首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 78 毫秒
1.
倪文  陈娜娜 《地质论评》1995,41(4):340-348
堇青石作为一种天然矿物已被研究多年,它广泛分布于岩浆岩、变质岩和伟晶岩中,但确很少富集成矿。基于堇青石所具有的许多优良性能,使它在耐火材料、精细陶瓷、计算机集成电路的基片等领域中得到了广泛的应用。本文将从堇青石的矿物学角度出发,阐述人工合成堇青石的研究现状及发展前景。  相似文献   

2.
大容山--十万大山岩带中的紫苏辉石堇青石花岗岩套位于桂东南海西--印支褶皱带,富含堇青石、紫苏辉石、石榴石、矽线石、红柱石、刚玉等。矿物组合复杂,成因多样,可划分为岩浆结晶成因、变质残留成因和反应成因3种类型。根据各类岩石中矿物的特征分析,认为岩套中的花岗岩类岩石部分来源于深熔花岗岩奖的源岩不熔残余,另一部分来自围岩捕虏体变质后又被熔浆改造的不熔残余,是由区域变质岩经不同温压条件,不同深度熔作用形  相似文献   

3.
东南极拉斯曼丘陵泥质麻粒岩变质作用演化   总被引:5,自引:0,他引:5  
普里兹湾拉斯曼丘陵代表了东南极一条重要的早古生代的~530Ma泛非期(Pan-African)高级构造活动带。然而,该区早期的晚元古代的~1000Ma格林维尔期(Grenvellian)高级变质作用的演化历史至今仍有争论。该区呈透镜状产出的泥质麻粒岩峰期矿物组合(M1)为石榴石+堇青石+斜方辉石+钾长石+石英,峰期石榴石变斑晶发育堇青石或堇青石+斜方辉石反应边(M2)。利用Thermocalc程序在KFMASH模式体系对该泥质麻粒岩进行的定量模拟表明,其峰期矿物组合是由反应石榴石+黑云母+石英=堇青石+斜方辉石+钾长石+熔体形成的。利用Themocalc平均P-T计算方法获得峰期M1变质P-T条件为~0.9GPa和~900℃,而叠加的M2组合反映了一个减压冷却的过程,其变质P-T条件为~0.7GPa和800~850℃。结合已有的年代学数据,认为该区泥质麻粒岩的峰期M1矿物组合反映晚元古代(~1000Ma)格林维尔期挤压D1构造事件,而叠加的M2矿物组合与M3蠕虫状结构则形成于早古生代泛非期(~530Ma)D2~D3高级扭压剪切构造期间。该扭压事件导致了面状高低应变带的发育以及进步花岗岩和伟晶岩的侵入。  相似文献   

4.
东南极拉斯曼丘陵地区麻粒岩相岩石中出露一套罕见的含硅硼镁铝矿-柱晶石-电气石矿物组合的富硼岩系.由于高级变质作用已使原岩的性质难以确定,变质原岩及其形成环境的恢复变得十分困难,而硼同位素组成则可以作为判定硼来源的有效示踪剂和指相标志.报道了东南极拉斯曼丘陵硅硼镁铝矿-柱晶石-电气石富硼岩系的硼同位素组成资料,其δ11B值变化范围为-12.0‰~-34.6‰,硼同位素的低比值和其他地质证据表明,其原岩为非海相蒸发硼酸盐岩.  相似文献   

5.
长英质片麻岩中堇青石的一种可能 的形成机制   总被引:6,自引:0,他引:6  
本文通过对南极拉斯曼丘陵长英质片麻岩变质过程中堇青石与其它矿物之间结构关系的研究,识别出明显不同的两种组合Pl+Kfs+Qtz(Grt)和Crd+Opq+Spl±Qtz,认为区内高级变质作用向深熔作用转化过程中发生了长英质组分和镁铁质组分的分凝。分凝出的长英质熔体与堇青石的形成没有直接关系;镁铁质组分较富Mg、Fe,贫Si、Ca,当镁铁质组分达到一定的富集程度时即形成堇青石。时间上,堇青石形成于降压过程中发生的深熔作用的晚期。  相似文献   

