首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Published galaxy power spectra from the two-degree field galaxy redshift survey (2dFGRS) and Sloan Digital Sky Survey (SDSS) are not in good agreement. We revisit this issue by analysing both the 2dFGRS and SDSS Data Release 5 (DR5) catalogues using essentially identical techniques. We confirm that the 2dFGRS exhibits relatively more large-scale power than the SDSS, or, equivalently, SDSS has more small-scale power. We demonstrate that this difference is due to the r -band selected SDSS catalogue being dominated by more strongly clustered red galaxies, which have a stronger scale-dependent bias. The power spectra of galaxies of the same rest-frame colours from the two surveys match well. If not accounted for, the difference between the SDSS and 2dFGRS power spectra causes a bias in the obtained constraints on cosmological parameters which is larger than the uncertainty with which they are determined. We also found that the correction developed by Cole et al. to model the distortion in the shape of the power spectrum due to non-linear evolution and scale-dependent bias is not able to reconcile the constraints obtained from the 2dFGRS and SDSS power spectra. Intriguingly, the model is able to describe the differences between the 2dFGRS and the much more strongly clustered Luminous Red Galaxy (LRG) sample, which exhibits greater non-linearities. This shows that more work is needed to understand the relation between the galaxy power spectrum and the linear perturbation theory prediction for the power spectrum of matter fluctuations. It is therefore important to accurately model these effects to get precise estimates of cosmological parameters from these power spectra and from future galaxy surveys like Pan-STARRS, or the Dark Energy Survey, which will use selection criteria similar to the one of SDSS.  相似文献   

2.
Some weak unidentified solar photospheric lines in the wavelength range: (3400–3465) Å may be due to PH lines of the (0, 0) band of the PH(A 3 i - X 3 -)system. These faint PH molecular lines have resulted an excitation temperature of the order of 4500 K. Using experimental lifetime data for PH in the A 3 i state, an absorption oscillator strength f 00 = 0.0075 is derived for the 3410 Å band of the PH (A 3 i - X 3 -)system. Accurate line positions, oscillator strength and transition probability for the 4.4 fundamental rotation-vibration band of the PH molecule are obtained. A comparison of positions of some lines of the 4.4 band with those obtained on new tracings of high resolution solar spectra shows many coincidences with weak solar lines.  相似文献   

3.
After being turned off in 1972 the OSO-5 satellite was reactivated during the summer of 1974 for one year. The University of Paris experiment designed to monitor the solar L flux operated almost perfectly during that period which occurred near a minimum in solar activity. This new set of data is presented here, showing that neither the total L flux nor the flux emitted at the center of the line correlate with the solar activity indices in the same manner as previously found at higher levels of activity.These new observations confirm that the solar L flux varies approximately by a factor of two from solar maximum to solar minimum.Furthermore, the lower boundary of the transition region seems to be strongly perturbated near solar minimum, since the flux variations observed at the center of the L line are drastically different from all those previously reported. This seems to be related to the presence of large coronal holes over the Sun.  相似文献   

4.
McKeown  M.  Keenan  F.P.  Ramsbottom  C.A.  Bell  K.L.  Ryans  R.S.I.  Reid  R.H.G. 《Solar physics》1999,186(1-2):231-242
Recent calculations of electron and proton impact excitation rates in Nevii are used to calculate theoretical emission line ratios involving both n=0 (2–2) and n=1 (2–3) transitions in the 97–895 Å wavelength range. A comparison of these with existing solar observations, obtained by instruments on rocket flights and on the Skylab mission, reveals generally good agreement between theory and observation. This provides experimental support for the accuracy of the atomic data adopted in the line ratio calculations, and implies that the latter may be applied with confidence to the analysis of solar and stellar spectra from current and future satellite missions.  相似文献   

