首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The short exposure method proved to be very productive in ground-based observations of Mercury. Telescopic observations with short exposures, together with computer codes for the processing of data arrays of many thousands of original electronic photos, make it possible to improve the resolution of images from ground-based instruments to almost the diffraction limit. The resulting composite images are comparable with images from spacecrafts approaching from a distance of about 1 million km. This paper presents images of the hemisphere of Mercury in longitude sectors 90°–180°W, 215°–350°W, and 50°–90°W, including, among others, areas not covered by spacecraft cameras. For the first time a giant S basin was discovered in the sector of longitudes 250°–290°W, which is the largest formation of this type on terrestrial planets. Mercury has a strong phase effects. As a result, the view of the surface changes completely with the change in the planetary phase. But the choice of the phase in the study using spacecrafts is limited by orbital characteristics of the mission. Thus, ground-based observations of the planet provide a valuable support.  相似文献   

2.
New ground based observations of Mercury in the morning elongation were carried out under good meteorological conditions. During 20–24 November 2006, at the SAO observatory of the Russian Academy of Science (Lower Arkhiz, Karachaevo-Circassia, Russia, 41°26 E, 43°39 N), the sector of longitudes 265–350° W of Mercury was observed using the short exposures method. The sector was not covered by imaging from the spacecraft Mariner-10 in 1974–1975 or by MESSENGER at its first flyby of the planet (January 2008). One of the main tasks of new observations was acquiring a full image of the object Basin S, which was investigated earlier only in a fragmentary way due to the illumination conditions. During 20–24 November 2006 Basin S was partly or full on the lit side of the planet. By the processing of the large number of the initial electronic photos a full high resolution image of Basin S was obtained, together with other elements of the surface of Mercury in this longitude sector.  相似文献   

3.
The results of planetary observations performed with a new CCD detector are presented. The available firmware for collecting a great number of electronic images and the high quantum efficiency of the employed CCD make it possible to observe objects the visibility of which is limited by the short duration of astronomical phenomena. Among such tasks are, for instance, the taking of a large number of images of Mercury by the short exposure method. With a high quantum efficiency of the light detector, short exposure makes it possible to appreciably reduce the blurring of astronomical images caused by the atmospheric instability. This study was performed at the Abastumani Astrophysical Observatory of the Republic of Georgia early in November 2001.  相似文献   

4.
With a view to the further development of the short exposure method with a CCD detector, new observations of the planet Mercury were carried out at the Abastumany Astrophysical Observatory, Republic of Georgia, from October 30 to November 8, 2001. Comparison with the previous data, as well as the results of data processing based on newly developed algorithms, points to considerable progress achieved in the technique for observing Mercury. In some cases, under very favorable atmospheric conditions, the resolution attained is close to the diffraction limit of the astronomic instrument used. For the first time, topographic features on Mercury's surface were reliably resolved. Features with linear sizes as small as 120 km are successfully identified in the disk center.  相似文献   

5.
For the purpose of obtaining images of the unknown portion of Mercury, we continued the previously started series of observations of this planet by the short exposure method. Several thousand electronic images of Mercury have been acquired on 1–2 May 2002 under good meteorological conditions at the high-altitude Skinakas Astrophysical Observatory of Iraklion University (Crete, Greece, 35°13 E, 24°54 N) during the evening elongation. The phase angle of Mercury was 95°–99° and the observed range of longitudes was 210°–285° W. Observations were carried out using Ritchy–Chrétien telescope (D = 1.29 m, F = 9.857 m) with the KS 19 filter cutting wavelengths shorter than about 700 nm. The planet's disk was seen, on average, at an angle of 7.75 arcsec. The image scale was equal to 47.8 m/arcsec. We used a CCD with a pixel size of 7.4 × 7.4 m in the regime of short exposures. By processing a great number of electronic images, we succeeded in obtaining a sufficiently distinct synthesized image of the unknown portion of Mercury's surface. The most prominent formation in this region is a giant basin (or cratered mare) centered at about 8° N, 280° W, which was given a working name Skinakas basin (after the name of the observatory where observations were made). By its size, the interior part of this basin exceeds the largest lunar Mare Imbrium. As opposed to Mare Imbrium, the Skinakas basin is presumably of impact origin. Its relief resembles that of Caloris Planitia but the size is much larger. A series of smaller formations are also seen on synthesized images. The resolution obtained on the surface of Mercury is about 100 km, which is close to the telescope diffraction limit. Also considered are the published theoretical estimations of the possible advantages offered by the short exposure method. Some results obtained by other research groups are discussed.  相似文献   