6.
倪文  陈娜娜 《矿物岩石》1997,17(2):110-119
工业用的堇青石多为人工合成,一些堇青石是在最终材料制作之前预先合成的,一些是在材料的制作和使用过程中生成的。堇青石具有许多优良的性能,包括低的热膨胀性,优良的抗热震性,较高的机械强度,低的介电常数和高的电阻率。随着材料生成条件不同,堇青石的物理性质也有较大变化  相似文献   

7.
堇青石的矿物学特性及其应用   总被引:1,自引:0,他引:1  
堇青石作为一种天然矿物已被研究多年,它广泛分布于岩浆岩、变质岩和伟晶岩中,但确很少富集成矿。基于堇青石所具有的许多优良性能,使它在耐火材料、精细陶瓷、计算机集成电路的基片等领域中得到了广泛的应用。本文将从堇青石的矿物学角度出发,阐述人工合成堇青石的研究现状及发展前景。  相似文献   

8.
东南极拉斯曼丘陵出露的麻粒岩相泥质片麻岩和镁铁质麻粒岩经历了复杂的变形变质历史。代表前进的增厚事件的早期残留变质构造D1形成于1000Ma(Grenvilian)期间。对应于D1的变质峰期M1的变质组合以泥质片麻岩的石榴石和尖晶石变斑晶中的堇青石和夕线石包裹体以及镁铁质麻粒岩的石榴石变斑晶中的斜方辉石和斜长石包裹体为特征。在该区斯托尼斯半岛的紫苏黑云石英岩的粗粒紫苏辉石中发现了包裹的假蓝宝石+磁铁矿和假蓝宝石+尖晶石+夕线石+磁铁矿+石英组合,这种假蓝宝石又包裹更细粒的尖晶石包裹体。石榴石-斜方辉石温度计及石榴石-斜方辉石-斜长石-石英压力计的计算表明M1变质作用最大的P-T条件为0.95GPa和870℃。这些早期残留的矿物组合指示了其变质作用具有逆时针近等压冷却(IBC)的P-T演化特征,反映了它们的形成是一个埋深期间前进加热的进变质作用过程。本文得出该区M1(1000Ma)变质作用的逆时针(IBC)P-T轨迹可能与已存在的大陆壳下面的岩浆底侵作用及地壳内大量岩浆物质的侵入和结晶作用有关。此类型逆时针P-T轨迹不同于该区在晚期500Ma(Pan-African)期间顺时针演化的P-T轨迹  相似文献   

9.
东南极拉斯曼丘陵地区位于兰伯特裂谷东缘普里兹湾东岸,该地区主要出露一套麻粒岩相变质岩,前期对原岩时代、变质过程等进行了详细研究,但是对于变质杂岩的层序和变形过程研究相对薄弱。文章通过大比例尺地质填图,发现拉斯曼丘陵地区变质杂岩总体成层有序,在此基础上建立拉斯曼岩群,并将其划分成6个岩组,原岩形成时代为中元古代。拉斯曼岩群经历了格林维尔期和泛非期变质作用的叠加,变质程度均达到高角闪岩相-麻粒岩相。拉斯曼丘陵地区主体构造线方向为北东东—南西西方向,总体上构成往北东东方向翘起的复式向斜构造,几个岩组的分布也显示由东向西逐渐变新。东部米洛半岛一带明显叠加了北北西—南南东向的构造变形。研究表明,拉斯曼岩群经历了6次重要的构造变形,包括新元古代格林维尔期(D1)、新元古代—早古生代泛非期变质变形作用(D2,D3,D4,D5)以及中新生代伸展作用(D6)。目前岩石中保存的主变形面理是格林维尔期和泛非期两次构造热事件的复合型面理,主要是泛非事件形成,格林维尔期变形面理呈残留状。综合拉斯曼岩群变质年龄及早古生代进步花岗岩体形成时代,认为D2~D5变形时代为550~500 Ma左右。因此,拉斯曼丘陵地区变质变形特征显示,中元古代拉斯曼岩群经历了格林维尔期和泛非期两次重要的造山作用,以及冈瓦纳大陆的裂解。  相似文献   

