首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on early results of magnetic field measurements towards a sample of young stellar objects. The results show a variety of field configurations, some of which can be explained by conventional models, while others cannot. We find that the field in some cases is curved over large scales and influenced by the gas kinematics in the local environment. This implies that, at these scales at least, the magnetic field plays a passive rôle in the star formation process.  相似文献   

2.
Ap star magnetism is often attributed to fossil magnetic fields which have not changed much since the pre‐main‐sequence epoch of the stars. Stable magnetic field configurations are known which could persist probably for the entire mainsequence life of the star, but they may not show the complexity and diversity exhibited by the Ap stars observed. We suggest that the Ap star magnetism is not a result of stable configurations, but is the result of an instability based on strong toroidal magnetic fields buried in the stars. The highly nonaxisymmetric remainders of the instability are reminiscent of the diversity of fields seen on Ap stars. The strengths of these remnant magnetic fields are actually between a few per cent up to considerable fractions of the internal toroidal field; this means field strengths of the order of kGauss being compatible with what is observed. The magnetic fields emerge at the surface rather quickly; rough estimates deliver time‐scales of the order of a few years. Since rotation stabilizes the instability, normal A stars may still host considerable, invisible toroidal magnetic fields (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We have studied chromospheric mass injection into an overlying coronal dipole magnetic field using a 2-D ideal magnetohydrodynamic (MHD) numerical model. The results indicate that such injection can produce magnetic field deformation conducive to active region prominences - namely, Kippenhahn-Schlüter (K-S) type configurations for stable support of injected plasma. We show the optimum conditions for such dynamical formation of K-S-type field configurations.Observations show that an active region prominence formation is preceded by the accumulation of absorptive strands above a neutral line. We hypothesize that an absorptive strand is formed by a chromospheric asymmetric mass injection into the overlying coronal magnetic field and that a necessary condition for the accumulation of the strands is that the mass injection forms a K-S-type field configuration. The results of our numerical simulation of the injection dynamics support our hypothesis. To form a K-S-type magnetic field configuration, we find that a narrow range of injection density, velocity, and magnetic field strength must be used; spicule-like, asymmetric mass injection seems favorable.The limited parameter range that exists for the formation of K-S-type magnetic field configurations in asymmetric injections may explain why active region prominences do not form everywhere on every neutral line.  相似文献   

4.
We derive general equations for axisymmetric Newtonian magnetohydrodynamics and use these as the basis of a code for calculating equilibrium configurations of rotating magnetized neutron stars in a stationary state. We investigate the field configurations that result from our formalism, which include purely poloidal, purely toroidal and mixed fields. For the mixed-field formalism, the toroidal component appears to be bounded at less than 7 per cent. We calculate distortions induced both by magnetic fields and by rotation. From our non-linear work, we are able to look at the realm of validity of perturbative work: we find for our results that perturbative-regime formulae for magnetic distortions agree to within 10 per cent of the non-linear results if the ellipticity is less than 0.15 or the average field strength is less than 1017 G. We also consider how magnetized equilibrium structures vary for different polytropic indices.  相似文献   

5.
We consider the multifractal spectrum of fluctuations of the interplanetary magnetic field strengths observed by Advanced Composition Explorer at the Earth's orbit. We have found that the multifractal scaling of magnetic fields is observed both on small and large scales from minutes to days. The obtained multifractal spectrum is asymmetric for small scales, in contrast to a rather symmetric spectrum observed at scales larger than a day. Moreover, we show that the degree of multifractality of the magnetic fields on large scales is correlated with the solar activity and greater than that at the small scales, where the magnetic turbulence may become roughly monofractal.  相似文献   

6.
Using time dependent MHD simulations, we study the nature of three-dimensional magnetic reconnection in thin quasi-separatrix layers (QSLs), in the absence of null points. This process is believed to take place in the solar atmosphere, in many solar flares and possibly in coronal heating. We consider magnetic field configurations which have previously been weakly stressed by asymmetric line-tied twisting motions and whose potential fields already possessed thin QSLs. When the line-tied driving is suppressed, magnetic reconnection is solely due to the self-pinching and dissipation of narrow current layers previously formed along the QSLs. A generic property of this reconnection process is the continuous slippage of magnetic field lines along each other, while they pass through the current layers. This is contrary to standard null point reconnection, in which field lines clearly reconnect by pair and abruptly exchange their connectivities. For sufficiently thin QSLs and high resistivities, the field line footpoints slip-run at super-Alfvénic speeds along the intersection of the QSLs with the line-tied boundary, even though the plasma velocity and resistivity are there fixed to zero. The slip-running velocities of a given footpoint have a well-defined maximum when the field line crosses the thinnest regions of the QSLs. QSLs can then physically behave as true separatrices on MHD time scales, since magnetic field lines can change their connections on time scales far shorter than the travel-time of Alfvén waves along them. Since particles accelerated in the diffusive regions travel along the field much faster than the Alfvén speed, slip-running reconnection may also naturally account for the fast motion of hard X-ray sources along chromospheric ribbons, as observed during solar flares. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

