首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
We report the astronomical identification of the cyanomethyl radical, CH2CN, the heaviest nonlinear molecular radical to be identified in interstellar clouds. The complex fine and hyperfine structures of the lowest rotational transitions at about 20.12 and 40.24 GHz are resolved in TMC-1, where the abundance appears to be about 5 x 10(-9) relative to that of H2. This is significantly greater than the observed abundance of CH3CN (methyl cyanide) in TMC-1. In Sgr B2 the hyperfine structure is blended in the higher frequency transitions at 40, 80, and 100 GHz, although the spin-rotation doubling is clearly evident. Preliminary searches in other sources indicate that the distribution of CH2CN is similar to that for such carbon chain species as HC3N or C4H.  相似文献   

2.
The lowest rotational transitions of CH in the ground electronic state (X2Pi), J=3&solm0;2, N=1<--J=1&solm0;2, N=1, have been observed in the laboratory in the 532.8 and 536.8 GHz regions. All six possible hyperfine components are identified, and the precise transition frequencies are determined.  相似文献   

3.
A new interstellar molecule, methylcyanoacetylene (CH3C3N), has been detected in the molecular cloud TMC-1. The J = 8 --> 7, J = 7 --> 6, J = 6 --> 5, and J = 5 --> 4 transitions have been observed. For the first three of these, both the K = 0 and K = 1 components are present, while for J = 5 --> 4, only the K = 0 line has been detected. The observed frequencies were calculated by assuming a value of radial velocity VLSR = 5.8 km s-1 for TMC-1, typical of other molecules in the cloud. All observed frequencies are within 10 kHz of the calculated frequencies, which are based on the 1982 laboratory constants of Moises et al., so the identification is secure. The lines are broadened by hyperfine splitting, and the J = 5 --> 4, K = 0 transition shows incipient resolution into three hyperfine components. The rotational temperature determined for these observations is quite low, with 2.7 K < or = Trot < or = 4 K. the total column density is approximately 5 x 10(12) cm-2.  相似文献   

4.
SiS has been conclusively detected toward Orion-KL via its J = 6-5 and J = 5-4 rotational transitions at 91 and 109 GHz. Line profiles indicate that the species is present at an LSR velocity of 7.5 km s-1 with a half-width at zero power of 36 km s-1. Such characteristics associate SiS with the moderate velocity outflow (V approximately 18 km s-1) centered on IRc2 and observed in thermal SiO, the NH3 "plateau," and OH, H2O, and SiO masers. The column density estimated for SiS in this region is Ntot = 4 x 10(15) cm-2, corresponding to a fractional abundance of f approximately 4 x 10(-9). Such an abundance implies an SiO/SiS ratio of approximately 60 in the outflow material, remarkably close to the cosmic O/S ratio of approximately 40 and contrasting with the SiO/SiS value of > approximately 10(3) predicted by ion-molecule models. This difference is probably a result of the high temperatures and densities present in the outflow, which favor thermal equilibrium abundances similar to those observed in the circumstellar shells of late-type stars rather than "ion-molecule"-type concentrations. In addition to SiS, some twenty new unidentified lines near 91 and 109 GHz were detected toward KL, as well as transitions arising from HC5N, HC13CCN, HCC13CN, O13CS, and, possibly, CH3CH2OH, CH3CHO, and CH3OD.  相似文献   

5.
We have observed emission from HCN, H13CN, HC15N, HN13C, H15NC, HC3N, CH3CN, and possibly CH3NC, and determined an upper limit for NH2CN, toward the cold, dark cloud TMC-1. The abundance ratio [HNC]/[HCN] = 1.55 +/- 0.16 is at least a factor approximately 4 and approximately 100 greater than that observed toward the giant molecular clouds DR 21(OH) and Orion KL, respectively. In contrast, for the corresponding methylated isomers we obtain [CH3NC]/CH3CN] < or approximately 0.1. We also find [NH2CN]/[CH3CN] < or approximately 0.1 and [HC3N]/[CH3CN] = 30 +/- 10. We find no evidence for anomalous hyperfine ratios for H13CN, indicating that the ratios for HCN (cf. recent work of Walmsley et al.) are the result of self-absorption by cold foreground gas.  相似文献   

