首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Textural evidence for the partial breakdown of staurolite-biotite and andalusite-biotite assemblages to cordierite-orthoamphibole implies high temperature metasomatic depletion of K2O in semi-pelitic rocks from Springton, South Australia. The origin of the reaction textures is discussed with reference to K2O-T diagrams derived from the topologically equivalent K2O–(-H2O) diagram showing both discontinuous and Fe–Mg continuous reactions. The involvement of fluids in the metasomatic process is implied by the scale of K2O removal and suggests that the outcrop pattern of cordierite-gedrite rocks reflects, at least in part, a heterogeneous distribution of advecting fluids in the metamorphic pile at high temperatures.Mineral abbreviations used in text and figures ab albite - alm almandine - als aluminosilicate - and andalusite - anth anthophyllite - bt biotite - cd cordierite - fe-bt Fe-rich biotite - fe-cd Fe-rich cordierite - fe-oa Fe-rich orthoamphibole - fe-st Fe-staurolite - gt garnet - ksp potassium feldspar - ky kyanite - mg-cd Mg-rich cordierite - mg-oa Mg-rich orthoamphibole - mg-st Mg-rich staurolite - mu muscovite - oa orthoamphibole - phl phlogopite - plag plagioclase - py pyrope - sill sillimanite - st staurolite - v vapour  相似文献   

2.
Granulite facies metasedimentary and metavolcanic rocks occur imbricated with the Cretaceous Semail Ophiolite in the United Arab Emirates and Oman. Peak metamorphic assemblages in highly oxidized lithologies of these rocks include sapphirine (7 : 9 : 3)-hercynitic spinel-magnetite-ilmeno-hematite-plagioclase-enstatite-quartz and sapphirine (2 : 2 : 1)-corundum-ilmeno-hematite-phlogopite-plagioclase. The observed mineral assemblages in quartzitic rocks are an example of overlapping stability of sapphirine-quartz and spinel-quartz and are therefore not diagnostic for high pressures. Both types of sapphirine occur within the stability field of Mg-rich cordierite. The common association of sapphirine and spinel with magnetite and ilmeno-hematite in quartzitic rocks suggests that sapphirine was formed by a reaction including spinel, hematite and quartz on the educt side. Metamorphic conditions estimated from associated parageneses point to temperatures of 800–850°C and pressures of 6.5–9 kbar.  相似文献   

3.
The mineralogy and petrochemistry of the garnet-amphibolites from the highgrade part of the Abukuma metamorphic belt have been studied, using five analyses of rocks, five of hornblendes, three of garnets and one analysis of cummingtonite, Garnetiferous amphibolites are rich in Fe, whereas non-garnetiferous ones are rich in Mg, especially in cummingtonite-amphibolite. The chemical composition of hornblendes associated with garnet is pargasitic and rich in FeO and poor in CaO, but that of non-garnetiferous rocks is rich in MgO. The garnets are rich in almandine molecule. Mg/Mg + Fe2+ ratios of both hornblendes and garnets correspond with those of the host rocks. The development of garnet in the Adirondack metabasites belonging to the upper almandine-amphibolite and granulite facies is observed in Mg-rich rocks as well as in Fe-rich rocks, in which both garnet and hornblende are rich in Mg respectively. However, under the conditions of the andalusite-sillimanite type metamorphism as shown in the Abukuma Plateau, Fe-rich garnet occurs in Fe-rich basic rocks, but cummingtonite occurs in Mg-rich ones instead of Mg-rich garnet. Finally, the problem of polymetamorphism is discussed. The cummingtonite-amphibolite may be the product of polymetamorphism, and Mg-rich garnet which had been present previously was decomposed to cummingtonite and plagioclase by the subsequent regional metamorphism of andalusite-sillimanite type.  相似文献   

