首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Sandford SA  Allamandola LJ 《Icarus》1993,106(2):478-488
In an extension of previously reported work on ices containing CO, CO2, H2O, CH3OH, NH3, and H2, measurements of the physical and infrared spectral properties of ices containing molecules relevant to Jupiter's moon Io are presented. These include studies on ice systems containing SO2, H2S, and CO2. The condensation and sublimation behaviors of each ice system and surface binding energies of their components are discussed. The surface binding energies can be used to calculate the residence times of the molecules on a surface as a function of temperature and thus represent important parameters for any calculation that attempts to model the transport of these molecules on Io's surface. The derived values indicate that SO2 frosts on Io are likely to anneal rapidly, resulting in less fluffy, "glassy" ices and that H2S can be trapped in the SO2 ices of Io during night-time hours provided that SO2 deposition rates are on the order of 5 micrometers/hr or larger.  相似文献   

2.
We have detected a new interstellar molecule, H2CN (methylene amidogen), in the cold, dark molecular cloud TMC-l. The column density of H2CN is estimated to be approximately 1.5 x 10(11) cm-2 by assuming an excitation temperature of 5 K. This column density corresponds to a fractional abundance relative to H2 of approximately 1.5 x 10(-11). This value is more than three orders of magnitude less than the abundance of the related molecule HCN in TMC-1. We also report a tentative detection of H2CN in Sgr B2(N). The formation mechanism of H2CN is discussed. Our detection of the H2CN molecule may suggest the existence of a new series of carbon-chain molecules, CH2CnN (n = 0, 1, 2,...).  相似文献   

3.
R.L. Hudson  M.H. Moore 《Icarus》2004,172(2):466-478
Motivated by detections of nitriles in Titan's atmosphere, cometary comae, and the interstellar medium, we report laboratory investigations of the low-temperature chemistry of acetonitrile, propionitrile, acrylonitrile, cyanoacetylene, and cyanogen (CH3CN, CH3CH2CN, CH2CHCN, HCCCN, and NCCN, respectively). A few experiments were also done on isobutyronitrile and trimethylacetonitrile ((CH3)2CHCN and (CH3)3CCN, respectively). Trends were sought, and found, in the photo- and radiation chemical products of these molecules at 12-25 K. In the absence of water, all of these molecules isomerized to isonitriles, and CH3CN, CH3CH2CN, and (CH3)2CHCN also formed ketenimines. In the presence of H2O, no isonitriles were detected but rather the cyanate ion (OCN) was seen in all cases. Although isonitriles, ketenimines, and OCN were the main focus of our work, we also describe cases of hydrogen loss, to make smaller nitriles, and hydrogen addition (reduction), to make larger nitriles. HCN formation also was seen in most experiments. The results are presented in terms of nitrile ice chemistry on Titan, in cometary ice, and in the interstellar medium. Possible connections to prebiotic chemistry are briefly discussed.  相似文献   

4.
5.
The reaction between the radical C2H and the stable hydrocarbon C2H2 is one of the simplest neutral-neutral hydrocarbon reactions in chemical models of dense interstellar clouds and carbon-rich circumstellar shells. Although known to be rapid at temperatures > or = 300 K, the reaction has yet to be studied at lower temperatures. We present here ab initio calculations of the potential surface for this reaction and dynamical calculations to determine its rate at low temperature. Despite a small potential barrier in the exit channel, the calculated rate is large, showing that this reaction and, most probably, more complex analogs contribute to the formation of complex organic molecules in low-temperature sources.  相似文献   

6.
The UV radiation transfer within spherical interstellar dust clouds is analyzed using the method of successive scatterings. The results are used to determine the lifetime of interstellar H2CO against photo-destruction. The effectiveness of this process is compared with those of chemical mechanisms.  相似文献   

7.
The syntheses of interstellar c-C3H2, H2CCC, c-C3H, and HCCC, where "c" stands for the cyclic isomer, are thought to proceed via dissociative recombination of the precursor ions c-C3H3+ and H2CCCH+, which are themselves produced mainly via the radiative association reaction between C3H+ and H2. We have utilized ab initio methods to study the potential energy surface (PES) for the association of the linear ion C3H+ and H2 to form the isomers c-C3H3+ and H2CCCH+. The overall rate coefficient for radiative association has been calculated as a function of temperature via the phase space method. Our ab initio calculations show that the H2CCCH+ isomer is formed directly without an activation barrier from reactants, and that isomerization between the two isomers can occur readily via a low-energy pathway consisting of two transition states (saddle points on the PES) and one intermediate (local minimum on the PES). Calculations of the equilibrium coefficient for the isomerization H2CCCH+ <-> c-C3H3+ as a function of energy shows that equal abundances of these two ions should be produced as relaxation proceeds, in agreement with experimental measurements at high pressure. Our results confirm the important point that a simple ion-molecule association reaction can produce a cyclic hydrocarbon. If dissociative recombination reactions involving c-C3H3+ and H2CCCH+ maintain the carbon skeletal structure of the ions and produce roughly similar C3H/C3H2 branching ratios, then abundance ratios of unity are produced between the cyclic and noncyclic isomers of C3H and C3H2 via this mechanism. The large abundance ratio of c-C3H2 to H2CCC observed in TMC-1 can then be explained by differential destruction rates.  相似文献   

