首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— During the early morning hours of the night of the peak of the annual Leonid meteor shower on 1998 November 17, a bright fireball (approximately ?12 to ?14 visual magnitude at 100 km in the zenith) was observed over northern New Mexico with visual sightings as far away from Los Alamos as Albuquerque (~150 km to the south of Los Alamos), including direct persistent trail observations at the U. S. A. F. Starfire Optical Range (SOR), which is also near Albuqerque. This event did not produce any sonic boom reports, presumably because of its high altitude. It was also detected locally by an infrared radiometer at Sandia National Laboratory and by an intensified charge-coupled device (CCD) camera located in Placitas, New Mexico. Subsequent investigations of the data from the six infrasound arrays used by Los Alamos National Laboratory (LANL) and operated for the Department of Energy as a part of the Comprehensive Test Ban Treaty (CTBT) Research and Development program for the International Monitoring System (IMS) showed the presence of an infrasonic signal from the proper direction at the correct time for this bolide from two of our six arrays (both located in Los Alamos). The infrasound recordings (i.e., the wave amplitude and period data) indicated that an explosion occurred in the atmosphere at a source height of ~93.5 km (with respect to sea level) or ~90 km with respect to the altitude of Los Alamos, having its origins slightly to the north and west of Los Alamos. Purely geometric solutions from the ground observers reports combined with direct measurements from the CCD camera at Placitas produced a source height of 91 ± 7 km. The signal characteristics analyzed from 0.5 to 3.0 Hz include a total duration of about 3–4 s for a source directed from Los Alamos toward 353.6 ± 0.4° measured from true north at a maximum elevation arrival angle of ~72.7°. The latter was deduced on the basis of the observed signal trace velocities (for the part of the recording with the highest cross-correlation) and ranged from a constant value of about 920–1150 m/s (depending on the window length used in the analysis) for a ray trajectory along a direct refractive path between the source and the Los Alamos arrays. The dominant signal frequency at maximum amplitude at Los Alamos was ~0.71 Hz. These highly correlated signals had a peak to peak, maximum amplitude of ~2.1 microbars (0.21 Pa). Using several methods that incorporate various observed signal characteristics, total distance traveled, etc., our analysis indicates that the bolide probably had a source energy of ~1.14 t (TNT equivalent) or 4.77 × 109 J. This is ~14.1× smaller than the source energy estimate made using the infrasonic, empirical source energy relationship for low-altitude stationary point sources developed in the 1960s by the Air Force Technical Applications Center (AFTAC), Patrick Air Force Base, Florida. This relation was originally developed, however, for much larger source energies and at much longer ranges.  相似文献   

2.
A geometrical optics technique developed in order to study energy transport by weak fast-mode hydromagnetic shock waves in a non-homogeneous, anisotropic medium has been applied to the problem of the heating of the chromosphere in the regions of intensified magnetic field which occur above the boundaries of supergranular cells. The results of the calculation indicate that there should be a temperature enhancement in the regions of the chromospheric network. This temperature enhancement is advanced as a possible mechanism for the origin of the observed calcium emission network.Publications of the Goethe Link Observatory, Indiana University, No. 106.Presently at Los Alamos Scientific Laboratories, Los Alamos, New Mexico.  相似文献   

3.
Observations of a coronal transient event were obtained in white light by the Skylab coronagraph and at metric wavelengths by the radioheliograph and spectrograph at Culgoora and the spectrograph-interferometer at Boulder. The continuum radio burst was found to originate above the outward-moving white light loop - a region of compressed material headed by a bow wave. The computed density in the region of radio emission, based on either gyro-synchrotron or harmonic plasma radiation mechanisms, was approximately 10 times the ambient coronal density; this is compatible with the density deduced from the white light observations. The magnetic energy density derived from the radio observations was greater than 10 times the thermal energy density, marginally larger than the kinetic energy density in the fastest moving portion of the transient, and considerably larger in most other regions. The ambient medium, the white light front, the compression region, the loop, and the slower, massive flow of material behind are each examined. It is found that the plasma was magnetically controlled throughout, and that magnetic forces provided the principal mechanism for acceleration of the transient material from the Sun.Also, High Altitude Observatory, National Center for Atmospheric Research, Boulder, Colorado.Now at Los Alamos Scientific Laboratory, Los Alamos, New Mexico.The National Center for Atmospheric Research is sponsored by the National Science Foundation.On leave from Institute of Applied Physics, University of Berne, Switzerland.Also, Division of Radiophysics, CSIRO, Sydney, Australia.  相似文献   