4.
Summary Textural and compositional relations of coexisting staurolite, hornblende, garnet and kyanite in a garnet amphibolite of undoubted igneous origin are reported. The bulk chemistry of the staurolite bearing rock is determined and compared with the composition of those amphibolites of the same locality, which contain no staurolite. The important difference seems to be the CaO-content. The staurolite bearing rock has 24.41 molecular percent CaO whereas the neighbouring amphibolites have a higher value ranging from 27 to 31 molecular percent. The Mg-value (100 Mg/Mg+Fe) of the analysed staurolite is 31.77, similar to the staurolite analysis 41001 ofGibson (1978), thus probably indicating the similarity of the host rocks. This study unequivocally demonstrates the formation of staurolite in metabasic rocks as has been reported byGibson (1978).
Staurolith im Granatamphibolit von Sölden, Ötztaler Altkristallin, Österreich
Zusammenfassung In einem Granatamphibolit eindeutig magmatischen Ursprungs werden Gefüge und Zusammensetzung der Paragenese Staurolith-Homblende-Granat-Disthen beschrieben. Der Pauschalchemismus dieses Gesteins wird mit dem der Nachbargesteine ohne Staurolithe verglichen, dabei wirkt sich der Hauptunterschied im Gehalt von CaO aus, der im Gestein mit Staurolith 24.42 Mol.-% CaO beträgt, während die Nachbargesteine einen deutlich höheren (27–31%) Gehalt haben. Der Mg-Gehalt (100 Mg/Mg+Fe) der Staurolithe beträgt 31.77 und ist somit ähnlich dem Wert vonGibson (1978), wodurch die Ähnlichkeit des Vorkommens belegt wird In der vorlieenden Arbeit wird die metamorphe Bildung von Staurolithe in einem Metabasit, wie bereits vonGibson (1978) beschneben eindeutig belegt.
  相似文献   

5.
A new occurrence of the rare corundum + quartz assemblage and magnesian staurolite has been found in a gedrite–garnet rock from the Central Zone of the Neoarchean Limpopo Belt in Zimbabwe. Poikiloblastic garnet in the sample contains numerous inclusions of corundum + quartz ± sillimanite, magnesian staurolite + sapphirine ± orthopyroxene, and sapphirine + sillimanite assemblages, as well as monophase inclusions. Corundum, often containing subhedral to rounded quartz, occurs as subhedral to euhedral inclusions in the garnet. Quartz and corundum occur in direct grain contact with no evidence of a reaction texture. The textures and Fe–Mg ratios of staurolite inclusions and the host garnet suggest a prograde dehydration reaction of St → Grt + Crn + Qtz + H2O to give the corundum + quartz assemblage. Peak conditions of 890–930 °C at 9–10 kbar are obtained from orthopyroxene + sapphirine and garnet + staurolite assemblages. A clockwise PT path is inferred, with peak conditions being followed by retrograde conditions of 4–6 kbar and 500–570 °C. The presence of unusually magnesian staurolite (Mg / [Fe + Mg] = 0.47–0.53) and corundum + garnet assemblages provides evidence for early high-pressure metamorphism in the Central Zone, possibly close to eclogite facies. The prograde high-pressure event followed by high- to ultrahigh-temperature metamorphism and rapid uplifting of the Limpopo Belt could have occurred as a result of Neoarchean collisional orogeny involving the Zimbabwe and Kaapvaal Cratons.  相似文献   

6.
Sapphirine occurs in the orthopyroxene-cordierite and feldspar-sillimanite granulites in the Sipiwesk Lake area of the Pikwitonei granulite terrain, Manitoba (97°40W, 55°05N). The orthopyroxene-cordierite granulites have extremely high Al2O3 (24.5 wt%) and MgO (24.6 wt%) contents and contain sapphirine (up to 69.2 wt% Al2O3), aluminous orthopyroxene (up to 8.93 wt% Al2O3), cordierite, spinel, phlogopite, and corundum. Sapphirine forms coronas mantling spinel and corundum. Corona sapphirine is zoned and its composition varies through the substitution (Mg, Fe, Mn) Si=2 Al as a function of the phases with which it is in contact. Textural and chemical relationships of sapphirine with coexisting phases indicate that spinel + cordierite reacted to form orthopyroxene + sapphirine under conditions of increasing pressure. Moreover, decreasing core to rim variation of Al2O3 in orthopyroxene porphyroblasts suggests decreasing temperature during sapphirine formation. On the basis of experimentally determined P-T stability of the assemblage enstatite + sapphirine + cordierite, and the Al content of hypothetical Fe2+-free orthopyroxene associated with sapphirine and cordierite, metamorphic temperatures and pressures are estimated to be 860–890° C and 3.0–11.2 kbar.In the feldspar-sillimanite granulites, sapphirine occurs as a relict phase mantled by sillimanite and/or by successive coronas of sillimanite and garnet. These textural relations suggest the reaction sapphirine + garnet + quartz = orthopyroxene + sillimanite with decreasing temperature. Compositions of minerals in the assemblage garnet-orthopyroxene-sillimanite-plagioclase-quartz, indicate metamorphic P-T conditions of 780–880° C and 9±1 kb.The metamorphic conditions estimated in this study suggest that the sapphirine bearing granulites in the Sipiwesk Lake area represent Archean lower crustal rocks. Their formation might be related to the crustal thickening processes in this area as suggested by Hubregtse (1980) and Weber (1983).  相似文献   

