首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Daytime Pc 3–4 pulsation activities observed at globally coordinated low-latitude stations [SGC (L = 1.8,λ = 118.0°W), EWA(1.15,158.1°W), ONW(1.3,141.5°E)] are evidently controlled by the cone angle θXB of the IMF observed at ISEE 3. Moreover, the Pc 3–4 frequencies (?) at the low latitudes and high latitude (COL; L = 5.6 and λ = 147.9°W) on the ground and that of compressional waves at geosynchronous orbit (GOES 2; L = 6.67 and λ = 106.7°W) are also correlated with the IMFmagnitude(BIMF).The correlation of ? of the compressional Pc 3–4 waves at GOES 2 against BIMF is higher than those of the Pc 3–4 pulsations at the globally coordinated ground stations, i.e., γ = 0.70 at GOES 2, and (0.36,0.60,0.66,0.54) at (COL, SGC, EWA, ONW), respectively. The standard deviation (σn = ± Δ? mHz) of the observed frequencies from the form ? (mHz) = 6.0 × BIMF (nT) is larger at the ground stations than at GOES 2, i.e., Δ? = ± 6.6 mHz atGOES 2, and ±(13.9, 9.1, 10.7, 12.1) mHz at (COL, SGC, EWA, ONW), respectively. The correlations between the IMF magnitude BIMF and Pc 3–4 frequencies at the low latitudes are higher than that at the high latitude on the ground, which can be interpreted by a “filtering action” of the magnetosphere for daytime Pc 3–4 magnetic pulsations. The scatter plots of pulsation frequency ? against the IMF magnitude BIMF for the compressional Pc 3–4 waves at GOES 2 are restricted within the forms ? = 4.5 × BIMFand ? = 7.5 × BIMF. The frequency distribution is in excellent agreement with the speculation (scΩi = 0.3 ~ 0.5) of the spacecraft frame frequency of the magnetosonic right-hand waves excited by the anomalous ion cyclotron resonance with reflected ion beams with V6 = 650 ~ 1150 km s?1 in the solar wind frame observed by the ISEE satellite in the Earth's foreshock. These observational results suggest that the magnetosonic right-handed waves excited by the reflected ion beams in the Earth's foreshock are convected through the magnetosheath to the magnetopause, transmitted into the magnetosphere without significant changes in spectra, and then couple with various HM waves in the Pc 3–4 frequency range at various locations in the magnetosphere.  相似文献   

2.
Aircraft measurements of O2(1Δg) emission made over a 10-yr period provide information on the variation of ozone with latitude and season in the altitude region 50–90 km. Between 50 and 70 km there appears to be little variation (< ± 25%) whereas the abundance between 80 and 90 km exhibits a large seasonal change north of 30°N and much less at lower latitude. At mid and high latitude the column abundance above ~ 80 km changes from ? 1 × 1014 cm?2 in summer to about 3 × 1014 cm?2 in winter. There are occasional enhancements in both the day and twilight airglow which almost always occur in association with auroral activity or, at least, where such activity is statistically most likely. These enhancements appear to reflect a corresponding increase in the ozone mixing ratio in the upper stratosphere. While the gradient in ozone mixing ratio with latitude is generally small at altitudes between 50 and 90km there are occasions when a temporary latitude structure can be seen, particularly above 80 km.  相似文献   

3.
Kenneth Fox 《Icarus》1975,24(4):454-459
The basis for “quasipolar” absorption (QPA) by CH4 is the existence of a small electric dipole moment in its ground state. The integrated intensity αQPA at a temperature of 90K is calculated to be between 4.8 × 10?5 and 1.9 × 10?2 cm?2 atm?1. With an assumed mean pressure of 0.1 atm and a relative abundance of [CH4][H2] = 1, it is estimated that the ratio of quasipolar to pressure-induced absorption (PIA) is 0.05 ? αQPA/αPIA ? 18 for the spectral range from 0 to 300 cm?1. This result suggests that quasipolar absorption may contribute to a weak, CH4-induced greenhouse in the atmosphere of Titan.  相似文献   