6.
A series of observations of Mercury were performed at the Special Astrophysical Observatory using the short-exposure method to image a hitherto unknown part of the Hermean surface. Several thousand electronic frames of the planet were taken during its morning elongation in the period from November 20–24, 2006. The phase angle of Mercury varied from 103° to 80°, and the interval of planetocentric longitudes observed spanned from 260 to 350°W. Observations were made with a CCD camera attached to the 1-m Zeiss-1000 Ritchey-Chretien telescope operating with a KS-19 filter (short-wavelength border at 700 nm). The Hermean surface is known to be almost impossible to resolve on ordinary images. A reduction of a large number of frames taken with millisecond-long exposures made it possible to obtain a rather sharp image of the observed part of the Hermean surface. One of the primary aims of new observations was to have a general outline of the basin earlier found by one of the authors (L. Ksanfomaliti). We are the first to image this giant feature. The size of its inner part exceeds that of the largest lunar Mare — Mare Imbrium, however, unlike the latter the studied basin is of impact origin. The synthesized images reveal a number of large impact craters of various ages, as well as smaller features. The highest resolution achieved corresponds to the diffraction limit for the instrument employed, or about 100 km on the Hermean surface.  相似文献   

7.
This work is part of a project to build an infrared database in order to link IR data of planetary materials (and therefore possible Mercury material) with remote sensing observations of Mercury, which will probably be obtained by the MERTIS instrument on the forthcoming BepiColombo mission. The unique achondrite Northwest Africa (NWA) 7325, which has previously been suggested to represent the first sample from Mercury, was investigated by optical and electron microscopy, and infrared and Raman spectroscopy. In addition, the oxygen, strontium, xenon, and argon isotopes were measured and the abundance of selected trace elements determined. The meteorite is a cumulate rock with subchondritic abundances of HFSE and REE and elevated Sr contents, which underwent a second heating and partial remelting process. Oxygen isotope measurements show that NWA 7325 plots in the ureilite field, close to the ALM‐A trachyandesitic fragment found in the unique Almahata Sitta meteorite breccia. On the other hand, mineralogical investigations of the pyroxenes in NWA 7325 provide evidence for similarities to the lodranites and acapulcoites. Furthermore, the rock is weakly shocked and argon isotope data record ancient (~4.5 Ga) plateau ages that have not been reset. The sample records a cosmogenic exposure age of ~19 Ma. Systematics of Rb‐Sr indicate an extreme early volatile depletion of the precursor material, similar to many other achondrite groups. However, despite its compositional similarities to other meteorite groups, our results suggest that this meteorite is unique and unrelated to any other known achondrite group. An origin for NWA 7325 as a sample from the planet Mercury is not supported by the results of our investigation. In particular, the evidence from infrared spectroscopy indicates that a direct relationship between NWA 7325 and the planet Mercury can be ruled out: no acceptable spectral match between laboratory analyses and remote sensing observations from Mercury has been obtained. However, we demonstrate that infrared spectroscopy is a rapid and nondestructive method to characterize mineral phases and thus an excellent tool for planetary surface characterization in space missions.  相似文献   