7.
We find general relativistic solutions of equilibrium magnetic field configurations in magnetars, extending previous results of Colaiuda et al. Our method is based on the solution of the relativistic Grad–Shafranov equation, to which Maxwell's equations can be reduced. We obtain equilibrium solutions with the toroidal magnetic field component confined into a finite region inside the star, and the poloidal component extending to the exterior. These so-called twisted torus configurations have been found to be the final outcome of dynamical simulations in the framework of Newtonian gravity, and appear to be more stable than other configurations. The solutions include higher-order multipoles, which are coupled to the dominant dipolar field. We use arguments of minimal energy to constrain the ratio of the toroidal to the poloidal field.  相似文献   

8.
We present the results of the first survey and monitoring study of the linear polarization properties of compact, flat-spectrum radio sources at mm/submm wavelengths and discuss the implications of the inferred magnetic field structure for the emission models involving shock waves in relativistic jets on subparsec scales. We find significant polarization in most sources but, in general, the magnetic field on subparsec scales is less well ordered than on parsec scales. We observe no difference in polarization properties between the BL Lac objects and compact flat-spectrum quasars at these wavelengths. Although we find the behaviour of some sources, particularly the most highly polarized, to be very consistent with the predictions of transverse shock-in-jet models, the detailed behaviour of most objects is not. Conical shock structures can more readily explain the observed diverse behaviour of the sample, although some degree of bending of the jet may still be necessary in some cases.  相似文献   

9.
We derive the magnetic helicity for configurations formed by flux tubes contained fully or only partially in the spatial domain considered (called closed and open configurations, respectively). In both cases, magnetic helicity is computed as the sum of mutual helicity over all possible pairs of magnetic flux tubes weighted by their magnetic fluxes. We emphasize that these mutual helicities have properties which are not those of mutual inductances in classical circuit theory. For closed configurations, the mutual helicity of two closed flux tubes is their relative winding around each other (known as the Gauss linkage number). For open configurations, the magnetic helicity is derived directly from the geometry of the interlaced flux tubes so it can be computed without reference to a ground state (such as a potential field). We derive the explicit expression in the case of a planar and spherical boundary. The magnetic helicity has two parts. The first one is given only by the relative positions of the flux tubes on the boundary. It is the only part if all flux tubes are arch-shaped. The second part counts the integer number of turns each pair of flux tubes wind about each other. This provides a general method to compute the magnetic helicity with discrete or continuous distributions of magnetic field. The method sets closed and open configurations on an equal level within the same theoretical framework.  相似文献   

10.
Future radio observations with the Square Kilometre Array (SKA) and its precursors will be sensitive to trace spiral galaxies and their magnetic field configurations up to redshift z ≈ 3. We suggest an evolutionary model for the magnetic configuration in star‐forming disk galaxies and simulate the magnetic field distribution, the total and polarized synchrotron emission, and the Faraday rotation measures for disk galaxies at z ≲ 3. Since details of dynamo action in young galaxies are quite uncertain, we model the dynamo action heuristically relying only on well‐established ideas of the form and evolution of magnetic fields produced by the mean‐field dynamo in a thin disk. We assume a small‐scale seed field which is then amplified by the small‐scale turbulent dynamo up to energy equipartition with kinetic energy of turbulence. The large‐scale galactic dynamo starts from seed fields of 100 pc and an averaged regular field strength of 0.02 μG, which then evolves to a “spotty” magnetic field configuration in about 0.8 Gyr with scales of about one kpc and an averaged regular field strength of 0.6 μG. The evolution of these magnetic spots is simulated under the influence of star formation, dynamo action, stretching by differential rotation of the disk, and turbulent diffusion. The evolution of the regular magnetic field in a disk of a spiral galaxy, as well as the expected total intensity, linear polarization and Faraday rotation are simulated in the rest frame of a galaxy at 5GHz and 150 MHz and in the rest frame of the observer at 150 MHz. We present the corresponding maps for several epochs after disk formation. Dynamo theory predicts the generation of large‐scale coherent field patterns (“modes”). The timescale of this process is comparable to that of the galaxy age. Many galaxies are expected not to host fully coherent fields at the present epoch, especially those which suffered from major mergers or interactions with other galaxies. A comparison of our predictions with existing observations of spiral galaxies is given and discussed (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
McClymont  A. N.  Craig  I. J. D. 《Solar physics》1987,113(1-2):131-136
Solar Physics - The high degree of symmetry often assumed in studies of the structure and stability of coronal magnetic field configurations is restrictive and can yield misleading results. We have...  相似文献   

