首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We evaluate the impact of gas shock heating by a central active galactic nuclei (AGN) in M87 on the radial distribution of heavy elements. The propagation of a shock creates an inverted entropy profile, and the subsequent rearrangement of the gaseous atmosphere transports metal-rich gas from the central region to larger radii. We show that for the parameters of the relatively weak shock, recently found in M87, the abundance profile is not strongly affected by the redistribution of the shock heated gas (except for the very central region). At the same time, the energetics of the source is fully sufficient to broaden the metal distribution to match the observations, strongly suggesting that mechanisms other than direct shock heating must operate in cluster cores. The absence of a very strong abundance peak at the very centre of M87 suggests that the central AGN produces frequent (every few 10 Myr) and relatively weak outbursts, rather than rarer (every few 100 Myr) and an order of magnitude more powerful events.  相似文献   

2.
Motivated by recent results on the location of the radio emission in pulsar magnetospheres, we have developed a model which can account for the large diversity found in the average profile shapes of pulsars. At the centre of our model lies the idea that radio emission at a particular frequency arises from a wide range of altitudes above the surface of the star, and that it is confined to a region close to the last open field lines. We assert that the radial height range over which emission occurs is responsible for the complex average pulse shapes rather than the transverse (longitudinal) range proposed in most current models. By implementing an abrupt change in the height range to discriminate between young, short-period, highly energetic pulsars and their older counterparts, we obtain the observed transition between the simple and complex average pulse profiles observed in each group respectively. Monte Carlo simulations are used to demonstrate the match of our model to real observations.  相似文献   

3.
Using a parametrized function for the mass loss at the base of the post-shock region, we have constructed a formulation for magnetically confined accretion flows which avoids singularities, such as the infinity in density, at the base associated with all previous formulations. With the further inclusion of a term allowing for the heat input into the base from the accreting white dwarf, we are also able to obtain the hydrodynamic variables to match the conditions in the stellar atmosphere. (We do not, however, carry out a mutually consistent analysis for the match.) Changes to the emitted X-ray spectra are negligible unless the thickness of mass leakage region at the base approaches or exceeds one per cent of the height of the post-shock region. In this case the predicted spectra from higher-mass white dwarfs will be harder, and fits to X-ray data will predict lower white dwarf masses than previous formulations.  相似文献   

4.
本文简要回顾了耀斑中正负电子湮灭线的形成过程,着重研究了一个强γ射线耀斑0 .511 MeV 线随时间的演化。结果表明,为解释观测数据,加速质子谱必须随时间变化, 从而间接地提出了一种基于0 .511 MeV 线获取加速质子谱演化信息的新途径。  相似文献   

5.
We have performed high-resolution spectral observations at mid-infrared wavelengths of CH4 (8.14 micrometers), C2H6 (12.16 micrometers), and C2H2 (13.45 micrometers) on Jupiter. These emission features probe the stratosphere of the planet and provide information on the carbon-based photochemical processes taking place in that region of the atmosphere. The observations were performed using our cryogenic echelle spectrometer CELESTE, in conjunction with the McMath-Pierce 1.5-m solar telescope between November 1994 and February 1995. We used the methane observations to derive the temperature profile of the jovian atmosphere in the 1-10 mbar region of the stratosphere. This profile was then used in conjunction with height-dependent mixing ratios of each hydrocarbon to determine global abundances for ethane and acetylene. The resulting mixing ratios are 3.9(+1.9)(-1.3) x 10(-6) for C2H6 (5 mbar pressure level), and 2.3 +/- 0.5 x 10(-8) for C2H2 (8 mbar pressure level), where the quoted uncertainties are derived from model variations in the temperature profile which match the methane observation uncertainties.  相似文献   

6.
N -body simulations predict that cold dark matter (CDM) halo-assembly occurs in two phases: (i) a fast-accretion phase with a rapidly deepening potential well; and (ii) a slow-accretion phase characterized by a gentle addition of mass to the outer halo with little change in the inner potential well. We demonstrate, using one-dimensional simulations, that this two-phase accretion leads to CDM haloes of the Navarro, Frenk & White (NFW) form and provides physical insight into the properties of the mass-accretion history that influence the final profile. Assuming that the velocities of CDM particles are effectively isotropized by fluctuations in the gravitational potential during the fast-accretion phase, we show that gravitational collapse in this phase leads to an inner profile  ρ( r ) ∝ r −1  . Slow accretion on to an established potential well leads to an outer profile with  ρ( r ) ∝ r −3  . The concentration of a halo is determined by the fraction of mass that is accreted during the fast-accretion phase. Using an ensemble of realistic mass-accretion histories, we show that the model predictions of the dependence of halo concentration on halo formation time and, hence, the dependence of halo concentration on halo mass, and the distribution of halo concentrations all match those found in cosmological N -body simulations. Using a simple analytic model that captures much of the important physics, we show that the inner   r −1  profile of CDM haloes is a natural result of hierarchical mass assembly with an initial phase of rapid accretion.  相似文献   