6.
Ethylene oxide (\(c\)-C2H4O) and its isomer acetaldehyde (CH3CHO) are important organic molecules because of their potential role in the formation of amino acids. The \(c\)-C2H4O molecule is a \(b\)-type asymmetric top molecule and owing to half-spin of each of the four hydrogen atoms, it has two distinct ortho (nuclear spin one) and para (nuclear spin zero and two) species. It has been detected in the Sgr B2N. Using the rotational and centrifugal distortion constants along with the electric dipole moment, we have calculated energies of 100 rotational levels of each of the ortho and para species of \(c\)-C2H4O molecule and the Einstein \(A\)-coefficients for radiative transitions between the levels. The values of Einstein \(A\)-coefficients along with the scaled values for the collisional rate coefficients are used for solving a set of statistical equilibrium equations coupled with the equations of radiative transfer.Brightness-temperatures of five rotational transitions of each of the ortho and para species of \(c\)-C2H4O molecule are investigated. Out of these ten transitions, three transitions are found to show the anomalous absorption and rest seven are found to show the emission feature. We have also investigated seven transitions observed unblended in the Sgr B2(N). We have found that the transitions \(3_{3 0} - 3_{2 1}\) (23.134 GHz), \(2_{2 0} - 2_{1 1}\) (15.603 GHz), \(3_{3 1} - 3_{2 2}\) (39.680 GHz) and \(1_{1 1} - 0_{0 0}\) (39.582 GHz) may play important role for the identification of ethylene oxide in a cosmic object.  相似文献   

7.
The kinetic reactions in N2-xCH4(C2H2) gas discharges with x less than 1% have been studied by emission spectroscopy in the afterglow of D.C. discharges and by mass spectroscopy from radiolysis ionization using alpha particles. The pressure range is from several Torr to 100 Torr. At the end of N2 D.C. discharges at room temperature, for a residence time of about 10(-2) s, the dominant active species are the N atoms with density of 10(14)-10(15) cm-3 for N2 density of about 10(17) cm-3 (3 Torr), the N2(X,V) vibrational molecules with for example [N2(X,V = 10)] approximately 10(14) cm-3 and the electronic metastable molecules N2(A 3 sigma u +) with a density of 10(12) cm-3. In such conditions, the following kinetic reactions have been studied: N2(A) + N2(A) --> N2(C,B,V') + N2(X), N2(A) + N2(X,V>5) --> N2(X) + N2(B,V') in pure N2 post-discharges and N2(A) + CH4 --> products, C + N + M2 --> CN(B,V') + M2, N2(X,V>4) + CN --> N2(X) + CN(B,A,V'), in N2-1% CH4 post-discharges. The clustering reactions of N2-(1-5%)CH4(C2H2) gas mixtures after radiolysis ionization have been studied for the H2CN+ nN2 ions and the equilibrium constants have been determined in the temperature range T = 140-300 K.  相似文献   

8.
We have detected the 1(10)-1(01) transition of C3HD at 19.418 GHz at twelve positions in cold, dark clouds and resolved the D hyperfine components in two sources (L1498 and TMC-1C) well enough to derive values for the D quadrupole coupling constants. Simultaneous observations of C3H2 in each source yield relative integrated line intensities in the range 0.10-0.18, from which we derive relative [C3HD]/[C3H2] abundances in the range 0.05-0.15. These are among the highest deuteration ratios yet observed. Within the limits of the observational and modeling uncertainties it is possible to explain the derived [C3HD]/[C3H2] ratios by ion-molecule chemistry if [e-] approximately 3 x 10(-7).  相似文献   

9.
We have made an observational study of the newly identified cyanomethane radical CH2CN and the possibly related species CH3CN with the goals of (1) elucidating the possible role of reactions of the type CnHm(+) + N in astrochemistry, and (2) providing a possible test of Bates's models of dissociative electron recombination. We find a remarkably different abundance ratio CH2CN/CH3CN in TMC-1 and Sgr B2, which we deduce is a result of the large difference in temperature of these objects. Studies of CH2CN and CH3CN in other sources, including two new detections of CH2CN, support this conclusion and are consistent with a monotonic increase in the CH2CN/CH3CN ratio with decreasing temperature over the range 10-120 K. This behavior may be explained by the destruction of CH2CN by reaction with O. If this reaction does not proceed, then CH2CN and CH3CN are concluded to form via different chemical pathways. Thus, they do not provide a test of Bates's conjectures (they do not both form from CH3CNH+). CH2CN is then likely to form via C2H4(+) + N --> CH2CNH+, thus demonstrating the viability of this important reaction in astrochemistry. The T dependence of the CH2CN/CH3CN ratio would then reflect the increasing rate of the C2H4(+) + N reaction with decreasing temperature.  相似文献   

