delineate and investigate the various forms of yardangs in the Um Al-Rimam depressions in the northern part of Kuwait. The study area consists of two main depressions connected by neck area made up of continental sediments. Both depressions are surrounded by a dissected escarpment and their floors host muddy playas. On lithological bases, three main types of yardang have been identified: 7 yardangs are sculptured in sandstones of Lower Fars Formation (Lower to Middle Miocene), 23 are carved in calcretic rocks of Ghar Formation (Oligocene to Lower Miocene), and 11 yardangs are developed in Quaternary sediments. Their mean orientation NW (297°) coincides with the prevailing direction of the strong local northwesterly wind called the shamal. The average length/width ratio is 1.5:1. The wide geographic distribution of yardangs around the margins of the northern depression is due to sand blasting. This is explained by the annual sand accumulation measured in the study area where the northern depression shows 143 times higher accumulation than the southern depression, the neck area and the platform above the depressions. Also, the field measurements for annual erosional rates show that the sides of the yardangs are more affected by erosion compared to their middle parts. Remarkably slight mineralogical variations were detected within the surface sediments of Um Al-Rimam depressions and the Quaternary muddy yardangs which indicate a common origin. The age of yardangs is unknown but annual erosional rates on a small Quaternary muddy yardang suggest that they range in age between 44 and 1500 years depending on yardang size. It is believed, as indicated from field observation and interpretation of aerial photos, that the majority of yardangs are pre-existing bedrock forms. These forms were developed by paleo-surface hydrological processes which were modified by wind action in latter phase.  相似文献   

9.
Long-term data from meteorological stations have been used in assessing the thermal state of the soil layer in large depressions of the Prebaikalia and Northern Transbaikalia. We examine the characteristics of temperature distribution in depth over an annual cycle for seasonally frozen and permafrost soils. For the Baikalian type depressions we carried out a spatial differentiation of the lowest and highest (having regard to the temperature lag) mean monthly soil temperatures. It is concluded that within a single depression the thermal regime of the soil fluctuates over a very broad range. On the other hand, an identical situation with the temperature regime can occur in different depressions.  相似文献   

10.
沿淮湖泊洼地区域暴雨洪涝风险评估   总被引:1,自引:6,他引:1  
根据自然灾害风险评估基本原理,从暴雨洪涝致灾因子危险性及承灾体易损性出发,以沿淮湖泊洼地区域为示范研究区,综合考虑降水量、径流量、地形与河网密度、土地利用数据、人口及经济数据等指标,利用GIS的数据处理功能,运用标准化方法对相关指标进行标准化处理,得到标准化的多源栅格数据;基于层次分析法确定各影响指标因子权重,采用ARCGIS9.2的ModelBuilder建模工具建立暴雨洪涝灾害风险评估模型;通过地理信息系统的地图代数功能及综合指数法,得出洪水灾害综合风险等级评价图;并利用2003年沿淮湖泊洼地区域暴雨洪涝淹没面积数据验证暴雨灾害综合风险评估结果;统计分析发现,洪涝淹没区有60.66%位于高风险区,33.29%位于中高风险区,6.05%位于中风险区;结果表明,沿淮湖泊洼地区域暴雨洪涝中高风险及高风险区的准确度达93.95%,洪涝灾害风险评估结果基本符合实际情况,风险评估精度较高。模型的建立及风险区划图的制作,对暴雨洪涝灾害宏观决策具有重要的参考价值。  相似文献   

11.
The Babao River Basin is the "water tower" of the Heihe River Basin.The combination of vulnerable ecosystems and inhospitable natural environments substantially restricts the existence of humans and the sustainable development of society and environment in the Heihe River Basin.Soil temperature(ST) is a critical soil variable that could affect a series of physical,chemical and biological soil processes,which is the guarantee of water conservation and vegetation growth in this region.To measure the temporal variation and spatial pattern of ST fluctuation in the Babao River Basin,fluctuation of ST at various depths were analyzed with ST data at depths of 4,10 and 20 cm using classical statistical methods and permutation entropy.The study results show the following: 1) There are variations of ST at different depths,although ST followed an obvious seasonal law.ST at shallower depths is higher than at deeper depths in summer,and vice versa in winter.The difference of ST between different depths is close to zero when ST is near 5℃ in March or –5℃ in September.2) In spring,ST at the shallower depths becomes higher than at deeper depths as soon as ST is above –5℃;this is reversed in autumn when ST is below 5℃.ST at a soil depth of 4 cm is the first to change,followed by ST at 10 and 20 cm,and the time that ST reaches the same level is delayed for 10–15 days.In chilling and warming seasons,September and February are,respectively,the months when ST at various depths are similar.3) The average PE values of ST for 17 sites at 4 cm are 0.765 in spring > 0.764 in summer > 0.735 in autumn > 0.723 in winter,which implies the complicated degree of fluctuations of ST.4) For the variation of ST at different depths,it appears that Max,Ranges,Average and the Standard Deviation of ST decrease by depth increments in soil.Surface soil is more complicated because ST fluctuation at shallower depths is more pronounced and random.The average PE value of ST for 17sites are 0.863 at a depth of 4 cm > 0.818 at 10 cm > 0.744 at 20 cm.5) For the variation of ST at different elevations,it appears that Max,Ranges,Average,Standard Deviation and ST fluctuation decrease with increasing elevation at the same soil depth.And with the increase of elevation,the decrease rates of Max,Range,Average,Standard Deviation at 4 cm are –0.89℃/100 m,–0.94℃/100 m,–0.43℃/100 m,and –0.25℃/100 m,respectively.In addition,this correlation decreased with the increase of soil depth.6) Significant correlation between PE values of ST at depths of 4,10 and 20 cm can easily be found.This finding implies that temperature can easily be transmitted within soil at depths between 4 and 20 cm.7) For the variation of ST on shady slope and sunny slope sides,it appears that the PE values of ST at 4,10 and 20 cm for 8 sites located on shady slope side are 0.868,0.824 and 0.776,respectively,whereas they are 0.858,0.810 and 0.716 for 9 sites located on sunny slope side.  相似文献   