4.
5.
An attempt to determine the radiance of forward scattered sunlight from particles in lunar libration regions was made with the white light coronagraph on Skylab. The libration regions could not be distinguished against the solar K + F coronal background; an upper limit to the libration cloud radiance is determined to be 2·5 × 10?11B?, where B? is the mean radiance of the solar disk. Employing a model of the particle composition and size distribution which has been proposed for the interplanetary medium, we determine upper limits for the density enhancements in the libration region from the upper limit of the forward scattered radiance presented herein. Similarly, the actual spatial density enhancement is calculated using the earlier observations of the libration region backscattered radiance (Roach, 1975). Enhancements of a factor of 102–103 are thus determined, depending upon material composition and size distribution used. By combining the forward and backscatter observations, it is possible to eliminate from consideration clouds whose power law particle size distribution exponent k is 2·5 and complex index of refraction m is 1·33?0.05i and 1·50?0.05i (i.e. absorbing ice and quartz particles, respectively). Finally, the radiance contrast of a possible model libration cloud is calculated with respect to the K- and F-corona/zodiaal light background and is shown to be a maximum in the vicinity of solar elongation angle ~30 deg.  相似文献   

6.
The photodissociation of water vapour in the mesosphere depends on the absorption of solar radiation in the region (175–200 nm) of the O2 Schumann-Runge band system and also at H-Lyman alpha. The photodissociation products are OH + H, OH + H, O + 2H and H2 + O at Lyman alpha; the percentages for these four channels are 70, 8, 12 and 10%, respectively, but OH + H is the only channel between 175 and 200 nm. Such proportions lead to a production of H atoms corresponding to practically the total photodissociation of H2O, while the production of H2 molecules is only 10% of the H2O photodissociation by Lyman alpha.The photodissociation frequency (s?1) at Lyman alpha can be expressed by a simple formula
JLyαH2O=4.5 ×10?61+0.2F10.7?65100exp[?4.4 ×10?19 N0.917]
where F10.7 cm is the solar radioflux at 10.7 cm and N the total number of O2 molecules (cm?2), and when the following conventional value is accepted for the Lyman alpha solar irradiance at the top of the Earth's atmosphere (Δλ = 3.5 A?) qLyα,∞ = 3 × 1011 photons cm?2 s1?.The photodissociation frequency for the Schumann-Runge band region is also given for mesospheric conditions by a simple formula
JSRB(H2O) = JSRB,∞(H2O) exp [?10?7N0.35]
where JSRB,∞(H2O) = 1.2 × 10?6 and 1.4 × 10?6 s?1 for quiet and active sun conditions, respectively.The precision of both formulae is good, with an uncertainty less than 10%, but their accuracy depends on the accuracy of observational and experimental parameters such as the absolute solar irradiances, the variable transmittance of O2 and the H2O effective absorption cross sections. The various uncertainties are discussed. As an example, the absolute values deduced from the above formulae could be decreased by about 25-20% if the possible minimum values of the solar irradiances were used.  相似文献   

7.
Previous studies based on radio scintillation measurements of the atmosphere of Venus have identified two regions of small-scale temperature fluctuations located in the vicinity of 45 and 60 km. A global study of the fluctuations near 60 km, which are consistent with wind-shear-generated turbulence, was conducted using the Pioneer Venus measurements. The structure constants of refractive index fluctuations cn2 and temperature fluctuations cT2 increase poleward, peak near 70° latitude, and decrease over the pole; cn2 varies from 2 × 10?15 to 1.5 × 10?14m23 and cT2 from 4 × 10?3 to 7 × 10?2°K2m?23. These results indicate greater turbulent activity at the higher latitudes. In the region near 45 km the refractive index fluctuations and the corresponding temperature fluctuations are substantially lower. Based on the analysis of one representative occultation measurement, cn2 = 2 × 10?16m?23and cT2 = 7.3 × 10?4°K2m?23 in the 45-km region. The fluctuations in this region also appear to be consistent with wind-shear-generated turbulence. The turbulence level is considerably weaker than that at 60 km; the energy dissipation rate ε is 4.9 × 10?5m2sec?3 and the small-scale eddy diffusion coefficient K is 2 × 103 cm2 sec?1.  相似文献   