8.
The discrete infrared features known as the unidentified infrared (UIR) bands originating in starburst regions of other galaxies, and in H II regions and planetary nebulae within the Milky Way, are widely thought to be the result of ultraviolet pumped infrared fluorescence of polycyclic aromatic hydrocarbon (PAH) molecules and ions. These UIR emissions are estimated to account for 10%-30% of the total energy emitted by galaxies. Laboratory absorption spectra including the vacuum ultraviolet region, as described in this paper, show a weakening of the intensity of absorption features as the population of cations increases, suggesting that strong pi* <-- pi transitions are absent in the spectra of PAH cations. This implies a lower energy bound for ultraviolet photons that pump infrared emissions from such ions at 7.75 eV, an amount greater than previously thought. The implications include size and structure limitations on the PAH molecules and ions which are apparent constituents of the interstellar medium. Also, this might affect estimations of the population of early-type stars in regions of rapid star formation.  相似文献   

9.
The rate coefficient for the important interstellar reaction between CN and C2H2 has been calculated as a function of temperature between 10 and 300 K. The potential surface for this reaction has been determined through ab initio quantum chemical techniques; the potential exhibits no barrier in the entrance channel but does show a small exit channel barrier, which lies below the energy of reactants. Phase-space calculations for the reaction dynamics, which take the exit channel barrier into account, show the same unusual temperature dependence as determined by experiment, in which the rate coefficient at first increases as the temperature is reduced below room temperature and then starts to decrease as the temperature drops below 50-100 K. The agreement between theory and experiment provides strong confirmation that the reaction occurs appreciably at cool interstellar temperatures.  相似文献   

10.
11.
Abstract— The polycyclic aromatic hydrocarbon (PAH) anthracene was oxidized by exposure to ultraviolet (UV) radiation in H2O ice under simulated astrophysical conditions, forming several anthracene ketones (9‐anthrone, 1,4‐anthraquinone, and 9,10‐anthraquinone) and alcohols (1‐anthrol and 2‐anthrol). Two of the ketones produced have been detected in the Murchison meteorite but, to our knowledge, there has been no search for the alcohols or other oxidized anthracenes in meteorites. These results seem consistent with the possibility that interstellar ice photochemistry could have influenced the inventory of aromatics in meteorites. Since quinones are also fundamental to biochemistry, their formation in space and delivery to planets is relevant to studies relating to the habitability of planets and the evolution of life.  相似文献   

12.
A new interstellar molecular ion, H2COH+ (protonated formaldehyde), has been detected toward Sgr B2, Orion KL, W51, and possibly in NGC 7538 and DR21(OH). Six transitions were detected in Sgr B2(M). The 1(1,0)-1(0,1) transition was detected in all sources listed above. Searches were also made toward the cold, dark clouds TMC-1 and L134N, Orion (3N, 1E), and a red giant, IRC + 10216, without success. The excitation temperatures of H2COH+ are calculated to be 60-110 K, and the column densities are on the order of 10(12)-10(14) cm-2 in Sgr B2, Orion KL, and W51. The fractional abundance of H2COH+ is on the order of 10(-11) to 10-(9), and the ratio of H2COH+ to H2CO is in the range 0.001-0.5 in these objects. The values in Orion KL seem to be consistent with the "early time" values of recent model calculations by Lee, Bettens, & Herbst, but they appear to be higher than the model values in Sgr B2 and W51 even if we take the large uncertainties of column densities of H2CO into account. We suggest production routes starting from CH3OH may play an important role in the formation of H2COH+.  相似文献   