10.
东南极拉斯曼丘陵镁铁质麻粒岩的变质作用演化   总被引:5,自引:4,他引:1  
拉斯曼丘陵(Larsemann Hills)位于东南极普里兹构造带的中部,研究该区麻粒岩的变质作用演化对于理解普里兹带的构造属性至关重要。通过对该区含石榴石镁铁质麻粒岩转石详细的岩相学观察表明,峰期前进变质阶段矿物组合(M1)由角闪石+斜方辉石+单斜辉石+斜长石+黑云母+钛铁矿±石英±磁铁矿组成,其峰期矿物组合(M2)为石榴石+斜方辉石+单斜辉石+角闪石+钛铁矿±磁铁矿±石英,而代表后期与降压有关的叠加变质组合(M3)为斜方辉石+斜长石+单斜辉石+黑云母+钛铁矿±磁铁矿。矿物化学分析,结果显示其中石榴子石和斜方辉石具有弱的成分环带特征。利用THERMOCALC软件在NCFMASHTO体系下对该麻粒岩进行了详细的热力学模拟,结合传统温压计和平均温压计算结果,得出不同阶段温压条件分别为650~750℃/5.5~6.5kb (M1),850~950℃/8~8.5kb (M2),800~900℃/5.5~7.5kb (M3)。其变质作用演化为典型的峰期后近等温减压的(ITD)顺时针P-T轨迹。通过区域上镁铁质麻粒岩的对比分析,我们认为该镁铁质麻粒岩可能来源拉斯曼丘陵基岩露头。结合已有的年代学资料,表明该镁铁质麻粒岩的峰期变质事件可能对应于晚元古代格林威尔期构造事件,而后期退变质作用与早古生代的泛非期构造事件有关,意味着泛非期普里兹带可能是陆内造山带。  相似文献   

11.
在西南极和横贯南极山脉地区,新生代裂谷和剥露作用非常普遍。但是,文献中很少记录东南极地区的新生代剥露作用。文中根据东南极普里兹湾拉斯曼丘陵地质样品的磷灰石裂变径迹年龄和热历史的模拟,认为在东南极海岸边缘存在新生代的隆升和伸展作用,其年龄为始于(49.8±12)Ma。该年龄略晚于西南极裂谷系的启动年龄(约60~50Ma)。由于差异隆升作用,在拉斯曼丘陵地区发育了更新的正断层作用--拉斯曼丘陵拆离断层的新活动,其年龄为约5.4Ma。东南极周缘新生代裂谷和伸展作用的普遍存在,是冈瓦纳裂解以来大陆分离和印度洋形成的结果。  相似文献   

12.
在西南极和横贯南极山脉地区,新生代裂谷和剥露作用非常普遍。但是,文献中很少记录东南极地区的新生代剥露作用。文中根据东南极普里兹湾拉斯曼丘陵地质样品的磷灰石裂变径迹年龄和热历史的模拟,认为在东南极海岸边缘存在新生代的隆升和伸展作用,其年龄为始于(49.8±12)Ma。该年龄略晚于西南极裂谷系的启动年龄(约60~50Ma)。由于差异隆升作用,在拉斯曼丘陵地区发育了更新的正断层作用——拉斯曼丘陵拆离断层的新活动,其年龄为约5.4Ma。东南极周缘新生代裂谷和伸展作用的普遍存在,是冈瓦纳裂解以来大陆分离和印度洋形成的结果。  相似文献   