8.
A mechanism has been proposed for uv-accelerated desorption from Fe2+ sites on mineral surfaces that satisfies kinetic constraints determined in the laboratory by Huguenin. The process is an integral step of the photochemical weathering mechanism for producing dust on Mars, and it now appears that it may play primary roles in stabilizing CO2 against dissociation by sunlight and in controlling the oxidation state of the atmosphere. We propose that adsorption occurs at octahedrally coordinated Fe2+ surface sites to form seven-coordinate transition-state complexes. These complexes acquire 16–18 kcal mole?1 of ligand field stabilization energy. During illumination (λ ≤ 0.35 μm), electrons are photoemitted from the surfaced Fe2+, temporarily oxidizing them to Fe3+. Fe3+ has no ligand field stabilization energy, and the complexes lose 16–18 kcal mole?1 of stabilization energy. This is a large fraction of the 19- to 28-kcal mole?1 activation energy for dissociating the complexes, and desorption should proceed spontaneously. The gases that were observed to undergo adsorption-photodesorption include O2, CO2, CO, H2O, N2, and Ar. Photodesorption can drive several catalytic reactions, one of which is the oxidation of CO to CO2. The rate of this reaction should be limited by the supply of CO and O2 to the surface to ~2 × 1012 cm?2 sec?1 (column photodissociation rate of CO2). By including this surface reaction in models of Martian atmospheric CO2 chemistry, CO2 can be stabilized against photodissociation with eddy diffusion coefficients of only 3 × 105?1 × 107 cm2 sec?1 below 40 km, raising to ~ 109 cm2 sec?1 at 140 km. Odd hydrogen is not needed to catalyze the oxidation of CO below 40 km, and odd hydrogen mixing ratios need only to be fH ? 10?10 to depress ozone concentrations below the observed upper limit in equatorial regions. Another catalytic reaction that should be driven by photodesorption on Mars is 20H?(ads)H2O + 12O2(g) + 2e?crystal. This is an important source of atmospheric O2, amounting to 7 × 1013?2 × 1017 O2 molecules cm?2 yr?1, and it could have a significant effect on atmospheric oxidation state.  相似文献   

9.
The paper gives the results of detailed studies of the frequency spectra Ss(?) of the chain of the wave packets Fs(t) of geomagnetic pulsations PC-1 recorded at the Novolazarevskaya station. The bulk of the energy of Fs(t) is concentrated in the vicinity of the central frequencies ?s0 of spectra—the carrier frequencies of the signals. The velocity V0 ≌ 6.103km s?1 of the flux of protons generating these signals correspond to them. The spectra of the signals have oscillations—“satellites” irregularly distributed in frequency. These satellites, as the authors believe, testify to the presence of the individual groups of protons of low concentration whose velocities vary within 103–104 km s?1.Their energy is only of the order of 10?2–10?3 of the energy of the main proton flux. Clearly pronounced maxima on double and triple frequencies ? = 2?s0and 3?s0 are detected. They show that the generation of pulsations PC-1 is accompanied by the generation on the overtones of wave packets called in this paper “two-fold” and “three-fold” pulsations PC-1. Intensive symmetrical satellites of a modulation character have been discovered on frequencies ?±sK. Frequency differences Δ?sK± = ¦?s0 ? ?sK±¦ = (0.011,0.022 and 0.035) Hz correspond to them. The authors believe that the values of Δ?±sK are resonance frequencies of the magnetospheric cavity in which geomagnetic pulsations PC-1 are generated. It is established that the values of Δ?±sK coincide closely with the carrier frequencies of geomagnetic pulsations PC-3 and PC-4 generated in the magnetosphere. This leads to the conclusion that the resonance oscillations of the magnetospheric cavity are their source. Thus, the generation of geomagnetic pulsations of different types and resonance oscillations in the magnetosphere are integrated into a unified process. The importance of the results obtained and the necessity to check further their trustworthiness and universality, using experimental data gathered in different conditions, is stressed.  相似文献   