7.
A suite of mica schists from the staurolite zone was studiedin detail. Phase rule considerations and distribution relationsindicate that chemical equilibrium was attained within the samplevolume. Iron-magnesium ratios of the silicates vary greatly,and correlate with rock ferrous-ferric ratio, as does the oxidemineral mode. Rock oxidation state varies locally, and is probablydependent on the composition of the original sediment. Distribution coefficients for Fe, Mg, and Mn among garnet, biotote,and staurolite show no vaiation attributable to temperature.Partition of Fe and Mg between staurolite and biotite is regular,but non-ideal. The staurolite structure permits only limited(15–35 percent) substitution of Mg for Fe.  相似文献   

8.
The spinel–quartz-bearing Al–Fe granulites from Ihouhaouene (In Ouzzal, West Hoggar) have a migmatitic appearance with quartzo-feldspathic layers intercalated with restitic layers. These granulites are characterized by a hercynitic spinel–quartz assemblage typical of high grade terranes. The stability of the spinel–quartz assemblage is attributed to an elevation of temperature (from 800 to >1100 °C) at high pressures (10–11 kbar), followed by an isothermal decompression from 9 to 5 kbar, an evolution typical of the In Ouzzal clockwise PT path. The Al–Fe granulites’ history can be subdivided into different successive crystallisation stages. During the first stage, the spinel–quartz assemblage formed, probably following a prograde event that also produced partial melting. During a second stage, the primary spinel–garnet–sillimanite–quartz paragenesis broke-down to give rise to the secondary assemblage. The metamorphic evolution and phase relations during this stage are shown in PTX pseudosections calculated for the simple FMASH system. These pseudosections show that the orthopyroxene–cordierite–spinel symplectite appeared during a high temperature decompression, as a product of destabilisation of garnet in sillimanite-free microdomains with high XMg values. At the same time, the spinel–quartz association broke-down into cordierite in Fe-rich microdomains. Average pressure and temperature estimates for the orthopyroxene–spinel–garnet–cordierite–quartz association are close to the thermal peak of metamorphism (1000 ± 116 °C at 6.3 ± 0.5 kbar). With decreasing temperatures garnet–sillimanite corona developed from the breakdown of the primary spinel–quartz assemblage in the Fe-rich microdomains, whereas cordierite–spinel formed at the expense of primary sillimanite and garnet in the Mg-rich microdomains.  相似文献   

9.
The stability of cordierite and garnet has been studied experimentally in complex, silica oversaturated compositions (in the systems MgO-FeO-Al2O-CaO3-Na2O-K2OSiO2) in which the molecular ratio Al2O3/FeO+MgO<1. Compositions with 100 Mg/Mg+Fe2+ ratios (X) of 0, 30, 50, 70 and 100 have been used to investigate the role of this ratio in determining phase assemblages and P, T coordinates of reactions. The minimum pressure for appearance of garnet at a given temperature is strongly dependent on X total rock.The X-values of co-existing phases (chiefly garnet, cordierite, hypersthene) in divariant equilibrium are a function of temperature and pressure and have been experimentally determined at 900° C, 1000° C and 1100° C. At high temperature (>1050° C) the phases sapphirine and spinel are stable with quartz in Mg-rich and Fe-rich compositions respectively. Experiments in the system MgO-FeO-Al2O3-SiO2 show that for a given X-value and temperature the pressure required to produce Ca-free garnet from hypersthene-cordierite assemblages is 1–2 kb greater than that required to produce garnet containing 6±2 mol percent grossular solid solution in the more complex Ca-bearing system.  相似文献   