13.
南极拉斯曼丘陵长英质片麻岩中夕线石的出溶现象   总被引:2,自引:0,他引:2  
南极拉斯曼丘陵长英质片麻岩中的粗粒夕线石可能有内部出溶现象,出溶形成的矿物有磁铁矿、钛铁矿-赤铁矿和石英出溶矿物条纹,并有少量的斜方辉石.电子探针成分分析表明,本区夕线石高温结晶时不仅有Fe3 ,可能还有Fe2 、Mg2 和Ti4 的替换,铁氧化物质量分数可高达2.9%;随着温度的不断降低,固溶体互溶度也不断减小,大部分微量组分从夕线石中析出形成出溶结构,而且低温变体中稳定的替换元素以Fd3 为主.铁组分的类质同像替换对物理化学计算和夕线石矿化环境均有所影响,对夕线石晶胞参数a的影响很小,而对b,尤其对c的影响较大,与前人的结论有所不同.  相似文献   

14.
Fresh water lakes are found in basement rock basins in the Larsemann Hills, East Antarctica, during the summer months. These lakes constitute a relatively simple natural laboratory to investigate the effects of recent and well-documented anthropogenic impact on a “pristine” environment. Larsemann Hills freshwaters have extremely low salinity (typically <1‰), and contain very low concentrations of trace elements of environmental significance such as Pb, U, and Zn. Typical Pb concentrations range from less than 5 ppt to 250 ppt. Although trace metal concentrations appear to be higher in lakes situated in the vicinity of stations, they are consistently lower (by several orders of magnitude, for some elements) than Standard International Drinking Water Guidelines. The chemistry of the lake waters is dominated by sea-spray input. Consequently, it is primarily a function of geographical factors, such as distance from the shore and exposure to winds. Shallow-level groundwater and surface water also contribute to the lake chemistry. No evidence was found for contamination from global air circulation. Although contamination resulting from activities at the research stations is generally near or below detection levels, very low levels of trace metal anthropogenic contamination were found in the vicinity of some research stations. Received: 13 November 1998 · Revised: 23 March 1999 Accepted: 12 April 1999  相似文献   

15.
ABSTRACT Thermobarometric studies on various granulite facies areas along the Prydz Bay coast, East Antarctica (73°-79°E, 68°-70°S), show that, at around 1100 Ma, during a late Proterozoic orogeny, the rocks of the Larsemann Hills suffered a lower pressure metamorphic peak than the surrounding areas. Along the Prydz Bay coast, the rocks affected by this event include parts of the Vestfold Hills block plus all of the Rauer Group, the Larsemann Hills and the Munro Kerr Mountains. The dykes in the south-west corner of the Vestfold Hills were recrystallized during this event with little deformation at temperatures not quite as high as in the areas further south-west (650°C, 6.5 kbar) (Collerson et al., 1983), the Rauer Group was metamorphosed at 800°C and 7.5 kbar (Harley, 1987a), the Larsemann Hills at 750°C and 4.5 kbar, and the Munro Kerr Mountains probably at around 850°C and 5 kbar. Retrograde equilibration in the different areas occurred during decompression to about 10 km depth in all areas, followed by isobaric cooling at this depth. This paper shows that the peak metamorphism in the Larsemann Hills occurred at a pressure which is too low to have been the consequence of thermal relaxation of overthickened crust with normal mantle heat flow. Although other areas in Prydz Bay were metamorphosed at sufficiently high pressures so that their decompression paths are not inconsistent with a continental collision model, the inferred pre-metamorphic peak histories and the requirement of consistency with the Larsemann Hills, make it unlikely that collision followed by erosion-driven decompression is an appropriate model. We suggest that the thermal regime of the crust in the Larsemann Hills region was controlled by a perturbation in the asthenosphere, with magma invasion of the crust. We suggest that the 500 Ma event, represented in Prydz Bay by granitic outcrops at Landing Bluff and by several K/Ar ages from the Larsemann Hills area, was responsible for the final excavation of the terrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号