4.
We discuss the effect of the uncertainties affecting the opacities on the derived characteristics of the Sun. We consider two sources of uncertainty: the relative composition of the Sun at birth and the difference between two opacity calculations. As an illustration, we discuss the effect of the choice of photospheric or meteoritic iron abundance on the predicted chlorine neutrino capture rate and present comparisons between the Los Alamos and Limeil opacity calculations.Send offprints requests to S. Turck-Chièze.  相似文献   

5.
In this paper we point out the existence of a special class of solutions to the nonlinear hydrodynamic equations describing the time-dependent solar wind, namely that for which the velocity profile is time-invariant but the density at each point of the corona changes exponentially with time. Theoretical velocity curves are calculated for the case of isothermal expansion and compared with the Parker model for steady-state expansion. These solutions can be used to obtain quantitative estimates for the degree of departure from the latter of a real corona undergoing evolution on a finite time scale.On leave from Los Alamos Scientific Laboratory, Los Alamos, N.M., U.S.A.  相似文献   

6.
Jordanova  V.K.  Thorne  R.M.  Farrugia  C.J.  Dotan  Y.  Fennell  J.F.  Thomsen  M.F.  Reeves  G.D.  McComas  D.J. 《Solar physics》2001,204(1-2):361-375
We study the development of the terrestrial ring current during the time interval of 13–18 July, 2000, which consisted of two small to moderate geomagnetic storms followed by a great storm with indices Dst=−300 nT and Kp=9. This period of intense geomagnetic activity was caused by three interplanetary coronal mass ejecta (ICME) each driving interplanetary shocks, the last shock being very strong and reaching Earth at ∼ 14 UT on 15 July. We note that (a) the sheath region behind the third shock was characterized by B z fluctuations of ∼35 nT peak-to-peak amplitude, and (b) the ICME contained a negative to positive B z variation extending for about 1 day, with a ∼ 6-hour long negative phase and a minimum B z of about −55 nT. Both of these interplanetary sources caused considerable geomagnetic activity (Kp=8 to 9) despite their disparity as interplanetary triggers. We used our global ring current-atmosphere interaction model with initial and boundary conditions inferred from measurements from the hot plasma instruments on the Polar spacecraft and the geosynchronous Los Alamos satellites, and simulated the time evolution of H+, O+, and He+ ring current ion distributions. We found that the O+ content of the ring current increased after each shock and reached maximum values of ∼ 60% near minimum Dst of the great storm. We calculated the growth rate of electromagnetic ion cyclotron waves considering for the first time wave excitation at frequencies below O+ gyrofrequency. We found that the wave gain of O+ band waves is greater and is located at larger L shells than that of the He+ band waves during this storm interval. Isotropic pitch angle distributions indicating strong plasma wave scattering were observed by the imaging proton sensor (IPS) on Polar at the locations of maximum predicted wave gain, in good agreement with model simulations.  相似文献   

7.
Coronal mass ejection transients observed with the white light coronagraph on Skylab are found to be associated with several other forms of solar activity. There is a strong correlation between such mass ejection transients and chromospheric H activity, with three-quarters of the transients apparently originating in or near active regions. We infer that 40% of transients are associated with flares, 50% are associated with eruptive prominences solely (without flares), and more than 70% are associated with eruptive prominences or filament disappearances (with or without flares). Nine of ten flares which displayed apparent mass ejections of H-emitting material from the flare site could be associated with coronal transients. Within each class of activity, the more energetic events are more likely to be associated with an observable mass ejection.Now at Los Alamos Scientific Laboratories, Los Alamos, NM., U.S.A.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

8.
The High Altitude Observatory's white light coronagraph aboard Skylab observed some 110 coronal transients - rapid changes in appearance of the corona - during its 227 days of operation. The longitudes of the origins of these transients were not distributed uniformly around the solar surface (51 of the 100 events observed in seven solar rotations arose from a single quadrant of longitude). Further, the frequency of transient production from each segment of the solar surface was well correlated with the sunspot number and Ca ii plage (area × brightness) index in the segment, rotation by rotation. This correlation implies that transients occur more often above strong photospheric and chromospheric magnetic fields, that is, in regions where the coronal magnetic field is stronger and, perhaps, more variable. This pattern of occurrence is consistent with our belief that the forces propelling transient material outward are, primarily, magnetic. A quantitative relation between transient production from an area and the Zürich sunspot number appropriate to that area is derived, and we speculate that the relation is independent of phase in the solar activity cycle. If true, the Sun may give rise to as many as 100 white light coronal transients per month at solar cycle maximum.Currently at Los Alamos Scientific Laboratory, Los Alamos, N.M., U.S.A.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