10.
The C3H radical, a linear carbon chain with a 2 pi electronic ground state, has been identified in the millimeter-wave spectra of two astronomical sources, IRC +10216 and TMC-1, and conclusively confirmed (accompanying Letter) in a laboratory glow discharge. In IRC +10216 four rotational transitions have been observed, three in the lower fine-structure ladder (2 pi 1/2) and one in the upper (2 pi 3/2), each a resolved or partially resolved lambda-doublet. In TMC-1, both lambda components of the lowest lying 3/2 --> 1/2 transition of the 2 pi 1/2 ladder have been observed, each with well-resolved hfs. In IRC +10216 the excitation of C3H is similar to that of SiCC: the rotational temperature Trot within the 2 pi 1/2 ladder is low (8.5 K), owing to rapid radiative decay, while Trot across the ladders is high (approximately 52 K) because interconnecting far-IR radiative transitions are only weakly permitted. The column density of C3H in IRC +10216 averaged over the estimated source diameter of 84" is 2.8 x 10(13) cm-2, an order of magnitude less than that of C2H and C4H. A determination of the spectroscopic constraints of C3H that permitted the entire radio spectrum of this molecule to be calculated to high accuracy has been derived from analysis of the combined astronomical and laboratory data presented in the accompanying Letter.  相似文献   

11.
The cumulene carbenes are important components of hydrocarbon chemistry in low-mass star-forming cores. Here we report the first astronomical detection of the long-chain cumulene carbene H2C6 in the interstellar cloud TMC-1, from observations of two of its rotational transitions: J(K,K') = 7(1,7) --> 6(1,6) at 18.8 GHz and 8(1,8) --> 7(1,7) at 21.5 GHz, using NASA's Deep Space Network 70 m antenna at Goldstone, California. In addition we also observed the shorter cumulene carbene H2C4 at the same position. The fractional abundance of H2C6 relative to H2 is about 4.7 x 10(-11) and that of H2C4 is about 4.1 x 10(-9). The abundance of H2C6 is in fairly good agreement with gas-phase chemical models for young molecular cloud cores, but the abundance of H2C4 is significantly larger than predicted.  相似文献   

12.
Observations of comet Hale-Bopp (C/1995 O1) have been carried out near perihelion (1997 March) at millimeter wavelengths using the NRAO 12 m telescope. The J=1-->0, 2-->1, and 3-->2 lines of HCN at 88, 177, and 265 GHz were measured in the comet as well as the J=3-->2 lines of H13CN, HC15N, and HNC. The N=2-->1 transition of CN near 226 GHz was also detected, and an upper limit was obtained for the J=2-->1 line of HCNH+. From the measurements, column densities and production rates have been estimated. A column density ratio of [HCN]/[HNC] = 7+/-1 was observed near perihelion, while it was found that [HCN]/[HCNH+] greater, similar 1. The production rates at perihelion for HCN and CN were estimated to be Q(HCN) approximately 1x1028 s-1 and Q(CN) approximately 2.6x1027 s-1, respectively, resulting in a ratio of [HCN]/[CN] approximately 3. Consequently, HCN is sufficiently abundant to be the parent molecule of CN in Hale-Bopp, and HCNH+ could be a source of HNC. Finally, carbon and nitrogen isotope ratios of 12C/13C = 109+/-22 and 14N/15N = 330+/-98 were obtained from HCN measurements, in agreement with previous values obtained from J=4-->3 data. Such ratios suggest that comet Hale-Bopp formed coevally with the solar system.  相似文献   

13.
Three new silicon-bearing radicals of astrophysical interest, SiCCH and the two nearly isoenergetic isomers SiCN and SiNC, were detected in a laboratory discharge in their X2Pi ground states by Fourier transform microwave and millimeter-wave absorption spectroscopy. Hyperfine structure was observed in the low rotational transitions of the (2)Pi(1/2) ladder, and well-resolved Lambda-doubling was observed in both fine-structure ladders. With the spectroscopic constants derived from the laboratory measurements, the spectra of all three can be calculated to an uncertainty of less than 0.1 km s(-1) in equivalent radial velocity over the entire range of interest to radio astronomers. SiCN, with a dipole moment of 2.9 D, is probably the most promising of the three for astronomical discovery.  相似文献   

