首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both laboratory measurements and theory indicate that CO2 should be a common component in interstellar ices. We show that the exact band position, width, and profile of the solid-state 12CO2 infrared bands near 3705, 3600, 2340, and 660 cm-1 (2.70, 2.78, 4.27, and 15.2 micrometers) and the 13CO2 band near 2280 cm-1 (4.39 micrometers) are dependent on the matrix in which the CO2 is frozen. Measurements of these bands in astronomical spectra can be used to determine column densities of solid-state CO2 and provide important information on the physical conditions present in the ice grains of which the CO2 is a part. Depending on the composition of the ice, the CO2 asymmetric stretching band was observed to vary from 2328.7 to 2346.0 cm-1 and have full widths at half-maxima (FWHMs) ranging from 4.7 to 29.9 cm-1. The other CO2 bands showed similar variations. Both position and width are also concentration dependent. Absorption coefficients were determined for the five CO2 bands. These were found to be temperature independent for CO2 in CO and CO2 matrices but varied slightly with temperature for CO2 in H2O-rich ices. For all five bands this variation was found to be less than 15% from 10 to 150 K, the temperature at which H2O ice sublimes. A number of parameters associated with the physical behavior of CO2 in CO2- and H2O-rich ices were also determined. The CO2-CO2 surface binding energy in pure CO2 ices is found to be (delta Hs/k) = 2690 +/- 50 K. CO2-H2O and CO-H2O surface binding energies were determined to be (delta Hs/k) = 2860 +/- 200 K and 1740 +/- 100 K, respectively. Under our experimental conditions, CO2 condenses in measurable quantities into H2O-rich ices at temperatures up to 100 K, only slightly higher than the temperature at which pure CO2 condenses. Once frozen into an H2O-rich ice, the subsequent loss of CO2 upon warming is highly dependent on concentration. For ices with H2O/CO2 > 20, the CO is physically trapped within the H2O lattice, and little CO2 is lost until the sublimation temperature of the H2O matrix is reached. In contrast, in ices having H2O/CO2 < 5, the CO2 remains only to temperatures of about 90 K. Above this point the CO2 readily diffuses out of the H2O matrix. These results suggest that two different forms of H2O lattice are produced. The implications of these data for cometary models and our understanding of cometary formation are considered.  相似文献   

2.
We report the detection of a broad absorption band at 2165 cm-1 (4.619 microns) in the spectrum of L1551 IRS 5. New laboratory results over the 2200-2100 cm-1 wavenumber interval (4.55-4.76 microns), performed with realistic interstellar ice analogs, suggest that this feature is due to a CN-containing compound. We will refer to this compound as XCN. We also confirm the presence of frozen CO (both in nonpolar and polar matrices) through absorption bands at 2140 cm-1 (4.67 microns) and 2135 cm-1 (4.68 microns). The relative abundance of solid-state CO to frozen H2O is approximately 0.13 while the abundance of XCN seems comparable to that of frozen CO.  相似文献   