9.
G. Poletto  R. A. Kopp 《Solar physics》1988,116(1):163-178
On 21–22 May, 1980 the HXIS instrument aboard SMM imaged an enormous, more-or-less stationary, X-ray arch structure near the position of a large two-ribbon flare which immediately preceded it in time. As described by vestka et al. (1982), the arch remained visible for up to 10 hours. Previous inferences of the height, orientation, and physical parameters of this feature have been based largely on the X-ray data and on radio observations of the associated stationary Type I noise storm. In the present paper we use the observed photospheric line-of-sight magnetic field distribution to compute, in the current-free approximation, the three-dimensional topology of the coronal field above the flare site. Comparing the HXIS intensity contours of the arch to the projected shapes of the field lines suggests that the arch is indeed aligned with certain coronal flux tubes and allows an independent determination of the geometrical arch parameters to be made. This procedure indicates that the true height of the arch is about 70000 km, i.e., appreciably less than was suggested previously (although it is still certainly to be classified as a giant feature of the post-flare evolution).These results suggest that the arch may be a by-product of magnetic reconnection occurring far above the flare site, analogous to the post-flare loops seen at lower heights. Unlike the latter, however, the field lines undergoing reconnection here link more distant parts of the active region; i.e., they do not represent direct linkages across the magnetic neutral line and thus appear to be topologically quite distinct from those which thread the underlying post-flare loops. In fact, of this group of peripheral field lines, the arch could simply comprise the lowest-lying ones to have been opened up by the flare process (and the first to reconnect again). This would explain why both the arch and the post-flare loops were visible early in the decay phase, being products of separate reconnection processes. Moreover, because of the lower plasma density and longer cooling times of the arch, this feature persisted long after the post-flare loops faded from view. A calculation of the magnetic energy liberated by reconnection shows that this process is easily capable of satisfying the overall energy requirements of the arch (the latter as determined from observations).On leave from Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A.  相似文献   

10.
In a previous paper (Berman, in Astrophys. Space Sci., 2011), we showed how to prove the two Pioneers Anomalies, and now we add the fly-bys, by means of a rotating Universe. We discuss Einstein’s Machian program, which we find as being fullfilled. Godlowski et al. (Los Alamos Archives, 2003) idea for a rotating General Relativistic Universe, led us to the adopted model. Updated evidence on rotation is cited (Godlowski, in Los Alamos Archives, 2011; Ni in Phys. Rev. Lett. 107(5):051103, 2011). We conclude that a rotating and expanding Universe may be the unique solution to the apparent divergences between Einstein and Mach. This is cosmologically important.  相似文献   

11.
Equatorial charge-exchange lifetimes of ring current protons are recalculated, and the decay of a collection of ring current protons trapped on an L-shell by the charge-exchange mechanism is determined using recent models of the hydrogen geocorona. Observational results pertaining to the decay of ring current energy are briefly discussed, as are a number of competing loss mechanisms. Since charge exchange is a simple physical process which is very efficient in removing ring current energy from L-shells near to the Earth (say, L < 4), it is suggested that it may well be the dominant loss mechanism in this region.  相似文献   

12.
An indicator of galactic violence is proposed, nominally equal to the total galactic mass divided by the rim radius. Four models of galaxy formation are outlined; and for each, the dependence of the rim radius on the galactic mass and the source of angular momentum is examined. If the violence indicator is small, then a normal galaxy results. If the violence indicator is large, then a galaxy with a very massive central black hole is produced (possibly a quasar). A rim radius of zero would indicate the ultimate violence and would lead directly to a non-rotating black hole of galactic mass.Los Alamos National Laboratory is operated by the University of California for the U.S. Dept. of Energy under Contract W-7405-ENG-36.  相似文献   

13.
We have discovered a correlation between the Venera spacecraft locations and the gamma-ray burst positions reported in the KONUS catalog (Mazetset al., 1981a). The reason for the correlation is not clear, but it could be due to spatial selection effects and/or large localization errors for weak of soft bursts. Whatever the cause, it seems likely that this systematic bias might significantly affect catalog results pertaining to gamma burst locations, intensity distributions, and spectra. For example, it can explain why the KONUS galactic latitude distribution is peaked significantly south of the galactic equator. Apparent discrepancies between the KONUS and Los Alamos gamma burst data bases are noted.  相似文献   

14.
In the present paper the radiation production and energy deposition by ring current protons precipitated along magnetic field lines into the mid-latitude upper atmosphere is investigated. Specifically, we are interested in protons lost from the ring current by plasma instabilities. We first determine the magnitude and sharpness of the atmospheric loss cone. We then study the behavior of the precipitated hydrogen particles in the denser atmosphere using a Monte Carlo calculation. It is found that the energy deposition and radiation production will critically depend on how far the ring current protons diffuse into the loss cone before being neutralized in the atmosphere; this in turn will depend on the strength of the plasma turbulence in the ring current belt region.  相似文献   