10.
The prograde evolution of minerals in metapelites of a Barrovian sequence from the tri-state area (Massachusetts, Connecticut, New York) of the Taconic Range involves assemblages with garnet (Ga), chlorite (Ch), chloritoid (Ct), biotite (Bi) and staurolite (St). Detailed petrologic observations, mineral compositions and chemical zoning in garnet show: (1) garnet high in Mn and Fe but low in Mg is stable with chlorite at grades below those where chloritoid+biotite is found; (2) early formed garnet reacted partially to form Ct+Bi at intermediate grades; (3) at higher grades garnet (with low Mn)+chlorite is again produced, at the expense of chloritoid+biotite, suggesting a reversal in the continuous reaction involving the phases Ga, Ch, Ct and Bi. Thermodynamic modeling of the assemblage Ga+Ch+Ct+Bi±St in the MnKFMASH system reveals: (1) in the MnKFASH system the prograde reaction is Ga+Ch=Ct+Bi whereas in the KFMASH system the prograde reaction is the opposite: Ct+Bi=Ga+Ch; (2) the Ga–Ch–Ct–Bi–St invariant point in the KFMASH system occurs twice, at approximately 6.5 kbar, 545° C and 14.8 kbar, 580° C (although one of them may be metastable in a complex phase system); the appearance of the petrogenetic grid is markedly different from that of Albee, but similar to that of Spear and Cheney; (3) as a consequence, in the KFMASH system, chloritoid+biotite are stable over a wide range of P-T conditions whereas garnet+chlorite assemblages are restricted to a narrow band of P-T conditions; (4) MnO increases the stability field of Ga+Ch relative to both Ct+Bi at low temperatures, and St+Bi at high temperatures; (5) in natural samples the occurrence of Ct+Bi is controlled more by bulk Mg–Fe(-Mn) composition than P-T conditions. Specifically, Ct+Bi is restricted to bulk compositions with Fe/(Mg+Fe+Mn)>0.6. Rocks with Fe/(Mg+Fe+Mn)<0.5 are likely to display only chlorite+biotite at low grade. These observations are consistent with Wang and Spear and Spear and Cheney.  相似文献   

11.
Rare centimeter-sized superzoned garnets (SZGs) were discovered in two coesite-bearing whiteschists of the Brossasco-Isasca Unit (BIU), southern Dora-Maira massif (DMM), Western Alps. The superzoned garnet consists of a reddish-brown almandine core crowded with inclusions of staurolite, chloritoid, kyanite, chlorite and paragonite, and of a pinkish pyrope rim with sporadic inclusions of kyanite, and magnesian chlorite. The core–rim contact is relatively sharp and marks the termination of the inclusion-rich portion. The core composition of the superzoned garnet is almost identical to, or slightly richer in Mg, than that of the rim of porphyroblastic garnet in metapelites from the same unit. In the rim of the superzoned garnet, Mg–Fe ratio increases abruptly towards the outermost rim, whose composition is identical to that of the common pyrope in the whiteschist. At the core–rim boundary, there is no chemical gap. Chloritoid and staurolite are common inclusions in the core of the superzoned garnet in the whiteschist and in the porphyroblastic garnet in the metapelite. The staurolite composition (Si=2.00 and total R2+<2.0 for O=23 basis) and its reverse Fe–Mg distribution with respect to garnet suggest a HP origin. The Fe–Mg distribution between chloritoid and garnet is reverse in the superzoned garnet, but normal in the garnet of metapelite. Because normal Fe–Mg distribution was reported from other eclogite-facies metapelites, a model petrogenetic grid was constructed in the FMASH model system considering St, Cld, Ky, Chl, Grt, and assuming the following Fe–Mg partitioning of St>Grt>Cld>Chl. The resulting petrogenetic grid suggests that the core of the superzoned garnet contains incompatible assemblages, such as St–Cld–Chl vs. Cld–Chl–Ky. New and literature data and results of experiments in the KFASH system suggest that: (1) the superzoned garnet was formed under a single prograde high-pressure/ultra high-pressure (HP/UHP) Alpine metamorphism, (2) the almandine inclusion-rich core of the superzoned garnet crystallized at disequilibrium in a pelitic composition system at around 600°C and less than 16 kbar, probably from a former metapelite xenolith included in a Variscan granitoid, and (3) the chemical environment of the host rock suddenly changed from the normal pelite to the whiteschist composition by a metasomatic process during the rim growth, i.e., at a stage close to the UHP climax.  相似文献   