3.
Infrared spectra of Io in the region 2.5-5.0 micrometers, including new observational data, are analyzed using detailed laboratory studies of plausible surface ices. Besides the absorption bands attributable to sulfur dioxide frosts, four infrared spectral features of Io are shown to be unidentified. These unidentified features show spatial and temporal band strength variations. One pair is centered around 3.9 micrometers (3.85 and 3.91 micrometers) and the second pair is centered around 3.0 micrometers (2.97 and 3.15 micrometers). These absorptions fall close to the fundamental stretching modes in H2S and H2O, respectively. The infrared absorption spectra of an extensive set of laboratory ices ranging from pure materials, to binary mixtures of H2S and H2O (either mixed at different concentrations or layered), to H2O:H2S:SO2 mixtures are discussed. The effects of ultraviolet irradiation (120 and 160 nm) and temperature variation (from 9 to 130 K) on the infrared spectra of the ices are examined. This comparative study of Io reflectance spectra with the laboratory mixed ice transmission data shows the following: (1) Io's surface most likely contains H2S and H2O mixed with SO2. The 3.85- and 3.91-micrometers bands in the Io spectra can be accounted for by the absorption of the S-H stretching vibration (nu 1) in H2S clusters and isolated molecules in an SO2-dominated ice. The weak 2.97- and 3.15-micrometers bands which vary spatially and temporally in the Io spectra coincide with the nu 3 and nu 1 O-H stretching vibrations of clusters of H2O molecules complexed, through hydrogen bonding and charge transfer interactions, with SO2. (2) The observations are well matched qualitatively by the transmission spectra of SO2 ices containing about 3% H2S and 0.1% H2O which have been formed by the condensation of a mixture of the gases onto a 100 K surface. (3) No new features are produced in the region 2.5 to 5.0 micrometers in the spectrum of these ices under prolonged ultraviolet irradiation or temperature variation up to 120 K. (4) Comparison of the Io spectra to transmission spectra of both mixed molecular ices and layered ices indicates that only the former can explain the shifts and splitting of the absorption bands seen in the Io spectrum and additionally can account for the fact that solid H2S is observed in the surface material of Io at temperature and pressure conditions above the sublimation point of pure H2S.  相似文献   

4.
A suite of sulfate minerals were characterized spectrally, compositionally, and structurally in order to develop spectral reflectance-compositional-structural relations for this group of minerals. Sulfates exhibit diverse spectral properties, and absorption-band assignments have been developed for the 0.3-26 μm range. Sulfate absorption features can be related to the presence of transition elements, OH, H2O, and SO4 groups. The number, wavelength position, and intensity of these bands are a function of both composition and structure. Cation substitutions can affect the wavelength positions of all major absorption bands. Hydroxo-bridged Fe3+ results in absorption bands in the 0.43, 0.5, and 0.9 μm regions, while the presence of Fe2+ results in absorption features in the 0.9-1.2 μm interval. Fundamental SO bending and stretching vibration absorption bands occur in the 8-10, 13-18, and 19-24 μm regions (1000-1250, 550-770, and 420-530 cm−1). The most intense combinations and overtones of these fundamentals are found in the 4-5 μm (2000-2500 cm−1) region. Absorption features seen in the 1.7-1.85 μm interval are attributable to HOH/OH bending and translation/rotation combinations, while bands in the 2.1-2.7 μm regions can be attributed to H2O- and OH-combinations as well as overtones of SO bending fundamentals. OH- and H2O-bearing sulfate spectra are fundamentally different from each other at wavelengths below ∼6 μm. Changes in H2O/OH content can shift SO band positions due to change in bond lengths and structural rearrangement. Differences in absorption band wavelength positions enable discrimination of all the sulfate minerals used in this study in a number of wavelength intervals. Of the major absorption band regions, the 4-5 μm region seems best for identifying and discriminating sulfates in the presence of other major rock-forming minerals.  相似文献   

5.
The 3150-2700 cm-1 (3.17-3.70 microns) range of the spectra of a number of Ar-matrix-isolated PAHs containing excess H atoms (Hn-PAHs) are presented. This region covers features produced by aromatic and aliphatic C-H stretching vibrations as well as overtone and combination bands involving lower lying fundamentals. The aliphatic C-H stretches in molecules of this type having low to modest excess H coverage provide excellent fits to a number of the weak emission features superposed on the plateau between 3080 and 2700 cm-1 (3.25 and 3.7 microns) in the spectra of many planetary nebulae, reflection nebulae, and H II regions. Higher H coverage is implied for a few objects. We compare these results in context with the other suggested identifications of the emission features in the 2950-2700 cm-1 (3.39-3.70 microns) region and briefly discuss their astrophysical implications.  相似文献   

