首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The expression of anisotropic temperature ion distribution function under the 13-moment approximation is obtained by solving a set of moment equations based on the Boltzmann equation for a relaxation collision model and with consideration of the anisotropic temperature ion distribution. And the incoherent scatter spectrum with an anisotropic temperature ion distribution is simulated in different directions based on the electromagnetic radiation theory of Sheffield. The effects of different electrical field strengths, ratios of electron temperature to ion temperature, and ion-neutral collision frequencies on the incoherent scatter spectrum are all discussed. Finally, the value of theoretical simulation is compared with the measured value of incoherent scattering spectrum. The result show that the incoherent scatter spectrum of ions seriously deviates from the form of the Maxwellian distribution in the equilibrium state. This phenomenon can be attributed to the effects of anisotropic temperature ion distribution, the larger convection electric field, and other factors in high latitude ionosphere.  相似文献   

2.
The angular variations of elastic and inelastic scattering cross-sections have been calculated accounting for Hartree-Fock atomic model. Using these cross-sections the evolution of electron energy and angular distributions at different heights in the ionosphere have been computed with the help of Monte Carlo technique. Mono-energetic, power law and exponential electron spectra with isotropic and mono-directional incidence starting at an altitude of 300 km have been taken to obtain the angular and energy distribution at certain height intervals. It is found that isotropic distribution incident at the top of the ionosphere becomes anisotropic due to collisions at lower heights. Using Sauter bremsstrahlung cross-section and the calculated electron flux we have computed the spectrum, angular distribution and polarization of bremsstrahlung X-rays at different heights.The emission is found to be peaked at lower angles at higher heights and becomes isotropic with depth of penetration. Polarization is considerable at higher altitudes for mono-directional beams and becomes significant at lower heights for isotropic incidence. It is argued that the study of angular distribution and polarization can yield information about the nature of precipitating electron flux and hence about the acceleration mechanism operating during electron precipitation.  相似文献   

3.
We present calculations, made for the first time, of the gyrosynchrotron emission by mildly relativistic electrons with anisotropic pitch-angle distribution using a realistic magnetic loop model in three dimensions. We investigated the intensity, spectral index of the optically thin region of the spectrum, the spatial morphology and the dependency on the source position on the solar disk. The method to describe a three-dimensional source and the procedure to perform the calculations are presented. We have modified the Ramaty’s gyrosynchrotron code to allow the evaluation of anisotropic pitch-angle electron distributions, as described in the complete formalism. We found that anisotropic electron distributions affect the intensity of the radiation, spatial morphology and spectrum of spatially resolved sources. However, the spatially integrated spectrum of the emission seems to be insensitive to the electron pitch-angle distribution, as the magnetic field inhomogeneity smooths out the effects of the anisotropic distribution in the produced radiation, in contrast to homogeneous sources.  相似文献   

4.
We have calculated the energy spectra of cosmic ray secondary antiprotons and positrons using the latest available data on inclusive reactions. Using the measured positron spectrum, we have found that the amount of matter traversed by the cosmic rays in the few GeV region to bem≈4.7±1.5 g cm?2 of interstellar hydrogen. The computed antiproton to proton ratio is about 4×10?4 for energies 5–10 GeV. This is sufficient to make observations of antiprotons feasible from balloon flights. We have also pointed out the type of information that can be obtained if accurate information of the spectra of these two components becomes available.  相似文献   

5.
We discuss the influence of the cosmological background density field on the spherical infall model. The spherical infall model has been used in the PressSchechter formalism to evaluate the number abundance of clusters of galaxies, as well as to determine the density parameter of the Universe from the infalling flow. Therefore, the understanding of collapse dynamics plays a key role for extracting cosmological information. Here, we consider a modified version of the spherical infall model. We derive the mean field equations from the Newtonian fluid equations, in which the influence of cosmological background inhomogeneity is incorporated into the averaged quantities as the backreaction . By calculating the averaged quantities explicitly, we obtain simple expressions and find that, in the case of a scale-free power spectrum, density fluctuations with a negative spectral index make the infalling velocities slow. This suggests that we underestimate the density parameter when using the simple spherical infall model. In cases with the index n >0, the effect of background inhomogeneity could be negligible and the spherical infall model becomes a good approximation for infalling flows. We also present a realistic example with a cold dark matter power spectrum. In this case, the mean infall tends to be slow owing to the anisotropic random velocity.  相似文献   