5.
The T Tauri variable V1331 Cyg is characterized by an intensive emission spectrum, by signatures of a high rate of mass loss, and also by presence of a circular reflection nebula. According to these characteristics, the star can be considered as a possible pre-FUor star. Up to the present the photospheric spectrum of the star has not been recorded. In this work we analyze the high-resolution spectra of V1331 Cyg that were obtained by G.H. Herbig with the HIRES spectrograph at the Keck-1 telescope in 2004 and 2007. For the first time the numerous photospheric lines of the star have been detected and the spectral class has been estimated, viz., G7-K0 IV. It is revealed that the projection of the rotation velocity is lower than the width of instrumental profile (vsini < 6 km/s); this means that the angle between the stellar axis of rotation and the line of sight is small. The radial velocity of the star derived from the photospheric lines is RV = ?15.0 ± 0.3 km/s. The difference in radial velocities for 2004 and 2007 is lower than the measurement error. The photospheric spectrum is veiled considerably, but the amount of veiling is not the same in different lines. This depends on the line strength in the template spectrum of the G7 IV star: in the weakest lines (EW = 5–10 mÅ in the template spectrum) VF ≈ 1 and it increases up to 4–5 in stronger lines. The Hα and Hβ lines demonstrate classical P Cyg profiles, which testifies to an intensive wind with a maximal velocity of about 400 km/s. In addition, the emission lines of Fe II, Mg I and K I and of several other elements are accompanied by a narrow blue-shifted absorption at ?150...?250 km/s. The emission spectrum of V1331 Cyg is rich in the narrow (FWHM = 30–50 km/s) lines of neutral and ionized metals showing the excitation temperature T exc = 3800 ± 300 K. The stellar mass M* ≈ 2.8M and radius R* ≈ 5R are estimated.  相似文献   

6.
P. Hoyng 《Solar physics》1996,169(2):253-264
Dicke (1978) has argued that the phase of the solar cycle appears to be coupled to an internal clock: shorter cycles are usually followed by longer ones, as if the Sun remembers the correct phase. The data set is really too short to demonstrate the presence of a phase memory, but phase and amplitude of the cycle are strongly correlated for 300 yr or more. It is shown that this memory effect can be explained by mean field theory in terms of fluctuations in , which induce coherent changes in the frequency and amplitude of a dynamo wave. It is concluded that there is neither a strong observational indication nor a theoretical need for an extra timing device, in addition to the one provided by dynamo wave physics.Dedicated to Cornelis de Jager  相似文献   

7.
We have calculated the spectrum of Cyg X-1 under the assumption that the radiation orginates in a disk around a 11M black-hole. Supersonic turbulence prevails in the outer parts of the disk and electron-electron bremsstrahlung appears to be resonsible for the maintenance of the temperature at a level less than 1010 K near the inner edge of the disk. The theoretical spectrum gives the best fit with the observations if the Reynolds number is about 1200.  相似文献   

8.
The previously found solar distortion rotating rigidly and wave-like on the surface with a 12 day period is interpreted as the shape of the gravitational potential induced by the solar core distorted by an internal magnetic field and rotating rigidly with this period. The distortion does not have a symmetry axis and the necessary magnetic field is not compatible with the axial symmetry required of a quasi-static field locked in the rotating core. It is concluded that if the solar distortion is due to such a process the core is oscillating with a very long period, a toroidal oscillation with a period of the order of years.This research was supported in part by the National Science Foundation.  相似文献   

9.
10.
Keenan  F.P.  Mathioudakis  M.  Pinfield  D.J.  Brown  W.A.  Bruner  M.E. 《Solar physics》1999,185(2):289-296
R-matrix calculations of electron impact excitation rates in Nixviii are used to derive theoretical electron-temperature-sensitive emission line ratios involving 3s–4p,3p–4d,3p –4s, and 3d–4f transitions in the 41–53 Å wavelength range. A comparison of these with solar flare observations from a rocket-borne X-ray spectrograph (XSST) reveals generally excellent agreement between theory and experiment (within the experimental and theoretical uncertainties), which provides support for the atomic data adopted in the analysis. However the 3s 2S–4p 2P1/2 line of Nixviii at 41.22 Å appears to be blended with the Fexix 13.74 Å feature observed by XSST in third order. In addition, the measured Nixviii intensity ratio I(3p 2P3/2– 4s 2S)/I(3p 2P1/2–4s 2S)=I(51.02 Å)/I(50.26 Å)=0.56, a factor of 3.8 smaller than the theoretical (temperature and density-insensitive) value of 2.1. The reason for this discrepancy is currently unexplained, but is unlikely to be due to blending of the 50.26 Å line, as the intensity of this feature is consistent with that expected from the other Nixviii lines in the XSST spectrum. Future observations of the Nixviii lines by the Advanced X-ray Astrophysics Facility (AXAF) should allow this problem to be resolved, and may also permit the use of the lines as electron-temperature diagnostics.  相似文献   