6.
The infrared transmission spectra and photochemical behavior of various organic compounds isolated in solid N2 ices, appropriate for applications to Triton and Pluto, are presented. It is shown that excess absorption in the surface spectra of Triton and Pluto, i.e., absorption not explained by present models incorporating molecules already identified on these bodies (N2, CH4, CO, and CO2), that starts near 4450 cm-1 (2.25 micrometers) and extends to lower frequencies, may be due to alkanes (C(n)H2n+2) and related molecules frozen in the nitrogen. Branched and linear alkanes may be responsible. Experiments in which the photochemistry of N2:CH4 and N(2):CH4:CO ices was explored demonstrate that the surface ices of Triton and Pluto may contain a wide variety of additional species containing H, C, O, and N. Of these, the reactive molecule diazomethane, CH2N2, is particularly important since it may be largely responsible for the synthesis of larger alkanes from CH4 and other small alkanes. Diazomethane would also be expected to drive chemical reactions involving organics in the surface ices of Triton and Pluto toward saturation, i.e., to reduce multiple CC bonds. The positions and intrinsic strengths (A values) of many of the infrared absorption bands of N2 matrix-isolated molecules of relevance to Triton and Pluto have also been determined. These can be used to aid in their search and to place constraints on their abundances. For example, using these A values the abundance ratios CH4/N2 approximately 1.3 x 10(-3), C2H4/N2 < or = 9.5 x 10(-7) and H2CO/N2 < or = 7.8 x 10(-7) are deduced for Triton and CH4/N2 approximately 3.1 x 10(-3), C2H4/N2 < or = 4.1 x 10(-6), and H2CO/N2 < or = 5.2 x 10(-6) deduced for Pluto. The small amounts of C2H4 and H2CO in the surface ices of these bodies are in disagreement with the large abundances expected from many theoretical models.  相似文献   

7.
R.L. Hudson  M.H. Moore 《Icarus》2004,172(2):466-478
Motivated by detections of nitriles in Titan's atmosphere, cometary comae, and the interstellar medium, we report laboratory investigations of the low-temperature chemistry of acetonitrile, propionitrile, acrylonitrile, cyanoacetylene, and cyanogen (CH3CN, CH3CH2CN, CH2CHCN, HCCCN, and NCCN, respectively). A few experiments were also done on isobutyronitrile and trimethylacetonitrile ((CH3)2CHCN and (CH3)3CCN, respectively). Trends were sought, and found, in the photo- and radiation chemical products of these molecules at 12-25 K. In the absence of water, all of these molecules isomerized to isonitriles, and CH3CN, CH3CH2CN, and (CH3)2CHCN also formed ketenimines. In the presence of H2O, no isonitriles were detected but rather the cyanate ion (OCN) was seen in all cases. Although isonitriles, ketenimines, and OCN were the main focus of our work, we also describe cases of hydrogen loss, to make smaller nitriles, and hydrogen addition (reduction), to make larger nitriles. HCN formation also was seen in most experiments. The results are presented in terms of nitrile ice chemistry on Titan, in cometary ice, and in the interstellar medium. Possible connections to prebiotic chemistry are briefly discussed.  相似文献   

8.
H2 is the most abundant molecule in the universe. We demonstrate that this molecule may be an important component of interstellar and possibly intergalactic ices, both because it can be formed in situ, within the ices, and because gas phase H2 can freeze out onto dust grains in some astrophysical environments. The condensation-sublimation and infrared spectral properties of ices containing H2 are presented. We show that solid H2 in H20-rich ices can be detected by an infrared absorption band at 4137 cm-1 (2.417 micrometers). The surface binding energy of H2 to H2O ice was measured to the delta Hs/k = 555 +/- 35 K. Surface binding energies can be used to calculate the residence times of H2 on grain surfaces as a function of temperature. Some of the implications of these results are considered.  相似文献   