14.
Thermochemical data for several ion-molecule clustering of hydrocarbon ions with N2 or CH4 were obtained from clustering equilibria studies in gas mixtures irradiated by alpha-particles. High-pressure mass spectrometry was used to determine the enthalpy and entropy changes of clustering (delta H0 and delta S0, respectively) for the reactions X+(N2)n-1 + 2N2 <==> X(+)(N2)n + N2 with X = CH5, n = 1-2; X = C2H5, n = 1-4; and X = C3H7, n = 1. For X = CH5, the values (delta H0; delta S0) are found to be (-6.8 kcal mol-1; -19.7 cal mol-1 K-1) for n = 1, and (-5.3 kcal mol-1; -15.9 cal mol-1 K-1) for n = 2. For X = C2H5, (delta H0; delta S0) = (-6.9 kcal mol-1; -18.2 cal mol-1 K-1), for n = 1, and (-4.6 kcal mol-1; -20.8 cal mol-1 K-1) for n = 2. From the equilibrium measurements at 129 K, estimates of the thermochemical values could be obtained for n = 3-4. The results obtained for the free energy, delta G0, were -1.4 kcal mol-1 for n = 3, and -1.1 kcal mol-1 for n = 4. For X = C3H7 we found delta G0 = -0.7 kcal mol-1 at 213 K. The association reactions X+ + 2CH4 <==> X+(CH4) + CH4 with X = CH5, C2H5, C2H7, and C3H7 were also studied, resulting in free energy values at 206 K of -3.1, -1.9, -0.5 and -1.3 kcal mol-1, respectively. The results for CH5, C2H5 and C3H7 are compared with previously reported measurements.  相似文献   

15.
G. Paubert  D. Gautier  R. Courtin 《Icarus》1984,60(3):599-612
The flux emitted by Titan's disk in millimeter lines of HCN, HC3N, CH3CN, and CO is calculated by means of a radiative transfer formulation which takes into account the sphericity of the atmosphere. It is demonstrated that the plane-parallel approximation for radiative transfer is no longer valid, especially in the core of emission lines, when Titan is not spatially resolved. The antenna temperatures which would be measured by large radiotelescopes observing Titan at frequencies of (1?0) and (2?1) transitions of CO, of (1?0), (2?1), and (3?2) transitions of HCN, and of selected transitions of HC3N and CH3CN in the range 80–300 GHz are calculated. The observability of these transitions is investigated. It is concluded that there is the possibility of inferring the vertical stratospheric distribution of these species from line shape measurements to be achieved with existing or forthcoming radioastronomical instrumentation. The determination of the CO abundance by D. O. Muhleman, G. L. Berge, and R. T. Clancy (1984, (Science (Washington, D.C.), 223, 393–396) from measurements at 115.3 GHz in two 200 MHz bands, is reinterpreted by means of this radiative transfer formulation. A CO mixing ratio between 3 × 10?5 and 18 × 10?5, with a most plausible value of 7.5 × 10?5, is found.  相似文献   