12.
Amphibolites of the Post Pond Volcanics, south-west corner ofthe Mt. Cube Quadrangle, Vermont, are characterized by a greatdiversity of bulk rock types that give rise to a wide varietyof low-variance mineral assemblges. Original rock types arebelieved to have been intrusive and extrusive volcanics, hydrothermallyaltered volcanics and volcanogenic sediments with or withoutadmixtures of sedimentary detritus. Metamorphism was of staurolite-kyanitegrade. Geothermometry yields a temperature of 535 ± 20°C at pressures of 5–6 kb. Partitioning of Fe and Mg between coexisting phases is systematic,indicating a close approach to chemical equilibrium was attained.Relative enrichment of Fe/Mg is garnet > staurolite >gedrite > anthophyllite cummingtonite hornblende > biotite> chlorite > wonesite > cordierite dolomite > talc;relative enrichment in Mn/Mg is garnet > dolomite > gedrite> staurolite cummingtonite > hornblende > anthophyllite> cordierite > biotite > wonesite > chlorite >talc. between coexisting amphiboles varies as a function ofbulk Fe/Mg, which is inconsistent with an ideal molecular solutionmodel for amphiboles. Mineral assemblages are conveniently divided into carbonate+ hornblende-bearing, hornblende-bearing (carbonate-absent)and hornblende-absent. The carbonate-bearing assemblages allcontain hornblende + dolomite+ calcite + plagioclase (andesineand/or anorthite) + quartz with the additional phases garnetand epidote (in Fe-rich rocks) and chlorite ± cummingtonite(in magnesian rocks). Carbonate-bearing assemblages are restrictedto the most calcic bulk compositions. Hornblende-bearing (carbonate absent) assemblages occur in rocksof lower CaO content than the carbonate-bearing assemblages.All of these assemblages contain hornblende + andesine ±quartz + Fe-Ti oxide (rutile in magnesian rocks and ilmenitein Fe-rich rocks). In rocks of low Al content, cummingtoniteand two orthoamphiboles (gedrite and anthophyllite) are common.In addition, garnet is found in Fe-rich rocks and chlorite isfound in Mg-rich rocks. Several samples were found that containhornblende + cummingtonite + gedrite + anthophyllite ±garnet +chlorite + andesine + quartz + Fe-Ti oxide ±biotite. Aluminous assemblages contain hornblende + staurolite+ garnet ± anorthite/bytownite (coexisting with andesine)± gedrite ± biotite ± chlorite ±andesine ± quartz ± ilmenite. Hornblende-absentassemblages are restricted to Mg-rich, Ca-poor bulk compositions.These rocks contain chlorite ± cordierite ± staurolite± talc ± gedrite ± anthophyllite ±cummingtonite ± garnet ± biotite ± rutile± quartz ± andesine. The actual assemblage observeddepends strongly on Fe/Mg, Ca/Na and Al/Al + Fe + Mg. The chemistry of these rocks can be represented, to a firstapproximation, by the model system SiO2–Al2O3–MgO–FeO–CaO–Na2O–H2O–CO2;graphical representation is thus achieved by projection fromquartz, andesine, H2O and CO2 into the tetrahedron Fe–Ca–Mg–Al.The volumes defined by compositions of coexisting phases filla large portion of this tetrahedron. In general, the distributionof these phase volumes is quite regular, although in detailthere are a large number of phase volumes that overlap otherphase volumes, especially with respect to Fe/Mg ratios. Algebraicand graphical analysis of numerous different assemblages indicatethat every one of the phase volumes should shift to more magnesiancompositions with decreasing µH2O. It is therefore suggestedthat the overlapping phase volumes are the result of differentassemblages having crystallized in equilibrium with differentvalues of µH2O or µCO2 and that the different valuesmay have been inherited from the original H2O and CO2 contentof the volcanic prototype. If true, this implies that eithera fluid phase was not present during metamorphism, or that fluidflow between rocks was very restricted.  相似文献   

13.
The Igarapé Bahia gold deposit has developed from weathering of a near-vertical hydrothermal Cu (Au) mineralization zone. The unweathered bedrock composed of chlorite schists is mainly metamorphosed basalts, pyroclastic and clastic sedimentary rocks and iron formation. Contents and Fe/(Fe + Mg) ratios of chlorites increase from distal country rock towards the mineralization zone, which can be attributed to different water/rock ratios and locations in a hydrothermal system. In the hydrothermal system high salinity fluids convected through basin-floor rocks, stripping metals from the recharge zones with precipitation in discharge zones. The chlorite with lower Fe/(Fe + Mg) ratios indicates alteration by relatively unreacted Mg-rich fluids, occurring within recharge zones. By contrast, the chlorite with higher Fe/(Fe + Mg) ratios in the mineralization zone formed from solutions rich in Fe, Mn, Au, Cu, H2S and SiO2 within a discharge zone. The iron formation could also be formed within the discharge zone or on the basin floor from the Fe-rich fluids. The distal country rock with less chlorite content is a hydrothermal product at low water/rock ratios whereas the proximal country rock and the host rock with more chlorite content formed at high water/rock ratio conditions. The Al(IV) contents of chlorites indicate that the formation temperatures of these rocks range from 204 to 266 °C, with temperatures slightly increasing from distal country rock towards the mineralization zone.  相似文献   