9.
We have studied the spectral and spatial distribution across the Orion Bar of the 3-14 micrometers emission, including hydrogen Brackett alpha and 12.8 micrometers [Ne II] emission lines and several "dust" emission features. The data indicate that the "dust" consists of three components; (1) "classical" dust with a temperature of approximately 60 K accounting for emission longward of 20 micrometers, (2) amorphous carbon particles or polycyclic aromatic hydrocarbon (PAH) clusters (approximately 400 C atoms) which produce broad emission features in the 6-9 and 11-13 micrometers bands, and (3) free PAHs which emit in sharper bands (most strongly at 3.3, 6.2, 7.7, 8.6, and 11.3 micrometers). The 3.3 and 11.3 micrometers features, which are due to C-H modes, are well correlated spatially, while the 7.7 micrometers band, due to C=C modes, has a different distribution than the 3.3 and 11.3 micrometers bands. We conclude that the sharp emission bands arise in the photodissociation transition region between the H II region and the molecular cloud and are not present in the H II region. The broad continuum feature extending from 11-13 micrometers is strong in both regions. Previous broad-band observations of the 10 and 20 micrometers flux distributions, which show that the 10 micrometers radiation extends farther into the neutral gas to the south than the 20 micrometers radiation, suggest that some of the 10 micrometers flux is supplied via a nonthermal mechanism, such as fluorescence.  相似文献   

10.
McDonald GD  Thompson WR  Sagan C 《Icarus》1992,99(1):131-142
Low-pressure continuous-flow laboratory simulations of plasma induced chemistry in H2/He/CH4/NH3 atmospheres show radiation yields of hydrocarbons and nitrogen-containing organic compounds that increase with decreasing pressure in the range 2-200 mbar. Major products of these experiments that have been observed in the Jovian atmosphere are acetylene (C2H2), ethylene (C2H4), ethane (C2H6), hydrogen cyanide (HCN), propane (C3H8), and propyne (C3H4). Major products that have not yet been observed on Jupiter include acetonitrile (CH3CN), methylamine (CH3NH2), propene (C3H6), butane (C4H10), and butene (C4H8). Various other saturated and unsaturated hydrocarbons, as well as other amines and nitriles, are present in these experiments as minor products. We place upper limits of 10(6)-10(9) molecules cm-2 sec-1 on production rates of the major species from auroral chemistry in the Jovian stratosphere, and calculate stratospheric mole fraction contributions. This work shows that auroral processes may account for 10-100% of the total abundances of most observed organic species in the polar regions. Our experiments are consistent with models of Jovian polar stratospheric aerosol haze formation from polymerization of acetylene by secondary ultraviolet processing.  相似文献   

11.
Ultraviolet spectral reflectance properties (200-400 nm) of a large number of minerals known or presumed to exist on the surfaces of Mars, the Moon, and asteroids, and in many meteorites, were investigated. Ultraviolet reflectance spectra (200-400 nm) of these minerals range from slightly blue-sloped (reflectance decreasing toward longer wavelengths) to strongly red-sloped (reflectance increasing toward longer wavelengths). Most exhibit one or two absorption features that are attributable to FeO charge transfers involving Fe3+ or Fe2+. The UV region is a very sensitive indicator of the presence of even trace amounts (<0.01 wt%) of Fe3+ and Fe2+. The major Fe3+O absorption band occurs at shorter wavelengths (∼210-230 nm), and is more intense than the major Fe2+O absorption band (∼250-270 nm). Ti-bearing minerals, such as ilmenite, rutile and anatase exhibit UV absorption bands attributable to Ti4+O charge transfers. While the positions of metal-O charge transfer bands sometimes differ for different minerals, the variation is often not diagnostic enough to permit unique mineral identification. However, iron oxides and oxyhydroxides can generally be distinguished from Fe-bearing silicates in the 200-400 nm region on the basis of absorption band positions. Within a given mineral group (e.g., low-calcium pyroxene, olivine, plagioclase feldspar), changes in Fe2+ or Fe3+ abundance do not appear to result in a measurable change in absorption band minima positions. Absorption band positions can vary as a function of grain size, however, and this variation is likely due to band saturation effects. The intensity of metal-O charge transfers means that some minerals will exhibit saturated UV absorption bands even for fine-grained (<45 μm) powders. In cases where absorption bands are not saturated (e.g., Fe2+O bands in some plagioclase feldspars and pyroxenes), changes in Fe2+ content do not appear to cause variations in band position. In other minerals (e.g., olivine), changes in band positions are correlated with compositional and/or grain size variations, but this is likely due to increasing band saturation rather than compositional variations. Overall, we find that the UV spectral region is sensitive to different mineral properties than longer wavelength regions, and thus offers the potential to provide complementary capabilities and unique opportunities for planetary remote sensing.  相似文献   