12.
The magnetic topology, structure, and geometry of the magnetic obstacles embedded within interplanetary coronal mass ejections (ICMEs) are not yet fully and consistently described by in situ models and reconstruction techniques. The main goal of this work is to better understand the status of the internal magnetic field of ICMEs and to explore in situ signatures to identify clues to develop a more accurate and reliable in situ analytical models. We take advantage of more than 20 years of Wind observations of transients at 1 AU to compile a comprehensive database of ICMEs through three solar cycles, from 1995 to 2015. The catalog is publicly available at wind.gsfc.nasa.gov and is fully described in this article. We identify and collect the properties of 337 ICMEs, of which 298 show organized magnetic field signatures. To allow for departures from idealized magnetic configurations, we introduce the term “magnetic obstacle” (MO) to signify the possibility of more complex configurations. To quantify the asymmetry of the magnetic field strength profile within these events, we introduce the distortion parameter (DiP) and calculate the expansion velocity within the magnetic obstacle. Circular-cylindrical geometry is assumed when the magnetic field strength displays a symmetric profile. We perform a statistical study of these two parameters and find that only 35% of the events show symmetric magnetic profiles and a low enough expansion velocity to be compatible with the assumption of an idealized cylindrical static flux rope, and that 41% of the events do not show the expected relationship between expansion and magnetic field compression in the front, with the maximum magnetic field closer to the first encounter of the spacecraft with the magnetic obstacle; 18% show contractions (i.e. apparent negative expansion velocity), and 30% show magnetic field compression in the back. We derive an empirical relation between DiP and expansion velocity that is the first step toward improving reconstructions with possible applications to space weather studies. In summary, our main results demonstrate that the assumed correlation between expanding structure and asymmetric magnetic field is not always valid. Although 59% of the cases could be described by circular-cylindrical geometry, with or without expansion, the remaining cases show significant in situ signatures of departures from circular-cylindrical geometry. These results will aid in the development of more accurate in situ models to reconcile image.  相似文献   

13.
We introduce on/off intermittency into a mean field dynamo model by imposing stochastic fluctuations in either the alpha effect or through the inclusion of a fluctuating electromotive force. Sufficiently strong small scale fluctuations with time scales of the order of 0.3–3 years can produce long term variations in the system on time scales of the order of hundreds of years. However, global suppression of magnetic activity in both hemispheres at once was not observed. The variation of the magnetic field does not resemble that of the sunspot number, but is more reminiscent of the 10Be record. The interpretation of our results focuses attention on the connection between the level of magnetic activity and the sunspot number, an issue that must be elucidated if long term solar effects are to be well understood. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
U. Anzer  E. Priest 《Solar physics》1985,95(2):263-268
The development of magnetic field structures which can lead to prominence configurations of the Kuperus-Raadu type is discussed. Starting from streamer type configurations and preserving the total current in the system we find that simple two-dimensional static configurations lead to prominences which in general lie systematically much lower than the heights found from observations. We therefore conclude that either more complex field configurations are needed to explain the recent observations by Leroy et al. (1983) or the initial configurations must be very special.  相似文献   

15.
A simple method of estimating the coronal magnetic field is suggested. It is based on the observational fact that the duration of the highly polarized part in type III bursts can be different, varying from a small fraction of the burst length to its total duration. We suggest that this difference is determined by the relation between the size of the region where only the ordinary wave can propagate and the size of the region where the burst is generated at a fixed frequency. The magnetic field is estimated at several tens of gauss in regions emitting highly polarized type III bursts at frequencies over 200 MHz. Density and magnetic field scales are estimated.  相似文献   

16.
S. Régnier 《Solar physics》2012,277(1):131-151
In the last decades, force-free-field modelling has been used extensively to describe the coronal magnetic field and to better understand the physics of solar eruptions at different scales. Especially the evolution of active regions has been studied by successive equilibria in which each computed magnetic configuration is subject to an evolving photospheric distribution of magnetic field and/or electric-current density. This technique of successive equilibria has been successful in describing the rate of change of the energetics for observed active regions. Nevertheless the change in magnetic configuration due to the increase/decrease of electric current for different force-free models (potential, linear and nonlinear force-free fields) has never been studied in detail before. Here we focus especially on the evolution of the free magnetic energy, the location of the excess of energy, and the distribution of electric currents in the corona. For this purpose, we use an idealised active region characterised by four main polarities and a satellite polarity, allowing us to specify a complex topology and sheared arcades to the coronal magnetic field but no twisted flux bundles. We investigate the changes in the geometry and connectivity of field lines, the magnetic energy and current-density content as well as the evolution of null points. Increasing the photospheric current density in the magnetic configuration does not dramatically change the energy-storage processes within the active region even if the magnetic topology is slightly modified. We conclude that for reasonable values of the photospheric current density (the force-free parameter α<0.25 Mm−1), the magnetic configurations studied do change but not dramatically: i) the original null point stays nearly at the same location, ii) the field-line geometry and connectivity are slightly modified, iii) even if the free magnetic energy is significantly increased, the energy storage happens at the same location. This extensive study of different force-free models for a simple magnetic configuration shows that some topological elements of an observed active region, such as null points, can be reproduced with confidence only by considering the potential-field approximation. This study is a preliminary work aiming at understanding the effects of electric currents generated by characteristic photospheric motions on the structure and evolution of the coronal magnetic field.  相似文献   