6.
Linear stability of a system of stars, gas and magnetic fields under the existence of a relative motion between the stars and the gas is investigated by the use of the magnetohydrodynamic and the polytropic equations for the gas and the collisionless Boltzmann equation for the stars together with the Poisson equation. The star system is supposed to have the anisotropic Schwarzschild distribution. The critical wavenumber is calculated and it is found that the system becomes universally unstable under some conditions.  相似文献   

7.
The optical counterpart of the transient, millisecond X-ray pulsar SAX J1808.4–3658 was observed in four colours ( BVRI ) for five weeks during the 2005 June–July outburst. The optical fluxes declined by ∼2 mag during the first 16d and then commenced quasi-periodic secondary outbursts, with time-scales of several days, similar to those seen in 2000 and 2002. The broad-band spectra derived from these measurements were generally consistent with emission from an X-ray heated accretion disc. During the first 16d decline in intensity the spectrum became redder. We suggest that the primary outburst was initiated by a viscosity change driven instability in the inner disc and note the contrast with another accreting millisecond pulsar, XTE J0929−314, for which the spectrum becomes bluer during the decline. On the night of 2005 June 5 (HJD 245 3527) the I -band flux was ∼0.45-mag brighter than on the preceding or following nights whereas the BV and R bands showed no obvious enhancement. A type I X-ray burst was detected by the Rossi X-ray Timing Explorer spacecraft during this I -band integration. It seems unlikely that reprocessed radiation from the burst was sufficient to explain the observed increase. We suggest that a major part of the I -band excess was due to synchrotron emission triggered by the X-ray burst. Several other significant short duration changes in V − I were detected. One occurred at about HJD 245 3546 in the early phase of the first secondary outburst and may be due to mass-transfer instability or to another synchrotron emission event.  相似文献   

8.
In this paper, we study the anisotropic Bianchi type-VI0 metric filled with dark matter and anisotropic ghost dark energy. We have solved the Einstein's field equations by considering hybrid expansion law (HEL) for the average scale factor. It is found that at later times the universe becomes spatially homogeneous, isotropic and flat. From a state finder diagnosis, it is found that our model is having similar behavior like ɅCDM model at late phase of cosmic time.  相似文献   

9.
We present the K -band infrared spectrum of the intermediate polar XY Ari. The spectrum confirms the cataclysmic binary nature of XY Ari, showing emission lines of He  i ( λ 2.0587 μm) and the Brackett and Paschen series of H  i . The broad nature of these lines suggests an origin in an accretion disc. The spectrum is strongly reddened by absorption within the molecular cloud Lynds 1457 and shows prominent absorption features from the secondary star, from which we determine a spectral type for the secondary of M0V. The secondary contributes     per cent of the K -band light. We derive a visual extinction to XY Ari of     and a distance of     , placing XY Ari behind the molecular cloud.  相似文献   

10.
We discuss contradictions existing in the literature in the problem on the stability of collisionless spherical stellar systems, which are the simplest anisotropic generalization of the well-known polytropic models. On the one hand, calculations of the growth rates within the framework of a linear stability theory and N-body simulations suggest that these systems should become stable when the parameter s characterizing the degree of anisotropy of the stellar velocity distribution becomes lower than some critical value s crit > 0. On the other hand, according to Palmer and Papaloizou, the growth rate should be nonzero up to the isotropic limit s = 0. Using our method of determining the eigenmodes of stellar systems, we show that even though the mode growth rates in weakly radially anisotropic systems of this type are nonzero, they are exponentially small, i.e., decrease as γ ∝ exp(−a/s) when s → 0. For slightly radially anisotropic systems with a finite lifetime, this actually implies stability.  相似文献   

11.
Observations suggest that accretion discs in many X-ray binaries are likely flared. An outer edge of the disc intercepts radiation from the central X-ray source. Part of that radiation is absorbed and re-emitted in the optical/UV spectral ranges. However, a large fraction of that radiation is reflected and appears in the broad-band X-ray spectrum as a Compton reflection bump. This radiation is delayed and variability is somewhat smeared compared with the intrinsic X-ray radiation. We compute response functions for flat and flared accretion discs and for isotropic and anisotropic X-ray sources. A simple approximation for the response function which is valid in the broad range of the disc shapes and inclinations, inner and outer radii, and the plasma bulk velocity is proposed. We also study the impact of the X-ray reprocessing on temporal characteristics of X-ray binaries such as the power spectral density, auto- and cross-correlation functions, and time/phase lags. We propose a reprocessing model which explains the secondary peaks in the phase lag Fourier spectra observed in Cyg X-1 and other Galactic black hole sources. The position of the peaks could be used to determine the size of the accretion disc.  相似文献   