8.
The magnetic field of Mercury and the structure and dynamics of Mercury's magnetosphere, which will be studied by the spacecraft orbiting Mercury, are strongly influenced by the interaction of the solar wind with Mercury. In order to understand the internal magnetic field, it will be necessary to correct the observations of the external field for the distortions produced by the solar wind. Understanding of the solar wind interaction with Mercury is essential for understanding the structure and dynamics of the magnetosphere and phenomena such as magnetic storms. Helios 1 and 2 made a number of passes in the region traversed by the orbit of Mercury, and each pass provided a sample of the solar wind environment of Mercury. This paper reviews the plasma and magnetic field observations from Helios that provide a general basis for interpreting the observations of Mercury that will be made by orbiting spacecraft. The variables that govern the structure and dynamics of the magnetospheres of Mercury and Earth are approximately 5–10 times larger at Mercury than at Earth. Thus, the solar wind interaction with Mercury will be much stronger than the interaction with Earth. Moreover, the solar wind at Mercury is probably more variable than that at Earth. There is a clear need for measurements of the solar wind during the approach of spacecraft to Mercury and while they are in orbit around Mercury.  相似文献   

9.
J Warell 《Icarus》2004,167(2):271-286
A comparison of the photometric properties of Mercury and the Moon is performed, based on their integral phase curves and disk-resolved image data of Mercury obtained with the Swedish Vacuum Solar Telescope. Proper absolute calibration of integral V-band magnitude observations reveals that the near-side of the Moon is 10-15% brighter than average Mercury, and 0-5% brighter for the “bolometric” wavelength range 400-1000 nm. As shown, this is supported by recent estimates of their geometric albedos. Hapke photometric parameters of their surfaces are derived from identical approaches, allowing a contrasting study between their surface properties to be performed. Compared to the average near-side Moon, Mercury has a slightly lower single-scattering albedo, an opposition surge with smaller width and of marginally smaller amplitude, and a somewhat smoother surface with similar porosity. The width of the lobes of the single-particle scattering function are smaller for Mercury, and the backward scattering anisotropy is stronger. In terms of the double Henyey-Greenstein b-c parameter plot, the scattering properties of an average particle on Mercury is closer to the properties of lunar maria than highlands, indicating a higher density of internal scatterers than that of lunar particles. The photometric roughness of Mercury is well constrained by the recent study of Mallama et al. (2002, Icarus 155, 253-264) to a value of about 8°, suggesting that the surfaces sampled by the highest phase angle observations (Borealis, Susei, and Sobkou Planitia) are lunar mare-like in their textural properties. However, Mariner 10 disk brightness profiles obtained at intermediate phase angles indicate a surface roughness of about twice this value. The photometric parameters of the Moon are more difficult to constrain due to limited phase angle coverage, but the best Hapke fits are provided by rather small surface roughnesses. Better-calibrated, multiple-wavelength observations of the integral and disk-resolved brightnesses of both bodies, and obtained at higher phase angle values in the case of the Moon, are urgently needed to arrive at a more consistent picture of the contrasting light scattering properties of their surfaces.  相似文献   

10.
The intensity of a sunspot was measured in eight wavelength regions during the Mercury transit of 9 May 1970. The observations have been corrected for scattered light in the Earth's atmosphere as well as in the instrument using two different methods plus a combination of these. One method consists of using Mercury as a calibration spot. In the second method the corrections for scattered light are determined from solar limb observations.  相似文献   

11.
Vincenzo Croce 《Icarus》1973,20(2):179-186
During the 1970 May 9 Mercury transit on the solar disk, the Rome Astronomical Observatory performed various direct and spectroscopic observations of the apparent diameter of the planet, the instant of its third contact, the position angles of egress, and the least distance from the sundisk center. Independent methods were used for diameter determination: photometry, isodensitometry, dark calibrated disks, and photometric observations through a diaphragm closing on the planet's image. The maximum deviation among the different determinations is not larger than 0.37″ of arc; the mean weighted value gives a Mercury diameter at 1 a.u. of 6.74″ with an uncertainty of 3.8%. Also observed was a deformation phenomenon on the solar limb near the third contact: its value is estimated as 2.2″ but is not definitive.  相似文献   