7.
One of the problems in reconstructing the real ionosphere from an ionogram is the occurrence of a ‘valley,’ where electron density decreases with altitude and make a non-monotonic profile. For the case of the Earth ionosphere, the ordinary and extraordinary ray data, accompanied with an empirical model, based on the observations, are necessary to obtain a mathematical solution for a ‘valley,’ such as the region between the E and F layers. MARSIS/MEX is a topside sounder designed to observe the ionosphere of Mars. Some ‘valley’ structures were found in the ionograms measured by MARSIS. The echoes of the extraordinary ray are not available owing to the absence of the strong magnetic field on Mars. Therefore, it is difficult to have a mathematical solution for the valleys in the Martian ionosphere. In this paper, a least square method with a simple model is presented to solve the ‘valley’ problem in the topside ionosphere of Mars. The electron density profiles with ‘valleys’ observed by the Radio Occultation experiment onboard MGS are used to rebuild the virtual depths at MARSIS frequencies. The reconstructed electron density profile by the least square method with a simple model from the rebuilt virtual depth curve is compared with the original electron density profile. It is proved that this method can reproduce small valleys in the profile of the Martian ionosphere well.  相似文献   

8.
9.
In order to investigate redshift space distortion effect on voids, VIDE (Void Identification and Examination toolkit) algorithm is used to find cosmic voids in real space and redshift space based on a mock galaxy catalog produced by the semi-analytical galaxy formation model. The voids can be divided into “collapsed” type and “expanded” type, according to the galaxy velocity on the void wall. The results show that the fraction of the “collapsed” voids decrease as the voids’ size grows, while “expanded” voids are contrary. The effective radius of two type voids differs by 20% in real space, and the mean radial density profile of “collapsed” voids is significant higher than that of “expanded” voids. Using the member galaxies to match the voids in two spaces, the comparison of the voids’ number distributions of two spaces shows that the difference of voids’ number between them is related to the voids’ size, and half of the voids in redshift space can not matched to the voids in real space. For the matched voids, the redshift space distortion has stronger effect on the density profile of the “collapsed” voids. For the unmatched ones, their density profile is clearly different, and the infall movement of galaxies on their shell is more obvious in real space.  相似文献   

10.
为探索红移畸变对空洞性质的影响, 利用了一组星系形成半解析模拟星表数据, 采用VIDE (Void Identification and Examination toolkit)算法寻找真实空间和红移空间的宇宙学空洞, 根据空洞外围墙结构处的星系运动速度将空洞分为``塌缩型''和``膨胀型''. 结果表明: ``塌缩型''空洞所占比例会随着空洞的尺度变大而减少, ``膨胀型''空洞则与之相反, 两类空洞的平均有效半径在实空间中相差20%, ``塌缩型''空洞的平均径向密度轮廓显著高于``膨胀型''空洞. 利用成员星系将两种空间中的空洞进行匹配, 通过比较实空间和红移空间中空洞的数目分布, 发现实空间和红移空间中空洞的数目差异与空洞大小有关, 并且红移空间中有一半左右的空洞无法对应到实空间. 对匹配空洞, 红移畸变对``塌缩型''空洞的密度影响更大; 对未匹配空洞, 其密度轮廓与匹配空洞存在明显区别, 并且实空间中未匹配空洞其壳层星系向空洞内部运动的趋势更加明显.  相似文献   