12.
Spectra of objects which lie along several lines of sight through the diffuse interstellar medium (DISM) reveal an absorption feature near 3.4 micrometers, which has been attributed to saturated aliphatic hydrocarbons on interstellar grains. The similarity of the absorption bands near 3.4 micrometers (2950 cm-1) along different lines of sight indicates that the carrier of this band lies in the diffuse dust. Several materials have been proposed as "fits" to the 3.4 micrometers feature over the years. A comparison of these identifications is presented. These comparisons illustrate the need for high resolution, high signal-to-noise observational data as a means of distinguishing between laboratory organics as matches to the interstellar material. Although any material containing hydrocarbons will produce features in the 3.4 micrometers region, the proposed "matches" to the DISM do differ in detail. These differences may help in the analyses of the chemical composition and physical processes which led to the production of the DISM organics, although ISO Observations through the 5-8 micrometers spectral region are essential for a definitive identification. A remarkable similarity between the spectrum of the diffuse dust and an organic extract from the Murchison meteorite suggests that some of the interstellar organic material may be preserved in primitive solar system bodies. The 3.4 micrometers absorption feature (in the rest frame) has recently been detected in external galaxies, indicating the widespread availability of organic material for incorporation into planetary systems.  相似文献   

13.
We report the detection of the acetylene derivative propynal (HC triple bond CCHO) in the cold cloud TMC-1, with an abundance that is very close to that for the related species tricarbon monoxide (C3O). Propadienone, an isomer of propynal with the formula H2C=C=C=O, was not detected and is hence less abundant than either C3O or HC2CHO.  相似文献   

14.
A coupled problem of diffusion and condensation is solved for the H2SO4-H2O system in Venus' cloud layer. The position of the lower cloud boundary and profiles of the H2O and H2SO4 vapor mixing ratios and of the H2O/H2SO4 ratio of sulfuric acid aerosol and its flux are calculated as functions of the column photochemical production rate of sulfuric acid, phi H2SO4. Variations of the lower cloud boundary are considered. Our basic model, which is constrained to yield fH2O (30 km) = 30 ppm (Pollack et al. 1993), predicts the position of the lower cloud boundary at 48.4 km coinciding with the mean Pioneer Venus value, the peak H2SO4 mixing ratio of 5.4 ppm, and the H2SO4 production rate phi H2SO4 = 2.2 x 10(12) cm-2 sec-1. The sulfur to sulfuric acid mass flux ratio in the clouds is 1 : 27 in this model, and the mass loading ratio may be larger than this value if sulfur particles are smaller than those of sulfuric acid. The model suggests that the extinction coefficient of sulfuric acid particles with radius 3.7 micrometers (mode 3) is equal to 0.3 km-1 in the middle cloud layer. The downward flux of CO is equal to 1.7 x 10(12) cm-2 sec-1 in this model. Our second model, which is constrained to yield fH2SO4 = 10 ppm at the lower cloud boundary, close to the value measured by the Magellan radiooccultations, predicts the position of this boundary to be at 46.5 km, which agrees with the Magellan data; fH2O(30 km) = 90 ppm, close to the data of Moroz et al. (1983) at this altitude; phi H2SO4 = 6.4 x 10(12) cm-2 sec-1; and phi co = 4.2 x 10(12) cm-2 sec-1. The S/H2SO4 flux mass ratio is 1 : 18, and the extinction coefficient of the mode 3 sulfuric acid particles is equal to 0.9 km-1 in the middle cloud layer. A strong gradient of the H2SO4 vapor mixing ratio near the bottom of the cloud layer drives a large upward flux of H2SO4, which condenses and forms the excessive downward flux of liquid sulfuric acid, which is larger by a factor of 4-7 than the flux in the middle cloud layer. This is the mechanism of formation of the lower cloud layer. Variations of the lower cloud layer are discussed. Our modeling of the OCS and CO profiles in the lower atmosphere measured by Pollack et al. (1993) provides a reasonable explanation of these data and shows that the rate coefficient of the reaction SO3 + CO --> CO2 + SO2 is equal to 10(-11) exp(-(13,100 +/- 1000)/T) cm3/s. The main channel of the reaction between SO3 and OCS is CO2 + (SO)2, and its rate coefficient is equal to 10(-11) exp(-(8900 +/- 500)T)cm3/s. In the conditions of Venus' lower atmosphere, (SO)2 is removed by the reaction (SO)2 + OCS --> CO + S2 + SO2. The model predicts an OCS mixing ratio of 28 ppm near the surface.  相似文献   