14.
This paper concentrates on the petrology of eclogite-faciesmetapelites and, particularly, the significance of staurolitein these rocks. A natural example of staurolite-bearing eclogitic micaschistsfrom the Champtoceaux nappe (Brittany, France) is first described.The Champtoceaux metapelites present, in addition to quartz,phengite, and rutile, two successive parageneses: (1) chloritoid+staurolite+garnetcores, and (2) garnet rims+kyanite?chloritoid. Detailed microprobe analyses show that garnet and chloritoidevolve towards more magnesian compositions and that stauroliteis more Fe-rich than coexisting garnet. A comparison of thestudied rocks with other known occurrences of eclogitic metapelitesshows that whereas staurolite is always more Fe-rich than garnetin high-pressure eclogites, the reverse is true in low- to medium-pressuremicaschists. Phase relations between garnet, staurolite, chloritoid, biotite,and chlorite are analysed in the KFMASH system (with excessquartz, phengite, rutile, and H2O). The topology of univariantreactions is depicted for a normal and a reverse Fe-Mg partitioningbetween garnet and staurolite. Mineral compositional changesare also predicted for varying bulk-rock chemistries. In the studied micaschists, the zonal arrangement of garnetinclusions and the progressive compositional changes of ferromagnesianphases record part of the prograde P–T path, before theattainment of ‘peak’ metamorphic conditions (atabout 65O–7OO?C, 18–20 kb). The retrograde path,which records the uplift of the Champtoceaux nappe, occurs underdecreasing temperatures.  相似文献   

15.
The pre-Cambrian granulites of Enderby Land Antarctica, contain coexisting spinel-quartz, sapphirine-quartz, hypersthene-sillimanite-quartz and osumilite on a regional extent. Osumilite is present in a variety of mineral assemblages, most of which are documented in granulites for the first time. The mineral assemblages, reactions and compositional zoning in minerals are discussed in terms of continuous and discontinuous reactions in response to changing conditions of metamorphism. The development of many of the mineral coronas can be explained by continuous rather than discontinuous reactions, due to the effects of Mg-Fe and (Mg,Fe)-2Al exchange equilibria with decreasing temperature. The highest P-T conditions of metamorphism (8–10 kb, 900 °–980 ° C, Ellis, in preparation) were beyond the stability limit of coexisting garnet-cordierite. Secondary cordierite has developed through a large number of mineral reactions in response to cooling of these granulites.A theoretical analysis of the phase relations involving osumilite in the chemical systems K2O-MgO-Al2O3-SiO2 and K2O-MgO-FeO-Al2O3-SiO2 is presented. In the pure Mg-system the lower temperature stability limit of Mg-osumilite is inferred to be defined with increasing pressure by the reactions OsCd+En+Kfeld+Qtz, OsSa+En+Kfeld+Qtz, OsSill+En+Kfeld+Qtz. In iron-bearing systems an important reaction involving osumilite is Os+GtCd+Hy+Kfeld+Qtz.At moderate temperatures and pressures, osumilite is limited to rocks which lie on the Mg-rich side of the Cd-Hy stable tie line on an AFM diagram. At higher pressures and temperatures osumilite occurs in a widerrange of rock compositions because of the stability of coexisting garnet and osumilite. Petrographic data, as well as chemographic relations indicate that for many common rock compositions, garnet, cordierite, hypersthene, sapphirine and sillimanite cannot coexist with both osumilite and K-feldspar.Published with the permission of the Director, Bureau of Mineral Resources  相似文献   