11.
Profiles of the O i 7773 triplet obtained at a spatial resolution 0.5 are analyzed using spectral line inversion techniques. Inferences are made about departures from LTE, convective velocity fields, and solar temperature fluctuations.  相似文献   

12.
The reduction of observations of the O i 7773 triplet obtained at high spatial resolution (0.5) at two disk positions is described. Two sets of triplet profile data are presented at each disk position. One set represents data taken from 0.5 regions centered on the brightest granules, while the other set represents data taken from 0.5 regions centered on the cooler infalling intergranular material.  相似文献   

13.
Various methods (or recipes) have been proposed to predict future solar activity levels – with mixed success. Among these, some precursor methods based upon quantities determined around or a few years before solar minimum have provided rather high correlations with the strength of the following cycles. Recently, data assimilation with an advection-dominated (flux-transport) dynamo model has been proposed as a predictive tool, yielding remarkably high correlation coefficients. After discussing the potential implications of these results and the criticism that has been raised, we study the possible physical origin(s) of the predictive skill provided by precursor and other methods. It is found that the combination of the overlap of solar cycles and their amplitude-dependent rise time (Waldmeier's rule) introduces correlations in the sunspot number (or area) record, which account for the predictive skill of many precursor methods. This explanation requires no direct physical relation between the precursor quantity and the dynamo mechanism (in the sense of the Babcock-Leighton scheme or otherwise). (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Results are presented of observations of the facula area near the solar disc center. Observations were performed at the German Vacuum Tower Telescope of the Observatorio del Teide (Tenerife) with the simultaneous use of two instruments, i.e., TESOS in the Ba IIλ 455.4 nm line to measure intensity variations in the photosphere and, at the same time, TIP in the Fe I (λλ 1564.3–1565.8 nm) line to measure Stokes parameters. Using the Fourier filtering technique, we separated the convective and wave components of the intensity field. Stokes parameters Fe I λ 1564.8 nm and λ 1565.2 nm were inverted by the SIR inversion code to estimate the magnetic field strength. We found that the contrast of intergranular lines of the facula in the continuum is almost independent of the magnetic field strengh (in the range from 30 to 160 mT). This result casts doubt on the assertion that solar faculae are a cluster of magnetic flux tubes. Most likely, due to the decrease of transparency of the matter in a strong (approximately 1 kilogauss) magnetic field, we can see the hot walls of granules.  相似文献   

15.
The identification, the equivalent widths, the profiles and the radial velocities as deduced from 18 spectra of Aurigae are presented and discussed.The observations have been made at the Astronomical Observatory of Haute Provence (CNRS). This work has been partially supported by a contract of Consiglio Nazionale delle Ricerche (CNR).  相似文献   

16.
We consider dynamically consistent mean-field dynamos in a spherical shell of incompressible fluid. The generation of magnetic field and differential rotation is parameterized by the - and -effects, respectively. Extending previous investigations, we include now the cases of moderate and rapid rotation in the sense that the inverse Rossby number can approach or exceed unity: This can lead to disk-shaped -contours, which are in better accordance with recent results of helioseismology than cylindrical -contours. On the other hand, in order to obtain -dynamo cycles the Taylor number has to be so large, that eventually cylindrical -contours become unavoidable (cf. Taylor-Proudman theorem). We discuss the different possibilities in a state diagram, where the inverse Rossby number and the relative correlation length are taken as the elementary parameters for mean-field dynamos.  相似文献   