10.
New ion cyclotron whistlers which have the asymptotic frequency of one half the local proton gyrofrequency, Gp2, and the minimum (or equatorial) proton gyrofrequency, Gpm, along the geomagnetic field line passing through the satellite have been found in the low-latitude topside ionosphere from the spectrum analysis of ISIS VLF electric field data received at Kashima, Japan. Ion cyclotron whistlers with asymptotic frequency of Gpm or Gpm2 are observed only in the region of Bm >B2 or rarely Bm >B4, where B is the local magnetic field and Bm is the mini magnetic field along the geomagnetic field line passing through the satellite.The particles with one half the proton gyrofrequency may be the deuteron or alpha particle. Theoretical spectrograms of the electron whistlers (R-mode) and the ion cyclotron whistlers (L-mode) propagating along the geomagnetic field lines are computed for the appropriate distributions of the electron density and the ionic composition, and compared with the observed spectrograms.The result shows that the ion cyclotron whistler with the asymptotic frequency of Gp2 is the deuteron whistler, and that the ion cyclotron whistlers with the asymptotic frequency of Gpm or Gpm2 are caused by the trans-equatorial propagation of the proton or deuteron whistler from the other hemisphere.  相似文献   

11.
P. Drossart  T. Encrenaz 《Icarus》1982,52(3):483-491
The abundance of H2O is derived from the 1900- to 2100-cm?1 region of the Voyager 1 IRIS spectra. Scale variations of about a factor of 2 are seen in the water abundance between the North and South Equatorial Belts. Averaged over the full disk, the mixing ratio is H2OH2=(4.0±1.0) × 10?6, if H2O is uniformly mixed in the atmospheric region having temperatures of 230 to 270°K; this result implies a solar depletion by a factor of 100 in this region. In the belts, the best agreement is obtained for a H2O/H2 mixing ratio of 4.0 × 10?6 in the NEB and 7.2 × 10?6 in the SEB, assuming a constant mixing ratio.  相似文献   

12.
Results are given of the calculations of the group delay time propagating τ(ω, φ0) of hydromagnetic whistlers, using outer ionospheric models closely resembling actual conditions. The τ(ω, φ0) dependencies were compared with the experimental data of τexp(ω, φ0) obtained from sonagrams. The sonagrams were recorded in the frequency range ? ? (0.5?2.5) Hz at observation points located at geomagnetic latitudes φ0 = (53?66)° and in the vicinity of the geomagnetic poles. This investigation has led us to new and important conclusions.The wave packets (W.P.) forming hydromagnetic whistlers (H.W.) are mainly generated in the plasma regions at L = 3.5?4.0. This is not consistent with ideas already expressed in the literature that their generation region is L ? 3?10. The overwhelming majority of the τexp values differ considerably from the times at which wave packets would, in theory, propagate along the magnetic field lines corresponding to those of the geomagnetic latitudes φ0 of the observation points. The second important fact is that the W.P. frequency ω is less than ΩH everywhere along its propagation trajectory, including the apogee of the magnetic force line (ΩH is the proton gyrofrequency). Proton flux spectra E ? (30?120) keV, responsible for H.W. generation, were determined. Comparison of the Explorer-45 and OGO-3 measurements published in the literature, with our data, showed that the proton flux density energy responsible for the H.W. excitation Np(MV622) ? (5 × 10?3?10?1) Ha2 where Ha is the magnetic field force in the generation region of these W.P. The electron concentration is Na ? (102?103) cm?3. The values given in the literature are Na ? (10?10?103) cm?3. The e data considered also leads to the conclusion that the generating mechanism of the W.P. studied probably always co-exists with the mechanism of their amplification.  相似文献   

13.
S.V. Gavrilov  V.N. Zharkov 《Icarus》1977,32(4):443-449
We calculate the Love numbers kn for n = 2 to 10, and determine the “gravitational noise” from tides. The new values k2 for Jupiter, Saturn, and Uranus yield new estimates for the planetary dissipation functions: QJ ? 2.5 × 104, QS ? 1.4 × 104, QU ? 5 × 103.  相似文献   

14.
The Stokes parameters of resonance radiation scattered by a Na atom with the angular momentum F aligned by directed unpolarized radiation in a magnetic field H ~ 10?5?10?1 Oe are presented. An influence of the orientation of the magnetic field on these parameters are studied; the intensity ratio I(D2)I(D1) changes within ±5%, and the polarization degree P(D2) within ±25%. Measurements of I(D2)I(D1) and P(D2), if the geometry of scattering is known, may give information on the direction of the magnetic field in the sodium atmospheres of comets, as well as Io's sodium cloud or man-made cosmic clouds.  相似文献   