12.
Scattering of anisotropic radiation by atoms,ions or molecules is sufficient to generate linear polarization observable in stars and planets' atmospheres,circumstellar environments,and in particular in the Sun's atmosphere.This kind of polarization is called scattering polarization(SP) or second solar spectrum(SSS) if it is formed near the limb of the solar photosphere.Generation of linear SP can typically be reached more easily than circular SP.Interestingly,the latter is often absent in observations and theories.Intrigued by this,we propose to demonstrate how circular SP can be created by anisotropic collisions if a magnetic field is present.We also demonstrate how anisotropic collisions can result in the creation of circular SP if the radiation field is anisotropic.We show that under certain conditions,linear SP creation is accompanied by the emergence of circular SP which can be useful for diagnostics of solar and astrophysical plasmas.We treat an example and calculate the density matrix elements of tensorial order k=1 which are directly associated with the presence of circular SP.This work should encourage theoretical and observational research to be increasingly oriented towards circular SP profiles in addition to linear SP in order to improve our analysis tools of astrophysical and solar observations.  相似文献   

13.
A general expression for the tensor of the dielectrical susceptibility in an anisotropic plasma with particle drifts is derived, and the dispersion equation is found for waves propagating in arbitrary direction with respect to the mean magnetic field. The dispersion equation is solved for the case of electromagnetic ion‐cyclotron waves. It is found that in the plasma of the auroral magnetosphere strong plasma instability may occur so that the value of the growth rate of the waves is of the order of the wave frequency. Besides, the plasma instability is excited at less values of the wave number if the magnetospheric altitude becomes larger.  相似文献   

14.
The Forbush decrease (Fd) of the Galactic cosmic ray (GCR) intensity and disturbances in the Earth’s magnetic field generally take place simultaneously and are caused by the same phenomenon, namely a coronal mass ejection (CME) or a shock wave created after violent processes in the solar atmosphere. The magnetic cut-off rigidity of the Earth’s magnetic field changes because of the disturbances, leading to additional changes in the GCR intensity observed by neutron monitors and muon telescopes. Therefore, one may expect distortion in the temporal changes in the power-law exponent of the rigidity spectrum calculated from neutron monitor data without correcting for the changes in the cut-off rigidity of the Earth’s magnetic field. We compare temporal changes in the rigidity spectrum of Fds calculated from neutron monitor data corrected and uncorrected for the geomagnetic disturbances. We show some differences in the power-law exponent of the rigidity spectrum of Fds, particularly during large disturbances of the cut-off rigidity of the Earth’s magnetic field. However, the general features of the temporal changes in the rigidity spectrum of Fds remain valid as they were found in our previous study. Namely, at the initial phase of the Fd, the rigidity spectrum is relatively soft and it gradually becomes hard up to the time of the minimum level of the GCR intensity. Then during the recovery phase of the Fd, the rigidity spectrum gradually becomes soft. This confirms that the structural changes of the interplanetary magnetic field turbulence in the range of frequencies of 10?6?–?10?5 Hz are generally responsible for the time variations in the rigidity spectrum we found during the Fds.  相似文献   

15.
Continuing an investigation concerning the influence of a uniform mean magnetic field on turbulence (RÜDIGER, 1974) we now consider a weak magnetic field changing spatially weakly and containing a neutral sheet. An originally homogeneous and isotropic turbulent field becomes inhomogeneous and anisotropic if such a magnetic field is present. Because of the finite correlation length the turbulent field is also affected in a neutral sheet. For a special class of spectral functions of two- und three-dimensional turbulence the anisotropic damping of the motions is given in the vicinity of the neutral sheet. Furthermore, we point out the consequence for the mean magnetic field which is affected by such an inhomogeneous turbulent field. Using BOCHNER'S theorem concerning the spectral tensor of the originally homogeneous turbulence we obtain an additional decay of thr mean magnetic field.  相似文献   

16.
The spectrum of galactic primary cosmic rays at relativistic monenta is calculated. The primaries are assumed to be accelerated continuously from the thermal galactic background medium by first- and second-order Fermi acceleration. We show that the observed spectrum is readily obtained from the transport equation conventionally invoked to discuss propagation and loss of cosmic rays in our Galaxy from a distribution of sources. We have previously (Lerche and Schlickeiser, 1985) shown that the observed secondary to primary ratio is satisfactorily explained by a similar use of the transport equation, allowing for secondary production from the primaries. Accordingly, when the results of this paper are added to those concerning the secondary/primary ratio behaviour, it would seem that continuous Fermi acceleration accounts, in a quantitative fashion, for the spectral behaviours observed at Earth.  相似文献   