15.
We have searched for millimetre-wave line emission from ethylene oxide (c-C2H4O) and its structural isomer acetaldehyde (CH3CHO) in 11 molecular clouds using SEST. Ethylene oxide and acetaldehyde were detected through multiple lines in the hot cores NGC 6334F, G327.3-0.6, G31.41+0.31, and G34.3+0.2. Acetaldehyde was also detected towards G10.47+0.03, G322.2+0.6, and Orion 3'N, and one ethylene oxide line was tentatively detected in G10.47+0.03. Column densities and rotational excitation temperatures were derived using a procedure which fits the observed line intensifies by finding the minimum chi 2-value. The resulting rotational excitation temperatures of ethylene oxide and acetaldehyde are in the range 16-38 K, indicating that these species are excited in the outer, cooler parts of the hot cores or that the excitation is significantly subthermal. For an assumed source size of 20", the deduced column densities are (0.6-1)x10(14) cm-2 for ethylene oxide and (2-5)x10(14) cm-2 for acetaldehyde. The fractional abundances with respect to H2 are X[c-C2H4O]=(2-6)xl0(-10), and X[CH3CHO]=(0.8-3)x10(-9). The ratio X[CH3CHO]/X[c-C2H4O] varies between 2.6 (NGC 6334F) and 8.5 (G327.3-0.6). We also detected and analysed multiple transitions of CH3OH, CH3OCH3, C2H5OH, and HCOOH. The chemical, and possibly evolutionary, states of NGC 6334F, G327.3-0.6, G31.41+0.31, and G34.3+0.2 seem to be very similar.  相似文献   

16.
We present moderate-resolution (lambda/delta lambda = 300 to 370) reflectance spectra of Mars from 2.04 to 2.44 micrometers that were obtained at UKIRT during the 1993 opposition. Seven narrow absorption features were detected and found to have a Mars origin. By comparison with solar and Mars atmospheric spectra, five of these features were attributed all or in part to Mars atmospheric CO2 or CO(2.052 +/- 0.003, 2.114 +/- 0.002, 2.150 +/- 0.003, 2.331 +/- 0.001, and 2.357 +/- 0.002 micrometers). Two of the bands (2.331 +/- 0.001 and 2.357 +/- 0.002 micrometers) appear to have widths and depths that are consistent with additional, nonatmospheric absorptions, although a solar contribution cannot be entirely ruled out. Two other weak bands centered at 2.278 +/- 0.002 and 2.296 +/- 0.002 micrometers may be at least partially mineralogic in origin. The data provide no conclusive identification of the mineralogy responsible for these absorption features. However, examination of terrestrial spectral libraries and previous moderate spectral resolution mineral studies indicates that the most likely origin of these features is either (bi)carbonate or (bi)sulfate anions in framework silicates or (Fe, Mg)-OH bonds in sheet silicates. If the bands are caused by phyllosilicate minerals, then an explanation must be found for the extremely narrow widths of the cation-OH features in the Mars spectra as compared to terrestrial minerals.  相似文献   