16.
A detailed study of retrograde alteration of a staurolite porphyroblast and its surrounding matrix of mica schist has made use of petrographic, modal, and microprobe analysis. Retrogression was to the garnet zone of metamorphism and apparently occurred largely after a temperature decline of 70–100° C. The event caused metasomatic removal of Zn but may have been isochemical relative to other analyzed elements. The best estimate of the overall reaction is: 1 staurolite+3.018 biotite+3.550 quartz+0.629 albite +0.014 anorthite+0.678 NaCl+14.004 H2O =3.274 Na-rich muscovite+3.561 chlorite +0.273 ilmenite+0.110 chloritoid+0.039 garnet +0.339 ZnCl2.Non-systematic variation in composition of analyzed minerals is revealed by statistical treatment of replicate analyses. Such variation involves monovalent and divalent cations within many minerals, but is most pronounced within retrograde muscovite. Muscovite variation involves Si and Al as well as FM and alkalis and does not follow a phengite law of charge-coupled substitution.Relative to the core of the retrograded staurolite crystal, zoning is seen in averaged muscovite compositions and in development of incompatible mineral assemblages, which include chloritoid well within retrograded staurolite but biotite within the matrix. A local gradient in the chemical potential of an Al-bearing component was likely present during retrogression.Alteration of staurolite was probably accomplished by reaction and diffusion through the medium of an intergranular fluid phase. Relative to staurolite, migration of elements involved immigration of considerable amounts of Mg, Na, K, and H and expulsion of Al, Fe, Zn, and O. It is inferred that concentration of Al within the fluid phase was considerably lower than those of monovalent and divalent cations.Preservation of considerable staurolite and evidence for a local concentration gradient of Al in the fluid phase suggest that limited amounts of H2O were available. Expulsion of Zn suggests that much water was not consumed locally but exited the terrane. An attempt at resolution of this dilemna involves fracture-channelized infiltration of H2O into the rock. A more regional petrographic study of retrogression suggests that H2O which entered the rock may have been liberated initially by prograde dehydration at a moderately greater depth of 2–3 km.Results of this study, especially the non-phengitic nature of crystal-chemical substitution within muscovite, indicate chemical reaction under conditions of disequilibrium. Apparently, extent of retrogression was controlled by availability of H2O rather than by thermochemical equilibria.  相似文献   

17.
Abstract Sapphirine-bearing rocks occur in three conformable, metre-size lenses in intrusive quartzo-feldspathic orthogneisses in the Curaçà valley of the Archaean Caraiba complex of Brazil. In the lenses there are six different sapphirine-bearing rock types, which have the following phases (each containing phlogopite in addition): A: Sapphirine, orthopyroxene; B: Sapphirine, cordierite, orthopyroxene, spinel; C: Sapphirine, cordierite; D: Sapphirine, cordierite, orthopyroxene, quartz; E: Sapphirine, cordierite, orthopyroxene, sillimanite, quartz; F: Sapphirine, cordierite, K-feldspar, quartz. Neither sapphirine and quartz nor orthopyroxene and sillimanite have been found in contact, however. During mylonitization, introduction of silica into the three quartz-free rocks (which represent relict protolith material) gave rise to the three cordierite and quartz-bearing rocks. Stable parageneses in the more magnesian rocks were sapphirine–orthopyroxene and sapphirine–cordierite. In more iron-rich rocks, sapphirine–cordierite, sapphirine-cordierite–sillimanite, cordierite–sillimanite, sapphirine–cordierite–spinel–magnetite and quartz–cordierite–orthopyroxene were stable. The iron oxide content in sapphirine of the six rocks increases from an average of 2.0 to 10.5 wt % (total Fe as FeO) in the order: C,F–A,D–B,E. With increase in Fe there is an increase in recalculated Fe2O3 in sapphirine. The four rock types associated with the sapphirine-bearing lenses are: I: Orthopyroxene, cordierite, biotite, quartz, feldspar tonalitic to grandioritic gneiss; II: Biotite, quartz, feldspar gneiss; III: Orthopyroxene, clinopyroxene, hornblende, plagioclase meta-norite; IV: Biotite, orthopyroxene, quartz, feldspar, garnet, cordierite, sillimanite granulite gneiss. The stable parageneses in type IV are orthopyroxene–cordierite–quartz, garnet–sillimanite–quartz and garnet–cordierite–sillimanite. Geothermobarometry suggests that the associated host rocks equilibrated at 720–750°C and 5.5–6.5 kbar. Petrogenetic grids for the FMASH and FMAFSH (FeO–MgO–Al2O3–Fe2O3–SiO2–H2O) model systems indicate that sapphirine-bearing assemblages without garnet were stabilized by a high Fe3+ content and a high XMg= (Mg/ (Mg+Fe2+)) under these P–T conditions.  相似文献   