15.
An astrophysical electron acceleration process is described which involves turbulent plasma effects: the acceleration mechanism will operate in ‘collision free’ magnetoactive astrophysical plasmas when ion-acoustic turbulence is generated by an electric field which acts parallel to the ambient magnetic lines of force. The role of ‘anomalous’ (ion-sound) resistivity is crucial in maintaining the parallel electric field. It is shown that, in spite of the turbulence, a small fraction of the electron population can accelerate freely, i.e. runaway, in the high parallel electric potential. The number density n(B) of the runaway electron component is of order n(B)?n2(csU?)2, where n = background electron number density, cs = ion-sound speed and U? = relative drift velocity between the electron and ion populations. The runaway mechanism and the number density n(B) do not depend critically on the details of the non-linear saturation of the ion-sound instability.  相似文献   

16.
The cross-section for dissociative photoionization of hydrogen by 584 Å radiation has been measured, yielding a value of 5 × 10?20 cm2. The process can be explained as a transition from the X1 Σg+ ground state to a continuum level of the X2 Σg+ ionized state of H2 The branching ratio for proton (H+) vs molecular ion (H2+) production at this energy is 8 × 10?3. This process is quite likely an important source of protons in the Jovian ionosphere near altitudes where peak ionization rates are found.  相似文献   

17.
Measurements of N2+ and supporting data made on the Atmosphere Explorer-C satellite in the ionosphere are used to study the charge exchange process
O+(2D)+N2kN+2+O
The equality k = (5 ± 1.7) × 10?10cm3s?1. This value lies close to the lower limit of experimental uncertainty of the rate coefficient determined in the laboratory. We have also investigated atomic oxygen quenching of O+(2D) and find that the rate coefficient is 2 × 10?11 cm3s?1 to within approximately a factor of two.  相似文献   

18.
New characteristics of VLF chorus in the outer magnetosphere are reported. The study is based on more than 400 hours of broadband (0.3–12.5 kHz) data collected by the Stanford University/Stanford Research Institute VLF experiment on OGO 3 during 1966–1967. Bandlimited emissions constitute the dominant form of whistler-mode radiation in the region 4? L? 10. Magnetospheric chorus occurs mainly from 0300 to 1500 LT, at higher L at noon than at dawn, and moves to lower L during geomagnetic disturbance, in accord with ground observations of VLF chorus. Occurrence is moderate near the equator, lower near 15°, and maximum at high latitudes (far down the field lines). The centre frequency ? of the chorus band varies as L?3> and at low latitudes is closely related to the electron gyrofrequency on the dipole field line through the satellite. Based on the measured local gyrofrequency ?H, the normalized frequency distribution of chorus observed within 10° of the dipole equator shows two peaks, at ??H ? 0.53 and ??H ? 0.34. This bimodal distribution is a persistent statistical feature of near equatorial chorus, independent of L, LT and Kp. However there is considerable variability in individual events, with chorus often observed above, below, and between these statistical peaks; in particular, it is not unusual for single emissions to cross ??H = 0.50. When two bands are simultaneously present individual emission elements only rarely show one-to-one correlation between bands. For low Kp the median bandwidth of the upper band, gap and lower band are all ~16% of their centre frequencies, independent of L; for higher Kp the bandwidth of the lower band increases. Bandwidth also increases with latitude beyond ~10°. Starting frequencies of narrowband emissions range throughout the band. The majority of the emissions rise in frequency at a rate between 0.2 and 2.0 kHz/sec; this rate increases with Kp and decreases with L. Falling tones are rarely observed at dipole latitudes <2.5°. The observations are interpreted in terms of whistler-mode propagation theory and a gyroresonant feedback interaction model. An exact expression is derived for the critical frequency, ??H ? 0.5, at which the curvature of the refractive index surface vanishes at zero wave normal angle. Near this frequency rays with initial wave normal angles between 0° and ?20° are focused along the initial field line for thousands of km, enhancing the phase-bunching of incoming gyroresonant electrons. The upper peak in the bimodal normalized frequency distribution is attributed to this enhancement near the critical frequency, at latitudes of ~5°. Slightly below the critical frequency interference between modes with different ray velocities may contribute to the dip in the bimodal distribution. The lower peak may reflect a corresponding peak in the resonant electron distribution, or guiding in field-aligned density irregularities. The observations are consistent with gyroresonant generation of emissions near the equator, followed by spreading of the radiation over a range of L shells farther down the field lines.  相似文献   