13.
14.
In an extension of previously reported work on ices containing H2O, CO, CO2, SO2, H2S, and H2, we present measurements of the physical and infrared spectral properties of ices containing CH3OH and NH3. The condensation and sublimation behavior of these ice systems is discussed and surface binding energies are presented for all of these molecules. The surface binding energies can be used to calculate the residence times of the molecules on grain surfaces as a function of temperature. It is demonstrated that many of the molecules used to generate radio maps of and probe conditions in dense clouds, for example CO and NH3, will be significantly depleted from the gas phase by condensation onto dust grains. Attempts to derive total column densities solely from radio maps that do not take condensation effects into account may vastly underestimate the true column densities of any given species. Simple CO condensation onto and vaporization off of grains appears to be capable of explaining the observed depletion of gas phase CO in cold, dense molecular cores. This is not the case for NH3, however, where thermal considerations alone predict that all of the NH3 should be condensed onto grains. The fact that some gas phase NH3 is observed indicates that additional desorption processes must be involved. The surface binding energies of CH3OH, in conjunction with this molecule's observed behavior during warm up in H2O-rich ices, is shown to provide an explanation of the large excess of CH3OH seen in many warm, dense molecular cores. The near-infrared spectrum and associated integrated band strengths of CH3OH-containing ice are given, as are middle infrared absorption band strengths for both CH3OH and NH3.  相似文献   

15.
A radiative transfer model is used to quantitatively investigate aspects of the martian ultraviolet radiation environment, past and present. Biological action spectra for DNA inactivation and chloroplast (photosystem) inhibition are used to estimate biologically effective irradiances for the martian surface under cloudless skies. Over time Mars has probably experienced an increasingly inhospitable photobiological environment, with present instantaneous DNA weighted irradiances 3.5-fold higher than they may have been on early Mars. This is in contrast to the surface of Earth, which experienced an ozone amelioration of the photobiological environment during the Proterozoic and now has DNA weighted irradiances almost three orders of magnitude lower than early Earth. Although the present-day martian UV flux is similar to that of early Earth and thus may not be a critical limitation to life in the evolutionary context, it is a constraint to an unadapted biota and will rapidly kill spacecraft-borne microbes not covered by a martian dust layer. Microbial strategies for protection against UV radiation are considered in the light of martian photobiological calculations, past and present. Data are also presented for the effects of hypothetical planetary atmospheric manipulations on the martian UV radiation environment with estimates of the biological consequences of such manipulations.  相似文献   

16.
Using a normalized perturbative, semi-classical approach, collision-induced rotational excitation rates of CO, OCS, SiO, HCN, HC3N due to H2 are computed. The calculated excitation rates for CO–H2 and OCS–H2 systems at 100 K are in good agreement with the results of close coupling approximation at low values ofJ, whereJ is the rotational quantum number. The rates are found to be very sensitive with respect to ortho and para states of H2.  相似文献   

17.
The recent confirmation by Ziurys and Apponi of the detection of HOC+ toward Sgr B2 (OH), and their identification of the ion in Orion-KL and several other sources show that HOC+ is far more abundant than predicted by previous ion-molecule models. In these models, the reaction HOC(+) + H2 --> HCO(+) + H2 is assumed to rapidly destroy HOC+, based on the results of a prior calculation. We have recalculated the rate of this reaction as a function of temperature using a new ab initio potential surface and a phase space approach to the dynamics which includes tunneling. The newly calculated rate is small (< or = 1 x 10(-10) cm3 s-1) at temperatures under 100 K.  相似文献   

18.
19.
Spectophotometric catalog of the Sternberg Astronomical Institute is described briefly. The catalog includes energy distribution data for 900 stars in the range 3200–7600Å and 250 stars in the range 3200–7600Å with 50Å step. The main scientific results obtained on the basis of the catalog are presented.  相似文献   

20.
Ices in the solar system are observed on the surface of planets, satellites, comets and asteroids where they are continuously subordinate at particle fluxes (cosmic ions, solar wind and charged particles caught in the magnetosphere of the planets) that deeply modify their physical and structural properties. Each incoming ion destroys molecular bonds producing fragments that, by recombination, form new molecules also different from the original ones. Moreover, if the incoming ion is reactive (H+, On+, Sn+, etc.), it can concur to the formation of new molecules.Those effects can be studied by laboratory experiments where, with some limitation, it is possible to reproduce the astrophysical environments of planetary ices.In this work, we describe some experiments of 15-100 keV H+ and He+ implantation in pure sulfur dioxide (SO2) at 16 and 80 K and carbon dioxide (CO2) at 16 K ices aimed to search for the formation of new molecules. Among other results we confirm that carbonic acid (H2CO3) is formed after H-implantation in CO2, vice versa H-implantation in SO2 at both temperatures does not produce measurable quantity of sulfurous acid (H2SO3). The results are discussed in the light of their relevance to the chemistry of some solar system objects, particularly of Io, the innermost of Jupiter's Galilean satellites, that exhibits a surface very rich in frost SO2 and it is continuously bombarded with H+ ions caught in Jupiter's magnetosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号