12.
Recent ground-based astronomical short-exposure observations of Mercury have yielded more than 50000 electronic pictures of the planet at different phases and different positions relative to the Earth. The work was fulfilled in several observatories. The use of available and newly developed processing methods applied to large volumes of electronic frames allowed the images of a considerable portion of Mercury’s surface to be synthesized. We present the images of the 90°–180°W, 215°–280°W, and 50°–90°W sectors containing, among others, the longitudes not covered by spacecraft imaging. Along with the listed images, we present the results of recent observations of Mercury carried out on November 20–24, 2006 during the morning elongation at the Special Astrophysical Observatory of the Russian Academy of Sciences (SAO RAS) (Nizhnii Arkhyz, Karachai-Circassia, the Caucasus). The 265°–350°W longitude sector of Mercury was observed. The observations were made under good weather conditions. Among the main tasks of the new observations was obtaining a complete view of the S Basin. Previously, this basin had been investigated in fragments only by the actual solar illumination conditions. During the period of November 20–24, 2006, the S Basin was on the sunlit side of the planet. The complete image of the basin was obtained from the processing of a large number of electronic frames. The appearance of the S Basin is compared with the data on its relief acquired with radar methods. In this longitude sector, a number of other unusual surface features were found; among them, are a huge “Medallion” crater and other formations. The results considered in the present and earlier published studies are compared with the Mariner 10 data (1974–1975) and with the data received from the Messenger spacecraft during its first flyby of the planet (January 2008).  相似文献   

13.
Measurements of the disk-integrated reflectance spectrum of Mercury and the Moon have been obtained by the MESSENGER spacecraft. A comparison of spectra from the two bodies, spanning the wavelength range 220-1450 nm, shows that the absolute reflectance of Mercury is lower than that of the nearside waxing Moon at the same phase angle with a spectral slope that is less steep at visible and near-infrared wavelengths. We interpret these results and the lack of an absorption feature at a wavelength near 1000 nm as evidence for a Mercury surface composition that is low in ferrous iron within silicates but is higher in the globally averaged abundance of spectrally neutral opaque minerals than the Moon. Similar conclusions have been reached by recent investigations based on observations from both MESSENGER and Mariner 10. There is weak evidence for a phase-reddening effect in Mercury that is slightly larger in magnitude than for the lunar nearside. An apparent absorption in the middle-ultraviolet wavelength range of the Mercury spectrum detected from the first MESSENGER flyby of Mercury is found to persist in subsequent observations from the second flyby. The current model of space weathering on the Moon, which also presumably applies to Mercury, does not provide an explanation for the presence of this ultraviolet absorption.  相似文献   

14.
15.
We took electronic photographs of Mercury on the side of the planet that was not photographed from the Mariner-10 spacecraft in 1973–1975 by the millisecond-exposure method in ground-based observations. Based on these photographs, we synthesized resolved images of the surface of unknown regions of the planet. The capabilities of the method are limited by the small angular size of the planetary disk (only 7.3 arcsec at average quadrature), specific difficulties of Mercury’s ground-based observations, their very limited duration, and the laboriousness of the subsequent computer-aided observational data processing. The millisecond-exposure method is complex, but a sufficient number of primary electronic photographs can be taken under good seeing conditions for the subsequent synthesis of Mercurian images with a resolution of no worse than the diffraction limit. A giant basin about 2000 km in diameter and other large structures are distinguished in the synthesized images of the planet. In the regions where radar data are available, these structures can be identified with previously found ones. In some measure, the synthesized images allow the relief of the longitude sector 210°–290° W to be reconstructed on Mercury. It can be asserted with caution that the large relief features are distributed asymmetrically over the surface of Mercury, much as observed on other terrestrial planets, the Moon, and many satellites of giant planets.  相似文献   

16.
Two space missions dedicated to Mercury (MESSENGER and BepiColombo) aim at understanding its rotation and confirming the existence of a liquid core. This double challenge requires much more accurate models for the spin-orbit resonant rotation of Mercury. The purpose of this paper is to introduce planetary perturbations on Mercury’s rotation using an analytical method and to analyse the influence of the perturbations on the libration in longitude. Applying a perturbation theory based on the Lie triangle, we were able to re-introduce short periodic terms into the averaged Hamiltonian and to compute the evolution of the rotational variables. The perturbations on Mercury’s forced libration in longitude mainly come from the orbital motion of Mercury (with an amplitude around 41 arcsec that depends on the momenta of inertia). It is completed by various effects from Jupiter (11.86 and 5.93 year-periods), Venus (with a 5.66 year-period), Saturn (14.73 year-period), and the Earth (6.58 year-period). The amplitudes of the oscillations due to Jupiter and Venus are approximately 33% and 10% of those from the orbital motion of Mercury and the amplitudes of the oscillations due to Saturn and the Earth are approximately 3% and 2%. We compare the analytical results with the solution obtained from the spin-orbit numerical model SONYR.  相似文献   