12.
1951—2010年中国土壤温度时空变化特征及其影响因素   总被引:1,自引:0,他引:1  
土壤温度状况对于研究气候变迁、地球物质能量循环以及土壤性质演变具有重要意义,但目前对国家尺度上土壤温度状况的长期序列和空间变化缺少研究。因此,本文基于土壤温度内插法和地理加权回归(GWR)模型,使用1951—2010年中国880个气象站点的观测数据,研究了中国土壤温度状况时空变化特征及其影响因素。结果表明:① 中国60年来土壤温度变化整体趋势为东北地区升温,西南地区少部分地区降温;② 中国土壤温度状况可划分为冷性土壤温度状况(东北地区、青藏高原地区和内蒙古东部)、温性土壤温度状况(新疆南部、内蒙古和山西南部以及山东)和热性土壤温度状况(华中、华东、华南以及西南的云南、贵州和四川);③ 经纬度和气温与土壤温度具有良好的响应关系,其中气温是最重要的影响因素;④ 中国60年来整体呈现温性土壤向北迁移(约46.5 km)、冷性土壤向南迁移(约43.4 km)的趋势。研究结果可为地理学、土壤学等相关领域深入研究提供一定参考,并为土壤系统分类研究提供理论依据。  相似文献   

13.
青藏高原为全球气候变化最为敏感的区域之一,探讨该地区土壤水分变化对近地面气温的影响将为青藏高原水汽循环研究及该地区对周边气候与环境的影响研究提供重要理论支撑。利用NCEP-CFSR数据集,基于土壤水分对近地面气温的影响机理,揭示了青藏高原不同季节、不同植被分区下土壤水分时空分异规律、土壤水分与蒸发率的响应与耦合状态及土壤水分通过蒸散发过程对近地面气温的影响。结果表明:① 不同季节下青藏高原土壤水分空间分布基本一致,除西北地区和喜马拉雅山脉外,整体呈现由东南向西北递减趋势,青藏高原地区存在干旱区变湿,湿润区变干的空间特征;② 青藏高原大部分区域土壤水分处于干湿过渡状态,其中青藏高原南部和东南部地区全年处于干湿过渡状态,而柴达木盆地几乎全年处于干旱状态;③ 近地面气温对土壤水分的响应在冬季最弱,在夏季最强且空间差异较小,其中在冬、春、夏季为负反馈,另外不同植被覆盖区近地面气温对土壤水分的敏感性差异很大。此项研究对于进一步探讨青藏高原地区陆气耦合状态及变化环境下的区域水汽循环及其效应具有重要理论意义。  相似文献   

14.
Soil temperatures at 0, 5, 10 and 20 cm depths were monitored continuously at different microhabitats (beneath shrub canopy (BSC); bare intershrub spaces (BIS)) induced by xerophytic shrub (Caragana korshinskii Kom.) canopy, respectively. We mainly aimed to assess the effects of shrub canopy and precipitation on the spatial-temporal variability of soil temperature. Results indicate that both precipitation and vegetation canopy significantly affect soil temperature. In clear days, soil temperatures within the BSC area were significantly lower than in the BIS at the same soil depth due to shading effects of shrub canopy. Diurnal variations of soil temperature show a unimodal sinusoidal curve. The amplitude of soil temperature tended to decrease and a hysteresis of diurnal maximum soil temperature existed at deeper soil layers. Vertical fluctuations of soil temperature displayed four typical curves. In the nighttime (approximately from sunset to sunrise), surface temperature within the BSC area was higher than in the BIS. In rainy days, however, soil temperatures were affected mainly by precipitation and the shrub canopy had a negligible effect on soil temperature, and little difference in soil temperature at the same soil depth was found between the BSC area and in the BIS. Diurnal variations in soil temperature decreased exclusively as rainfall continued and the vertical fluctuations of soil temperature show an increased tendency with increasing soil depth.  相似文献   

15.
A series of tests were conducted to analyze temperature field distribution and thawing settlement of a thawing soil under static and dynamic loading at various cooling and thawing temperatures. The res...  相似文献   