17.
The solar radiation between 3300 and 12500 Å   总被引:4,自引:0,他引:4  
Results are presented, which follow from the merging of: (a) our previously published absolute integrals of the disk-center intensity for 20 Å wide spectral bands; (b) the ratios of mean to central intensity derived from recent observations of the center-to-limb variation of those bands ( <6600 Å); (c) the ratios of mean to central intensity derived from the observations of the center-to-limb variation at continuum-wavelengths according to Pierce and Slaughter ( >6600 Å); (d) the high resolution Fourier transform spectra obtained by J. Brault at Kitt Peak for the disk-center and the irradiance; (e) some further auxiliary data, which served mainly to eliminate the local perturbations caused by lines of telluric molecular bands.The main result is the presentation of high precision radiation data for both the integrated disk and the disk-center, concerning the line-averaged radiation and the continuum (in UV: highest window-intensities) as well.The internal accuracy (the scatter) should not be worse than that of the FTS spectra, which is less than 0.2% (mean error); local systematic deviations exceeding 0.5% are not to be expected. The absence of a significant systematic error - neutral or wavelength-dependent - has been proven already elsewhere.  相似文献   

18.
On July 5, 1980 the Hard X-Ray Imaging Spectrometer on board the Solar Maximum Mission observed a complex flare event starting at 22 : 32 UT from AR 2559 (Hale 16955), then at N 28 W 29, which developed finally into a 2-ribbon flare. In this paper we compare the X-ray images with Hα photographs taken at the Big Bear Solar Observatory and identify the site of the most energetic flare phenomena. During the early phases of the event the hard X-rays (>16 keV) came from a compact source located near one of the two bright Hα kernels; we believe the latter are at the footpoints of a compact magnetic loop. The kernel identified with the X-ray source is immediately adjacent to one of the principal sunspots and in fact appears to ‘rotate’ around the sunspot over 90° in the early phase of the flare. Two intense X-ray bursts occur at the site of the rotating kernel, and following each burst the loop fills with hot, X-ray emitting plasma. If the first burst is interpreted as bremsstrahlung from a beam of electrons impinging on a collisionally dominated medium, the energy in such electrons, >16 keV, is ~ 5 × 1030 erg. The altitude of the looptop is 7–10 × 103 km. The temperature structure of the flare is extremely non-homogeneous, and the highest temperatures are found in the top of the loop. A few minutes after the hard X-ray bursts the configuration of the region changes; some of the flare energy is transferred along a system of larger loops that now become the defining structure for a 2-ribbon flare, which is how the flare develops as seen in Hα. In the late, cooling phase of the flare 15 min after maximum, we find a significant component of the plasma at temperatures between 25 and 30 × 106 K.  相似文献   

19.
The total radiative output in the EUV continuum (1400–1960 Å) from the 5 September 1973 flare has been obtained from the EUV spectra of the flare observed with the NRL slit spectrograph (SO82B) on Skylab. The radiative energy in the EUV continuum is of the order of 1029 ergs, which is more than a factor of 2 greater than those radiated in soft X-rays (8–20 Å) and in H for the flare. Thus, the EUV continuum emission is an important radiative energy loss, and should be included in the consideration of the energy balance of the flare.Ball Corporation.Now at the Institute of Theoretical Astrophysics, University of Oslo, Oslo, Norway.  相似文献   

20.
We outline a very intriguing analogy between stable macrostructures seen on the Sun and microsolitons of a quantum nature exhibited by ferromagnetic and superconducting substances. The solar convective zone is shown to be not only highly conductive but also strongly diamagnetic, bearing thus a strong ressemblance to the fundamental properties of superconductors; the sunspots, whose site the convective zone is, are then simply viewed as macro-analogues of the quantum Abrikosov vortices in the type II superconductor(s). Another stable structures of the solar atmosphere, quiescent prominences, can be regarded as counterparts of the Bloch walls in ferromagnetic substances. Guided by symmetry principles we predict the existence of still other type of macrosolitons — which we will call unipoles — located well inside the Sun whose quantum counterparts are the magnetic monopoles of 't Hooft and Polyakov. It is shown in an explicit way that it is the concept of the Higgs field (or order parameter) which, when applied on solar phenomena, seems to lead to a deeper insight into the physics of latters than it is possible to gain with the help of classical MHD theories only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号