15.
Magnetic reconnection in the corona and the loop prominence phenomenon   总被引:4,自引:0,他引:4  
Many classes of transient solar phenomena, such as flares, flare sprays, and eruptive prominences, cause major disruptions in the magnetic geometry of the overlying corona. Typically, the results from Skylab indicate that pre-existing closed magnetic loops in the corona are torn open by the force of the disruption. We examine here some of the theoretical consequences to be expected during the extended relaxation phase which must follow such events. This phase is characterized by a gradual reconnection of the outward-distended field lines. In particular, the enhanced coronal expansion which occurs on open field lines just before they reconnect appears adequate to supply the large downward mass fluxes observed in Ha loop prominence systems that form during the post-transient relaxation. In addition, this enhanced flow may produce nonrecurrent high speed streams in the solar wind after such events. Calculations of the relaxation phase for representative field geometries and the resulting flow configurations are described.New address: Los Alamos Scientific Laboratory, Los Alamos, N.M. 87545, U.S.A.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

16.
The dimensional analysis of the energy transfer from the solar wind to the magnetosphere is formulated to include the effect of finite lifetime of the ring current particles. It is found that the solar wind energy input rate should be re-evaluated by considering the lifetime of the ring current particles.  相似文献   

17.
Interpretations of current and past results from ground-based solar diameter measurements, as well as the planning of scientific programs for the 1980's, are strongly dependent on the perceived level of the degrading effects of the Earth's atmosphere. One of the more effective approaches has been to design the observing program and the subsequent data analysis such that the solar diameter measurements themselves could provide an evaluation of atmospheric effects. Many important results have been obtained in studies of this type and these results are collected here to help in appraising the current situation. This evidence all points in one direction: the Earth's atmosphere, while complicating the design of observational programs, is not the source of the oscillations observed in solar diameter measurements. Further, this same evidence indicates that the Earth's atmosphere will not pose any serious limitations in ground-based solar diameter studies during the 1980's.  相似文献   

18.
Ralph B. Baldwin 《Icarus》1981,45(3):554-563
From estimates of the total masses of tektites in three strewnfields, calculations by Orphal et al. (1980) of the amount of melt that could be ejected from impact craters, and equations relating kinetic energy of impact to crater diameter, it is possible to calculate minimum diameters of lunar craters capable of ejecting the liquid masses that could have formed the various tektite strewnfields. No lunar craters of the requisite sizes have been found that are young enough to correlate with the dates of formations of the strewnfields and it seems clear that the Moon must be eliminated as a source of tektites on the Earth. It is concluded that the associations of the Ivory Coast tektites with the Bosumtwi crater and the moldavites with the Rieskessel are real and the tektites are of terrestrial origin. It follows that if the Ivory Coast tektites came from the 10.5-km-wide Bosumtwi crater, the larger masses in the Australasian and North American strewnfields came from craters 17 km in diameter and between 33 and 65 km in diameter, respectively. No crater has yet been proven to be the parent of the Australisian tektites. The large crater that formed the North American tektites may not yet have been found, although the Mistastin Lake Crater may eventually be proven to be the source.  相似文献   

19.
The precipitation patterns of 6 keV protons at 10° and 80° pitch angles have been mapped at altitudes <1500 km from the ESRO 1A and 1B spacecraft. Equatorward of the trapping boundary, a region of isotropic precipitation, bounded on its equatorward border by a region of anisotropic (depleted loss cone) precipitation, is always observed. The latitudinal location of this transition appears to be nearly spatially coincident with the plasmapause. Similar precipitation patterns are shown to exist for higher energy protons. The general absence of enhanced precipitation at the plasmapause suggests that the inner boundary of the ring current is not usually produced by an enhanced proton pitch angle diffusion process. The isotropic precipitation observed beyond the plasmapause is most consistent with the occurence of an electrostatic instability throughout the ring current zone. It is doubtful whether the proposed cold Li plasma seeding experiments beyond the plasmapause could significantly increase the observed natural proton precipitation rates.  相似文献   

20.
As a component of the Flash Center’s validation program, we compare FLASH simulation results with experimental results from Los Alamos National Laboratory. The flow of interest involves the lateral interaction between a planar M a = 1.2 shock wave with a cylinder of gaseous sulfur hexafluoride (SF6) in air, and in particular the development of primary and secondary instabilities after the passage of the shock. While the overall evolution of the flow is comparable in the simulations and experiments, small-scale features are difficult to match. We focus on the sensitivity of numerical results to simulation parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号