17.
The observations of the prompt emission of gamma ray bursts (GRB) by GLAST Burst Monitor (GBM), on board Fermi Gamma-ray Space Telescope, suggest the presence of a significant thermal spectral component, whose origin is not well understood. Recently, it has been shown that for long duration GRBs, the spectral width as defined as the logarithm of the ratio of the energies at which the spectrum falls to half its peak value, lie in the range of 0.84–1.3 with a median value of 1.07. Thus, while most of the GRB spectra are found to be too narrow to be explained by synchrotron emission from an electron distribution, they are also significantly broader than a blackbody spectrum whose width should be 0.54. Here, we consider the possibility that an intrinsic thermal spectrum from a fire-ball like model, may be observed to be broadened if the system undergoes a rapid temperature evolution. We construct a toy-model to show that for bursts with durations in the range 5–70 s, the widths of their 1 second time-averaged spectra can be at the most ≲ 0.557. Thus, while rapid temperature variation can broaden the detected spectral shape, the observed median value of ∼ 1.07 requires that there must be significant sub-photospheric emission and/or an anisotropic explosion to explain the broadening for most GRB spectra.  相似文献   

18.
The recent detections of TeV gamma-rays from compact binary systems show that relativistic outflows (jets or winds) are sites of effective acceleration of particles up to multi-TeV energies. In this paper, we discuss the conditions of acceleration and radiation of ultrarelativistic electrons in LS 5039, the gamma-ray emitting binary system for which the highest quality TeV data are available. Assuming that the gamma-ray emitter is a jet-like structure, we performed detailed numerical calculations of the energy spectrum and light curves accounting for the acceleration efficiency, the location of the accelerator, the speed of the emitting flow, the inclination angle of the system, as well as specific features related to anisotropic inverse Compton (IC) scattering and pair production. We conclude that the accelerator should not be deep inside the binary system unless we assume a very efficient acceleration rate. We show that within the IC scenario both the gamma-ray spectrum and flux are strongly orbital phase dependent. Formally, our model can reproduce, for specific sets of parameter values, the energy spectrum of gamma-rays reported by HESS for wide orbital phase intervals. However, the physical properties of the source can be constrained only by observations capable of providing detailed energy spectra for narrow orbital phase intervals (Δφ≪ 0.1).  相似文献   

19.
Chalov  S.V.  Fahr  H.J. 《Solar physics》1999,187(1):123-144
As known for a long time, interstellar wind neutral helium atoms deeply penetrate into the inner heliosphere and, when passing through the solar gravity field, form a strongly pronounced helium density cone in the downwind direction. Helium atoms are photoionized and picked-up by the solar wind magnetic field, but as pick-up ions they are not simply convected outwards with the solar wind in radial directions as assumed in earlier publications. Rather they undergo a complicated diffusion-convection process described here by an appropriate kinetic transport equation taking into account adiabatic cooling and focusing, pitch angle scattering and energy diffusion. In this paper, we solve this equation for He+pick-up ions which are injected into the solar wind mainly in the region of the helium cone. We show the resulting He+pick-up ion density profile along the orbit of the Earth in many respects differs from the density profile of the neutral helium cone: depending on solar-wind-entrained Alfvénic turbulence levels, the density maximum when looking from the Earth to the Sun is shifted towards the right side of the cone, the ratio of peak-densities to wing-densities varies and a left-to-right asymmetry of the He+-density profile is pronounced. Derivation of interstellar helium parameters from these He+-structures, such as the local interstellar medium (LISM) wind direction, LISM velocity and LISM temperature, are very much impeded. In addition, the pitch-angle spectrum of He+pick-up ions systematically becomes more anisotropic when passing from the left to the right wing of the cone structure. All effects mentioned are more strongly pronounced in high velocity solar wind compared to the low velocity solar wind.  相似文献   

20.
Electron spectra obtained during the flight of Black Brant VB-31 on August 17, 1970 through a stable aurora to a height of 268 km have been analyzed in detail to obtain the pitch angle distributions from 25 to 155° and the electron energy distributions over an energy range of 18 keV to 20 eV through the region of atmospheric interaction down to 97 km. Backscatter ratios for 140° pitch angle range from 0.065 for 18 keV electrons to 0.22 for 1 keV electrons. Backscatter of lower energy electrons decreases with atmospheric depth below 200 km. The effect of the interactions between auroral electrons and the atmosphere is such as to give a peak in electron flux which moves progressively to higher energies with penetration depth. The secondary electron flux increases monotonically with height up to 200 km. The secondary electron spectrum can be approximated by an energy power over small energy ranges but its form is somewhat dependent on height and on the primary electron spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号