19.
We have collected data on 241 galaxies from 13 sources and made a statistical analysis after reduction to a uniform system. We found that the Hubble sequence is one of increasing MHMT and MHLB, these mean values increasing monotonically from .0016 and .024 at E to .084 and .83 at Im, but the dispersion is large.The HI content in barred spiral is greater than that in ordinary spirals, and this is consistent with their statistics of angular momentum and colour.The HI content is related to colour; it is greater in bluer systems. The large dispersion suggests that it also depends on some other factors, but these are smoothed out when averaged over each type, resulting in a linear relation between 〈log(MMMT and 〈(B ? VOT)〉. Unlike the colour-colour diagram, the large dispersion on the log (MHLB) ? (B ? V0T) is not related to peculiar galaxies.  相似文献   

20.
Editorial     
The Galilean satellites Io, Europa, and Ganymede interact through several stable orbital resonances where λ1 ? 2λ2 + ω1 = 0, λ1 ? 2λ2 + ω2 = 180°, λ2 ? 2λ3 + ω2 = 0 and λ1 ? 3λ2 + 2λ3 = 180°, with λi being the mean longitude of the ith satellite and ωi the longitude of the pericenter. The last relation involving all three bodies is known as the Laplace relation. A theory of origin and subsequent evolution of these resonances outlined earlier (C. F. Yoder, 1979b, Nature279, 747–770) is described in detail. From an initially quasi-random distribution of the orbits the resonances are assembled through differential tidal expansion of the orbits. Io is driven out most rapidly and the first two resonance variables above are captured into libration about 0 and 180° respectively with unit probability. The orbits of Io and Europa expand together maintaining the 2:1 orbital commensurability and Europa's mean angular velocity approaches a value which is twice that of Ganymede. The third resonance variable and simultaneously the Laplace angle are captured into libration with probability ~0.9. The tidal dissipation in Io is vital for the rapid damping of the libration amplitudes and for the establishment of a quasi-stationary orbital configuration. Here the eccentricity of Io's orbit is determined by a balance between the effects of tidal dissipation in Io and that in Jupiter, and its measured value leads to the relation k1?1/Q1 ≈ 900kJ/QJ with the k's being Love numbers, the Q's dissipation factors, and f a factor to account for a molten core in Io. This relation and an upper bound on Q1 deduced from Io's observed thermal activity establishes the bounds 6 × 104 < QJ < 2 × 106, where the lower bound follows from the limited expansion of the satellite orbits. The damping time for the Laplace libration and therefore a minimum lifetime of the resonance is 1600 QJ years. Passage of the system through nearby three-body resonances excites free eccentricities. The remnant free eccentricity of Europa leads to the relation Q2/?2 ? 2 × 10?4 QJ for rigidity μ2 = 5 × 1011 dynes/cm2. Probable capture into any of several stable 3:1 two-body resonances implies that the ratio of the orbital mean motions of any adjacent pair of satellites was never this large.A generalized Hamiltonian theory of the resonances in which third-order terms in eccentricity are retained is developed to evaluate the hypothesis that the resonances were of primordial origin. The Laplace relation is unstable for values of Io's eccentricity e1 > 0.012 showing that the theory which retains only the linear terms in e1 is not valid for values of e1 larger than about twice the current value. Processes by which the resonances can be established at the time of satellite formation are undefined, but even if primordial formation is conjectured, the bounds established above for QJ cannot be relaxed. Electromagnetic torques on Io are also not sufficient to relax the bounds on QJ. Some ideas on processes for the dissipation of ideal energy in Jupiter yield values of QJ within the dynamical bounds, but no theory has produced a QJ small enough to be compatible with the measurements of heat flow from Io given the above relation between Q1 and QJ. Tentative observational bounds on the secular acceleration of Io's mean motion are also shown not to be consistent with such low values of QJ. Io's heat flow may therefore be episodic. QJ may actually be determined from improved analysis of 300 years of eclipse data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号