16.
We investigated the effects of soil water potential (SWP) and temperature on seed germination of six coexisting species of an inter-tropical desert. These species include three life-forms; the shrubs Cercidium praecox andProsopis laevigata ; the columnar succulents Neobuxbaumia tetetzo and Pachycereus hollianus; and the arborescent semi-succulents Beaucarnea gracilis and Yucca periculosa. In the six species germinability increased and germination time and speed of germination (t50) decreased as SWP decreased. The SWP treatments were 0 MPa, −0·12 MPa, −0·2 MPa, −0·41 MPa and −0·66 MPa. There was, however, a SWP threshold below which germination time and t50increased and germinability decreased. The shrubs had the highest germinability whereas the columnar succulents had the lowest. The shrubs also had shorter germination time andt50 than arborescent semi-succulents whereas seeds of the columnar succulents were indeterminate. In all species except P. laevigata germinability increased and the germination time and t50decreased as temperature increased. The temperature treatments were 12°C, 20°C and 26°C. The shrubs had the shortest t50and germination time and the highest germinability at all temperatures. Arborescent semi-succulents had the lowest germinability and longest germination time and t50at the three temperatures treatments. Our results support the hypothesis that in desert environments different plant life-forms utilise different germination strategies to persist.  相似文献   

17.
Karst depressions are common negative topographic landforms formed by the intense dissolution of soluble rocks and are widely developed in Guizhou province. In this work, an inventory of karst depressions in Guizhou was established, and a total of approximately 256,400 karst depressions were extracted and found to be spatially clustered based on multidistance spatial cluster analysis with Ripley’s K function. The kernel density(KD) can transform the position data of the depressions into a smooth...  相似文献   

18.
Henri Vogt  Thea Vogt 《Geomorphology》2007,86(3-4):480-495
Detailed study of two dry depressions in the Baikal rift system: the E–W Khoito Ghol-Tunka-Bistraya depression and the SW–NE Gusinoje–Ivolga depression, aims to provide a better understanding of tectonic control on the intershoulder relief evolution after the rift opened. Both depressions are grabens and both feature a suite of 10–20 km-wide basins alternating with more or less massive highs. Field and laboratory analysis shows that this pattern is of recent tectonic origin and that local breaking-up and subsidence followed the general sinking which originally formed the grabens. The subsidence belts seem to have gradually shifted north and northeastwards. Geomorphological analysis reveals that in both depressions the highs are remnants of a former pediment which was broken up. The young basins display numerous relevant hydrographic anomalies of the secondary channels and a general water-logging. They also suggest that the subsidence belts have gradually shifted north-and northeastwards. In the Gusinoje–Ivolga depression evidence was found of a Plio-Pleistocene river course, parallel to the Selenga river, which was later dismantled by the breaking-up. This depression, parallel to the Baikal rift and belonging to the Mesozoic system of grabens in the Caledonian fold belt, seems to have been included into the general system of rifts during the Pliocene tectonic phase. As for the main hydrographic axes, the Selenga river was set on a Palaeogene-age planation surface before the first tectonic phase and kept its original course. The Irkut river flowed in the Khoito Gol–Tunka–Bistraya depression after the first tectonic phase and was not affected by the later breaking-up. In contrast, the secondary drainage network is largely discordant. Despite their different geotectonic contexts, the two depressions show a similar development of relief pattern,which poses the question of the style of rift dynamics after the main Pliocene tectonic phase.  相似文献   

19.
温度和降水是干旱半干旱区土壤呼吸的重要扰动因子,全球气候变化导致的未来干旱半干旱区增温和降水变率增大对土壤呼吸有着重要影响.研究通过人工设置P16×2.5mm、P8×5mm、P4×10mm、P2×20mm、P1×40mm的降雨频率梯度和增温2℃左右的控制试验,探讨不同降雨频率和增温处理对干旱半干旱区土壤呼吸的影响,以及...  相似文献   

20.
In this paper, we investigate spatial variations in soil CO2 efflux and carbon dynamics across five sites located between 65.5°N and 69.0°N in tundra and boreal forest biomes of Alaska. Growing and winter mean CO2 effluxes for the period 2006–2010 were 261 ± 124 (Coefficients of Variation: 48%) and 71 ± 42 (CV: 59%) gCO2/m2, respectively. This indicates that winter CO2 efflux contributed 24% of the annual CO2 efflux over the period of measurement. In tundra and boreal biomes, tussock is an important source of carbon efflux to the atmosphere, and contributes 3.4 times more than other vegetation types. To ensure that representativeness of soil CO2 efflux was determined, 36 sample points were used at each site during the growing season, so that the experimental mean fell within ±20% of the full sample mean at 80% and 90% confidence levels. We found that soil CO2 efflux was directly proportional to the seasonal mean soil temperature, but inversely proportional to the seasonal mean soil moisture level, rather than to the elevation-corrected July air temperature. This suggests that the seasonal mean soil temperature is the dominant control on the latitudinal distribution of soil CO2 efflux in the high-latitude ecosystems of Alaska.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号