11.
As it is already known, the spectra of many Oe and Be stars present Discrete Absorption Components (DACs) which, because of their profiles' width as well as the values of the expansion / contraction velocities, they create a complicated profile of the main spectral lines. This fact is interpreted by the existence of two or more independent layers of matter, in the region where the main spectral lines are formed. Such a structure is responsible for the formation of a series of satellite components (DACs) for each main spectral line. In this paper we present a first approximation to a mathematical model reproducing the complex profile of the spectral lines of Oe and Be stars that present DACs. This model presupposes that the regions, where these spectral lines are formed, are not continuous but consist of a number of independent absorbing density layers of matter, followed by an emission region and an external general absorption region. When we fit the spectral lines that present DACs, with this model, we can calculate the values of the apparent rotation and expansion / contraction velocities of the regions where the DACs are formed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
A brief discussion of the infrared observations from 4 to 20 micrometers of seven comets is presented. The observed infrared emission from comets depends primarily on their heliocentric distance. A model based on grain populations composed of a mixture of silicate and amorphous carbon particles in the mass ratio of about 40 to 1, with a power-law size distribution similar to that inferred for comet Halley, is applied to the observations. The model provides a good match to the observed heliocentric variation of both the 10 micrometers feature and the overall thermal emission from comets West and Halley. Matches to the observations of comet IRAS-Araki-Alcock and the antitail of comet Kohoutek require slightly larger grains. While the model does not match the exact profile and position of the 3.4 micrometers feature discovered in comet Halley, it does produce a qualitative fit to the observed variation of the feature's strength as a function of heliocentric distance. The calculations predict that the continuum under the 3.4 micrometers feature is due primarily to thermal emission from the comet dust when the comet is close to the Sun and to scattered solar radiation at large heliocentric distances, as is observed. A brief discussion of the determination of cometary grain temperatures from the observed infrared emission is presented. It is found that the observed shape of the emission curve from about 4 to 8 micrometers provides the best spectral region for estimating the cometary grain temperature distribution.  相似文献   

13.
Over the past thirty years, two bodies of literature have developed in parallel presenting mutually exclusive views of the Sun’s upper transition region. One model holds that the Sun’s upper-transition-region plasmas are confined primarily in hydrostatic funnels with a substantial backheating component. The other model holds that discrete structures, which are effectively isolated from the corona, predominate in the Sun’s upper transition region. Purveyors of the latter position have recently begun to present near-resolved observations of discrete structures. The funnel scenario, in contrast, has only been addressed by modeling unresolved upper transition region emission. To address this paradox we have constructed hydrostatic funnel models and tested them against a wider set of solar observations than previously performed. We reproduce the results of the previous analyses, yet find that the hydrostatic funnels are unable to self-consistently match the wider set of observations against which we test the models. We show that it is not possible for a class of funnels having peak temperatures in the transition region or in the corona to match the observations. We conclude that it is implausible that a class of hydrostatic funnels constitutes the dominant emitting component of the Sun’s upper-transition-region plasmas as has been suggested.  相似文献   

14.
Brynildsen  N.  Brekke  P.  Fredvik  T.  Haugan  S. V. H.  Kjeldseth-Moe  O.  Maltby  P.  Harrison  R. A.  Wilhelm  K. 《Solar physics》1998,181(1):23-50
We present high spatial and spectral resolution observations of one active and one quiet-Sun region, obtained with CDS and SUMER on SOHO. The connections between the line profile parameters are studied and a systematic wavelength shift towards the red with increasing peak line intensity (line broadening) is detected. The large scatter in the data calls for another approach. We apply conditional probability analysis to a series of EUV emission lines and find significant correlations between line profile parameters. For a given interval in wavelength shift we find that: (1) line profiles with large intensities (line widths) and red shifts above the average constitute an increasing fraction of the profiles as the relative wavelength shift increases, (2) line profiles with large intensities (line widths) and blue shifts compared to the average, on the other hand, constitute a decreasing fraction of the profiles as the relative wavelength shift increases. These results extend the findings of an earlier quiet-Sun study from one to several emission lines and expand the validity to include the active region. Interestingly, the active region observations show correlations between peak line intensity and wavelength shift in the coronal lines.The tendency for red-shifted profiles to be more intense than blue-shifted profiles will shift line profiles derived by integrating along the slit towards the red. From the present observations we are not able to determine the fraction of the net red shift that emerges from this correlation. We suggest that the same mechanism is responsible both for the correlation between the line profile parameters and for the differential red shift between the transition region and chromospheric emission lines.  相似文献   

15.
Simulation results for the time structure of the extensive air shower disc are presented and compared with data from the GREX/COVER_PLASTEX experiment. The distribution of the arrival times at various distances from the shower core and the contributions from the secondary particles to the shape of the distribution are described. The main parameters of the distribution, the mean time of arrival τ and the standard deviation σ, reflect the shower disc profile and thickness. The dependence of the shower profile and thickness on the energy and mass of the primary particle initiating the shower as well as on its inclination angle is discussed. The influence of the experimental conditions on the disc profile and thickness measured by the GREX/COVER_PLASTEX experiment is analysed and a parametrization of the average profile and thickness is given.  相似文献   