18.
An assemblage consisting of corundum, sapphirine, spinel, cordierite, garnet, biotite and bronzite is described from the Messina area of the Limpopo Mobile Belt, and consideration given to its petrogenesis. Various geothermometers and geobarometers have been applied in an attempt to determine the temperatures and pressures of metamorphism.
A former coexistence of garnet and corundum is suggested to have developed during the earliest high pressure phase of the metamorphism, where temperatures exceeded 800°C and pressures as high as 10kbar may have been experienced. Subsequently, continuous retrograding reactions from medium pressure granulite facies at about 800°C and 8kbar towards amphibolite facies generated spinel, cordierite, sapphirine and possibly also bronzite. The most notable reaction was probably of the form: garnet + corundum = cordierite + sapphirine + spinel.  相似文献   

19.
Abstract Phase relations and mineral chemistry for garnet (Grt), orthopyroxene (Opx), sapphirine (Spr), water-undersaturated cordierite (Crd), osumilite (Osu), sillimanite (Sil), K-feldspar (Kfs), quartz (Qtz) and a water-undersaturated liquid (Liq) have been determined experimentally in the system KFMASH (K2O-FeO-MgO-Al2O3-SiO2-H2O) under low PH2O and fO2 conditions. Four compositions have been studied with 100 [Mg/(Mg + Fe)] ranging from 65.6 to 89.7. Based on our experimental data, a P-T grid is derived for the KFMASH system in the presence of quartz, orthopyroxene and liquid. Osumilite has been found in various mineral assemblages from 950 to 1100°C and 7.5 to 11 kbar. In the temperature range 1000-1100°C, the pair Os-Grt is stable over a pressure range of about 3kbar. The divariant reaction Os + Opx = Grt + Kfs + Qtz runs to the right with increasing pressure. Because osumilite is the most magnesian phase it is restricted to Mg-rich compositions at high pressure. The reaction defining the upper pressure stability limit of Os-Grt is located around 11 kbar with a nearly flat dP/dT slope over the temperature range 950–100°C. Over the entire temperature range investigated osumilite is not stable beyond 12 kbar. The data imply a restricted pressure range between 11 and 12 kbar for the stability of the assemblage Os-Opx-Sil-Kfs-Qtz. At 1050°C and above, osumilite occurs in various mineral assemblages together with the high-T pair Spr-Qtz. When coexisting with garnet, orthopyroxene or sapphirine, osumilite is always the most magnesian phase. At 1050 and 1100°C, liquid is invariably the most Fe-rich phase in the run product. Our data support a theoretical P-T grid for the KFMAS system in which osumilite is stable outside the field of the high-T assemblage Spr-Qtz. Moreover, our grid indicates that Os-Opx-Sil-Kfs-Qtz has a more restricted pressure and compositional stability domain than Os-Grt, in agreement with natural occurrences. Osumilite is stable over a large pressure range, such that in Mg-rich rocks, and at high temperature, it can occur at any depth in normal thickness continental crust.  相似文献   

20.
A microprobe study has been carried out on the chemical composition of tourmaline from the Yindongzi and Tongmugou stratabound Pb-Zn ore deposits, eastern Qinling, China. Tourmaline was analysed from a variety of rock types representative of its various occurrences associated with the ore bodies. All the tourmalines studied here belong to the schorl-dravite series. Most are of hydrothermal origin with Mg > Fe and Na > Ca. Some detrital cores of tourmaline have been recognized from their geometry and chemistry, with Fe > Mg. The chemical trends from core to rim in zoned grains suggest a multi-stage model for the growth of tourmaline and genesis of the ore bodies. The first stage was represented by a more Mg-rich hydrothermal fluid in the submarine hydrothermal system, producing Mg-rich tourmalines by selective replacement of clay-rich sediments close to the sediment-water interface. The second stage was dominated by Fe-rich hydrothermal fluid and resulted in overgrowth of Fe-rich tourmaline rims. This stage also led to the nucleation and growth of new tourmaline crystals and was responsible for the formation of the main massive sulphide orebodies. Finally, a further period of hydrothermal activity or a metamorphic event led to the formation of an additional rim of Mg-rich tourmaline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号