17.
S. Audic 《Solar physics》1991,135(2):275-297
In the coming years, some solar telescopes will be able to yield the Stokes' parameters of polarized light with a resolution better than 1 arc sec (0.3 arc sec for THEMIS). We have simulated the Stokes' parameters of a solar magnetic flux tube as seen with such a resolution. We have shown that, observing with a line-of-sight not parallel to the axis of the flux tube (assumed vertical and axisymmetric), it is possible to see differences between different configurations of the magnetic field inside the flux tube (presence, and in what direction, of an azimuthal component of the field). Furthermore, along such a line-of-sight, the polarization profiles of any atomic line are strongly absorbed at the line center. We then suggest a strategy to infer the structure of the magnetic field from observations at high spatial resolution.  相似文献   

18.
We use the so-called complex plane iterative technique (CIT) to the computation of polytropic stars distorted by rotation (either rigid or differential) and magnetic fields (both toroidal and poloidal). We give emphasis on computing(i) critically rotating configurations, and (ii) configurations that – dueto the counterbalancing of the effects of rotation and poloidal magnetic field with the effects of toroidal magnetic field – obtain an almost spherical shape. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
We explore the role of complex multipolar magnetic fields in determining physical processes near the surface of rotation powered pulsars. We model the actual magnetic field as the sum of global dipolar and star-centred multipolar fields. In configurations involving axisymmetric and uniform multipolar fields, 'neutral points' and 'neutral lines' exist close to the stellar surface. Also, the curvature radii of magnetic field lines near the stellar surface can never be smaller than the stellar radius, even for very high-order multipoles. Consequently, such configurations are unable to provide an efficient pair-creation process above pulsar polar caps, necessary for plasma mechanisms of generation of pulsar radiation. In configurations involving axisymmetric and non-uniform multipoles, the periphery of the pulsar polar cap becomes fragmented into symmetrically distributed narrow subregions where curvature radii of complex magnetic field lines are less than the radius of the star. The pair-production process is only possible just above these 'favourable' subregions. As a result, the pair plasma flow is confined within narrow filaments regularly distributed around the margin of the open magnetic flux tube. Such a magnetic topology allows us to model the system of 20 isolated subbeams observed in PSR B0943+10 by Deshpande & Rankin. We suggest a physical mechanism for the generation of pulsar radio emission in the ensemble of finite subbeams, based on specific instabilities. We propose an explanation for the subpulse drift phenomenon observed in some long-period pulsars.  相似文献   

20.
We offer a possible explanation for the observational data on the magnetic-field structure in young supernova remnants (SN 1006, Tycho, Kepler, Cas A) that have been obtained by analyzing the polarizations of electromagnetic radiation in the radio, infrared, and other wavelength ranges. The authors of observational works interpret these data as evidence that the ordered magnetic-field component is predominantly radial, but it can be much smaller in amplitude than the stochastic field component that accounts for the bulk of the total magnetic energy. We calculate the magnetic field in supernova remnants by taking into account the shock compression of the primary field and the generation of a large-scale magnetic field by the particles accelerated at the shock front. The assumption that the field in the supernova remnant is the explosion-compressed primary field near the star is inconsistent with observational data, because the tangential (relative to the shock front) field component perpendicular to the radius must prevail in this case. However, allowing for the generation of an additional magnetic field by the electric current of the particles accelerated by a strong shock front leads us to conclude that the field components parallel to the front are suppressed by accelerated particles by several orders of magnitude. Only the component perpendicular to the front remains. Such a field configuration for uniform injection does not lead to the generation of an additional magnetic field, and, in this sense, it is stable. This explains the data on the radial direction of the ordered field component. As regards the stochastic field component, we show that it is effectively generated by accelerated particles if their injection into acceleration at the shock front is nonuniform along the front. Injection nonuniformity can be caused by upstream density nonuniformities. A relative density nonuniformity of the order of several percent is enough for an observable magnetic field with scales on the order of the density nonuniformity scales to be generated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号