16.
To determine the apparent diameter of the Sun, it is first necessary to measure the shape of the intensity profile of the solar limb with an imaging optical system (hereafter denoted as a solar-limb profile). The inflection point of the limb profile is usually used as a reference for calculating the diameter. Because this point may be difficult to determine in the presence of noise, it is necessary to define an appropriate filtering process that eliminates noise while preserving the position of the inflection point. In this paper we study two filtering techniques, one based on the compact wavelet transform and the other on the finite Fourier transform definition, that meet these requirements. The application of these two techniques to data gathered by the Solar Disk Sextant experiment shows that the solar radius increased from 1992 to 1996 by about 197 mas. However, a previous analysis of the same data and our present analysis provide a difference in the measured radii of about 92 mas. We show that this difference is entirely traced to the filtering process.  相似文献   

17.
Popular models for describing the luminosity-density profiles of dynamically hot stellar systems (e.g. Jaffe, Hernquist, Dehnen) were constructed with the desire to match the deprojected form of an   R 1/4  light profile. Real galaxies, however, are now known to have a range of different light-profile shapes that scale with mass. Consequently, although highly useful, the above models have implicit limitations, and this is illustrated here through their application to a number of real galaxy density profiles. On the other hand, the analytical density profile given by Prugniel & Simien closely matches the deprojected form of Sérsic   R 1/ n   light profiles – including deprojected exponential light profiles. It is thus applicable for describing bulges in spiral galaxies, dwarf elliptical galaxies, and both ordinary and giant elliptical galaxies. Moreover, the observed Sérsic quantities define the parameters of the density model. Here we provide simple equations, in terms of elementary and special functions, for the gravitational potential and force associated with this density profile. Furthermore, to match galaxies with partially depleted cores, and better explore the supermassive black hole/galaxy connection, we have added a power-law core to this density profile and derived similar expressions for the potential and force of this hybrid profile. Expressions for the mass and velocity dispersion, assuming isotropy, are also given. These spherical models may also prove appropriate for describing the dark matter distribution in haloes formed from ΛCDM cosmological simulations.  相似文献   

18.
A prominent feature of Titan's atmosphere is a thick haze region that acts as the end product of hydrocarbon and nitrile chemistry. Using a one-dimensional photochemical model, an investigation into the chemical mechanisms responsible for the formation of this haze region is conducted. The model derives profiles for Titan's atmospheric constituents that are consistent with observations. Included is an updated benzene profile that matches more closely with—recent ISO observations (Icarus 161 (2003) 383), replacing the profile given in the benzene study of Wilson et al. (J. Geophys. Res. 108 (2003) 5014). Using these profiles, pathways from polyynes, aromatics, and nitriles are considered, as well as possible copolymerization among the pathways. The model demonstrates that the growth of polycyclic aromatic hydrocarbons throughout the lower stratosphere plays an important role in furnishing the main haze layer, with nitriles playing a secondary role. The peak chemical production of haze layer ranges from 140 to 300 km peaking at an altitude of 220 km, with a production rate of 3.2×10−14 gcm−2 s−1. Possible mechanisms for polymerization and copolymerization and suggestions for further kinetic study are discussed, along with the implications for the distribution of haze in Titan's atmosphere.  相似文献   

19.
Recent X-ray observations have shown evidence for exceptionally broad and skewed iron Kα emission lines from several accreting black hole systems. The lines are assumed to be due to fluorescence of the accretion disc illuminated by a surrounding corona and require a steep emissivity profile increasing into the innermost radius. This appears to question both standard accretion disc theory and the zero-torque assumption for the inner boundary condition, both of which predict a much less extreme profile. Instead it argues that a torque may be present due to magnetic coupling with matter in the plunging region or even to the spinning black hole itself. Discussion so far has centred on the torque acting on the disc. However, the crucial determinant of the iron line profile is the radial variation of the power radiated in the corona. Here we study the effects of different inner boundary conditions on the coronal emissivity and on the profiles of the observable Fe Kα lines. We argue that in the extreme case where a prominent highly redshifted component of the iron line is detected, requiring a steep emissivity profile in the innermost part and a flatter one outside, energy from the gas plunging into the black hole is being fed directly to the corona.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号