17.
We have performed high-resolution spectral observations at mid-infrared wavelengths of CH4 (8.14 micrometers), C2H6 (12.16 micrometers), and C2H2 (13.45 micrometers) on Jupiter. These emission features probe the stratosphere of the planet and provide information on the carbon-based photochemical processes taking place in that region of the atmosphere. The observations were performed using our cryogenic echelle spectrometer CELESTE, in conjunction with the McMath-Pierce 1.5-m solar telescope between November 1994 and February 1995. We used the methane observations to derive the temperature profile of the jovian atmosphere in the 1-10 mbar region of the stratosphere. This profile was then used in conjunction with height-dependent mixing ratios of each hydrocarbon to determine global abundances for ethane and acetylene. The resulting mixing ratios are 3.9(+1.9)(-1.3) x 10(-6) for C2H6 (5 mbar pressure level), and 2.3 +/- 0.5 x 10(-8) for C2H2 (8 mbar pressure level), where the quoted uncertainties are derived from model variations in the temperature profile which match the methane observation uncertainties.  相似文献   

18.
Solar Mesosphere Explorer (SME) observations of the 3 a.m. 1.27 micrometers nightglow at 45 N latitude, averaged over the period 10-31 July 1984, are reported. From the deduced volume emission rates, we derive the O2(a1 delta g) night-time production rates for the 80-100 km altitude range. Utilizing the mean SME-acquired 3 p.m. ozone profile for the same latitude and time period and an updated photochemical model, we determine night-time O, O3, H, OH, HO2, and H2O2 profiles. These are used in calculating the rates of reactions which are sufficiently exothermic to produce O2(1 delta) or excited states of OH or HO2, which could transfer their energy to O2 to form O2(1 delta). Of these reactions, most have rates that are quite small compared with the observed night-time O2(1 delta) production rate. For several others, laboratory experiments have found O2(1 delta) yields which are insufficient for simulating the observed O2(1 delta). Using yields of O2(1 delta) based on published laboratory and observational studies, we find that the sum of two reaction sequences can approximate the SME measurements: (1) O+O+M and (2) H+O3 followed by OH*+O2.  相似文献   

19.
If the "11.3 microns" emission feature seen in the spectra of many planetary nebulae, H II regions, and reflection nebulae is due to polycyclic aromatic hydrocarbons (PAHs), then additional features should be present between 11.3 and 13.0 microns (885 and 770 cm-1). Moderate-resolution spectra of NGC 7027, HD 44179, IRAS 21282+5050, and BD + 30 degrees 3639 are presented which show that the "11.3 microns" feature actually peaks at 11.22 microns (891 cm-1). The spectra also show evidence of new emission features near 11.9 and 12.7 microns (840 and 787 cm-1). These are consistent with an origin from PAHs and can be used to constrain the molecular structure of the family of PAHs responsible for the infrared features. The observed asymmetry of the "11.3 microns" band is consistent with the slight anharmonicity expected in the C--H out-of-plane bending mode in PAHs. Laboratory experiments show that the intensity of this mode relative to the higher frequency modes depends on the extent of molecular "clustering." The observed strengths of the "11.3 microns" interstellar bands relative to the higher frequency bands are most consistent with the features originating from free molecular PAHs. The intensity and profile of the underlying broad structure, however, may well arise from PAH clusters and amorphous carbon particles. Analysis of the 11-13 microns (910-770 cm-1) emission suggests that the molecular structures of the most intensity emitting free PAHs vary somewhat between the high-excitation environment in NGC 7027 and the low-excitation but high-flux environment close to HD 44179. Finally, a previously undetected series of regularly spaced features between 10 and 11 microns (1000 and 910 cm-1) in the spectrum of HD 44179 suggests that a simple polyatomic hydride is present in the gas phase in this object.  相似文献   

20.
In this work 13 Planetary Nebulae have been classified as Type I according to Peimbert's criteria (Peimbert, 1978). These objects have been added to a previous sample (Maciel and Faúndez-Abans, 1985) and diagrams of O/H versus N/H, S/H, Ne/H and Ar/H, as well as N/H versus S/H, Ne/H and Ar/H have been drawn. All of them exhibit a tendency for linear correlation; moreover, the behavior of O and N versus Ar and S are very similar, with approximately the same slope. When the excitation class parameter was included in the diagrams, no clear tendency can be discerned, for any class.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号