17.
We present an implementation of the extended Knox-Thompson (EKT) speckle reconstruction algorithm dedicated to solar observations. EKT speckle imaging yields nearly diffraction-limited images from bursts of short exposure solar observations under a wide range of seeing conditions. Our implementation supports field dependent amplitude calibration to permit analyzing data obtained with a partially compensating adaptive optics systems. The principles of the method and some technical details of our implementation are discussed. We have performed various tests using simulated data of representative solar scenes. The simulations include the effects of seeing and noise with the exception of anisoplanatism. The expected photometric error of a reconstructed image amounts to a few percent of the mean intensity under seeing conditions ranging from poor to excellent. We also present sample reconstructions of real data and discuss issues arising from anisoplanatism.  相似文献   

18.
Rolf Brahde 《Solar physics》1972,26(2):318-334
A numerical method for correction of stray light in solar observations has been developed. In particular a regular sunspot, where the circular contours of penumbra and umbra are projected as ellipses, has been studied. When a specified set of values for the stray light parameters is given, and also tentative values for the relative intensities of penumbra and umbra, the integration of stray light can be performed in any point. The result will be the observable intensity if the conditions were as given by these initial values.By means of limb observations the stray light parameters may be improved, and finally a variation of the penumbra- and umbra intensities in the computation, enables a determination of these quantities by comparison with observations.The method is tested on observations of the transit of Mercury, May 9, 1970. Calculation of isophotes with Mercury close to the limb shows the black drop phenomenon; which thus may be explained as an effect of stray light only.It is also shown that the Wilson effect on a sunspot cannot be produced by stray light alone.  相似文献   

19.
Plans to send orbiter missions to Mercury (e.g., NASA's Messenger and ESA's BepiColombo) have prompted renewed efforts to investigate the surface of Mercury using ground-based remote sensing. While the highest resolution instrumentation optical telescopes (e.g. HST) cannot be used at small angular distances (<45°) from the Sun (Mercury's elongation never exceeds 28° seen from Earth), advanced ground-based astronomical techniques and modern processing software can be used to construct resolved images of the poorly known part of Mercury. Our observations of the planet presented here were carried out mainly in April and May, 2002, at evening elongation of the planet, at the Skinakas astrophysical observatory of Heraklion University (Crete, Greece). A synthesis of the acquired images of the hemisphere of Mercury, which was not observed by the Mariner 10 mission (1974-1975), is presented. A double rim basin with an internal diameter of about 1000 km and an external rim about 2000 km is suggested by the data. We present the observational method, the data analysis approach, and the resulting images.  相似文献   

20.
Disk-integrated and disk-resolved measurements of Mercury’s surface obtained by both the Mercury Dual Imaging System (MDIS) and the Mercury Atmospheric and Surface Composition Spectrometer (MASCS) onboard the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft were analyzed and compared with previous ground-based observations of Mercury at 11 wavelengths. The spectra show no definitive absorption features and display a red spectral slope (increasing reflectance with increasing wavelength) typical of space-weathered rocky surfaces. The MDIS spectra show evidence of phase reddening, which is not observed in the MASCS spectra. The MDIS spectra are commensurate with ground-based observations to within 10%, whereas the MASCS spectra display greater discrepancies with ground-based observations at near-infrared wavelengths. The derived photometric calibrations provide corrections within 10% for observations taken at phase angles less than ∼100°. The derived photometric properties are indicative of a more compact regolith than that of the lunar surface or of average S-type asteroids. The photometric roughness of the surface is also much smoother than the Moon’s. The calculated geometric albedo (reflectance at zero phase) is higher than lunar values. The lower reflectance of immature units on Mercury compared with immature units on the Moon, in conjunction with the higher geometric albedo, is indicative of more complicated grain structures within Mercury’s regolith.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号