16.
Lis  D. C.  Mehringer  D. M.  Benford  D.  Gardner  M.  Phillips  T. G.  Bockelée-Morvan  D.  Biver  N.  Colom  P.  Crovisier  J.  Despois  D.  Rauer  H. 《Earth, Moon, and Planets》1997,78(1-3):13-20
We present millimeter-wave observations of HNCO, HC3N, SO, NH2CHO, H13CN, and H3O+ in comet C/1995 O1 (Hale-Bopp)obtained in February–April, 1997 with the Caltech Submillimeter Observatory (CSO). HNCO, first detected at the CSO in comet C/1996B2 (Hyakutake), is securely confirmed in comet Hale-Bopp via observations of three rotational transitions. The derived abundance with respect to H2O is (4-13) × 10-4. HC3N, SO, and NH2CHO are detected for the first time in a comet. The fractional abundance of HC3N based on observations of three rotational lines is (1.9 ± 0.2) × 10-4. Four transitions of SO are detected and the derived fractional abundance, (2-8) ×10-3, is higher than the upper limits derived from UV observations of previous comets. Observations of NH2CHO imply a fractional abundance of (1-8) × 10-4. H3O is detected for the first time from the ground. The H13CN (3-2)transition is also detected and the derived HCN/H13CN abundance ratio is 90 ± 15, consistent with the terrestrial12C/13C ratio. In addition, a number of other molecular species are detected, including HNC, OCS, HCO+, CO+, and CN(the last two are first detections in a comet at radio wavelengths). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
We present observations of the HCN J = 1-0 rotational transition at 3.4 mm wavelength in comet P/Halley. The data were obtained during a total of 56 individual observing sessions between November 1985 and May 1986 and represent the first time that a cometary parent molecule has been so extensively monitored. The HCN production rate is well correlated with the total visual magnitude of the comet, and comparison of the HCN production to the total gas production of the comet indicates that it is a relatively minor constituent with 0.1% the abundance of H2O. Comparison of HCN and CN production suggests that HCN is a major parent molecule of CN, but probably not the sole parent. HCN spectra obtained by binning the data with heliocentric distance show that the line width, and thus the parent outflow velocity, increases with decreasing heliocentric distance, and that there is a tendency for the lines to be blue shifted due to anisotropic outgassing from the nucleus. Finally, there is evidence of day-to-day time variability in the total HCN emission and in the hyperfine ratios. The time variation of the total emission is consistent with the known time variable behavior of the comet, and detailed comparisons to optical data, where possible, confirm this interpretation. However, non-LTE values of the hyperfine ratios are not consistent with theoretical modeling of the excitation of these transitions.  相似文献   

18.
We have detected a new interstellar molecule, H2CN (methylene amidogen), in the cold, dark molecular cloud TMC-l. The column density of H2CN is estimated to be approximately 1.5 x 10(11) cm-2 by assuming an excitation temperature of 5 K. This column density corresponds to a fractional abundance relative to H2 of approximately 1.5 x 10(-11). This value is more than three orders of magnitude less than the abundance of the related molecule HCN in TMC-1. We also report a tentative detection of H2CN in Sgr B2(N). The formation mechanism of H2CN is discussed. Our detection of the H2CN molecule may suggest the existence of a new series of carbon-chain molecules, CH2CnN (n = 0, 1, 2,...).  相似文献   

19.
The interstellar medium, filling the vast space between stars, is a rich reser-voir of molecular material ranging from simple diatomic molecules to more com-plex, astrobiologically important molecules such as vinylcyanide, methylcyanodiac-cetylene, cyanoaUene, etc. Interstellar molecular cyanoallene is one of the most stableisomers of methylcynoacetylene. An attempt has been made to explore the possibilityof forming cyanoallene in interstellar space by radical-radical and radical-moleculeinteraction schemes in the gaseous phase. The formation of cyanoallene starting fromsome simple, neutral interstellar molecules and radicals has been studied using densityfunctional theory. The reaction energies and structures of the reactants and productsshow that the formation of cyanoallene is possible in the gaseous phase. Both of theconsidered reaction paths are totally exothermic and barrierless, thus giving rise to ahigh probability of occurrence. Rate constants for each step in the formation processof cyanoallene in both the reaction paths are estimated. A full vibrational analysishas been attempted for cyanoallene in the harmonic and anharmonic approximations.Anharmonic spectroscopic parameters such as rotational constants, rotation-vibrationcoupling constants and centrifugal distortion constants have been calculated.  相似文献   

20.
Observations of the 1(01) --> 0(00) rotational transitions of A and E state acetaldehyde are reported. The transitions were detected, for the first time in interstellar space, in the cold dust clouds TMC-1 and L134N, and in Sgr B2. This is also the first time acetaldehyde has been found in a dust cloud and is the most complex oxygen-bearing molecule yet known in this environment. We find a column density of 6 x 10(12) cm-2 in TMC-1, comparable to many other species detected there, and an approximately equal column density in L134N. In the direction of Sgr B2, the CH3CHO profile appears to consist of broad emission features from the hot molecular cloud core, together with absorption features resulting from intervening colder material. We also report the possible detection of HC9N toward IRC +10 degrees 216 through its J = 33 --> 32 transition. Implications for cold dust cloud chemistry and excitation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号