共查询到20条相似文献,搜索用时 0 毫秒
1.
We report observations of MeV heavy ions made with Explorer 45 in the earth's radiation belts during the 7-month period June–December 1972 when four major magnetic storms occurred. Significant fluxes of ions heavier than fluorine (i.e. with nuclear charge Z ? 9) were observed stably trapped in the interior of the radiation belts at L ~ 2–4. These energetic very heavy ions, were found to appear suddenly during the August 1972 magnetic storm period and their fluxes decayed during the following months on time scales typically several tens of days. Simultaneously, strong increases in the geomagnetically trapped MeV helium and CNO ion fluxes were observed, and the post-injection flux decay of these ions was found to be slower than that of the Z ? 9 ions. The relative enhancements in trapped fluxes during the storm increased with increasing ion mass and/or increasing ion energy. 相似文献
2.
Autospectra in the 2–13 month range, computed from mean monthly horizontal intensity on quiet days at Trivandrum, situated close to the dip equator, suggest an exceedingly large semi-annual modulation of the field confined to an interval of about 5 hr centred at 1000 LT. The amplitude of the semi-annual oscillation at this station, derived from power density, is greater than 19 γ at 1000 LT. Between 1900 and 0500 LT, spectral lines, corresponding to a period of six months, are not observed above the continuum. Spectral densities from observations at two other electrojet stations in India, Kodaikanal and Annamalainagar, and at Alibag, outside the electrojet, establish the existence of an appreciable enhancement of the semi-annual oscillation of the field in the equatorial electrojet belt. Similar computations of spectra using observations on all days, however, suggest a secondary component in the evening sector. This component is not enhanced in the equatorial electrojet belt. It is concluded that while in low latitudes the daytime component is largely associated with the modulation of Sq currents, in the electrojet belt it appears to be due entirely to a semi-annual modulation of the equatorial electrojet. It is also concluded that the secondary component, observed in the evening sector in low latitude and equatorial stations, is associated purely with the modulation of the ring current by disturbance. The two components of the semi-annual variation observed at the Indian stations have also been noticed at several stations between geomagnetic latitudes N54.6° and S41.8°. It is also observed that the association of the semi-annual component with geomagnetic latitude is confined to the evening-night component. 相似文献
3.
W.M. Pickering 《Planetary and Space Science》1973,21(6):1073-1075
The diffusive motion of initially ellipsoidal plasma irregularities or ion clouds in the Earth's upper atmosphere is studied theoretically using a model similar to that described by Pickering (1972) for an initially spherical cloud. The work presented here concerns irregularities with major to minor axis ratio between 10:1 and 200:1 at each of the altitudes 97.5 km, 102 km and 114 km (where the ionization could be produced by meteors) and between approximately 200:1 and 1000:1 for altitudes 210 km and 300 km. In particular the effect of the space-charge electric field on the nature of the diffusion process is discussed. The possible effects of ionospheric electric fields and possible relevance to artificial Ba+ clouds released in the upper atmosphere are discussed in the second section. 相似文献
4.
Measurements of energetic heavy ions using the Explorer 45 and ATS-6 satellites are reviewed and the resulting implications for theory are evaluated. The measured ions are basically protons and helium ions in the energy range from 0.1 to 1 MeV/nucleon. The equatorial energetic ion distributions inside L = 4.5 are found to be very stable for extended periods of time. These ions are very closely confined to the equatorial plane and are sharply peaked as a function of L around a value designated as Lmax. Beyond L = 5.0 the fluxes of these ions are more variable with order of magnitude variations being observed at L = 6.6 on the time scales of minutes, hours, or days. The region inside L = 4.5 appears to be well described by radial diffusive transport driven by fluctuations in the geomagnetic field coupled with losses due to charge exchange and Coulomb interactions with ambient hydrogen geocorona and terrestrial plasma environment. From an analysis relating the position in L-value of the maximum intensity, Lmax, observed for a given ion species and energy, it is argued that the influence of fluctuations in the convection electric field as discussed by Cornwall (1972) are not effective in radially diffusing in L ions with energies greater than a few hundred kiloelectron volts per nucleon. The source of these ions remains basically undetermined and its determination must await further measurements. 相似文献
5.
Measurements of the 1.4 GHz emission from Jupiter made when DE was 3°·1 show the circular polarization to vary from +0.8 to ?1.1% as the planet rotates. The rms scatter of the points about the mean curve is only 0.09%. Expressed as a function of Jovian magnetic latitude the polarization at first increases linearly but beyond latitudes ~7° the curve flattens. This shape requires that the radiating electrons have a pitch angle distribution similar to that inferred earlier from the beaming and linear polarization. The magnitude of the circular polarization requires an equatorial magnetic flux density in the belt of about 0.3G, consistent with the Pioneer results.Compared with measurements made one orbital period earlier, the total flux density has decreased by 15%, but the beaming has not changed appreciably. 相似文献
6.
7.
8.
9.
Ignacio R. Ferrín 《Icarus》1975,26(1):45-52
“Condensations” of light have been observed when Saturn's rings are seen almost edge on, and the Sun and the Earth are on opposite sides of the ring plane. These condensations are associated with ring C and Cassini's division. If the relative brightness between the two condensations and the optical thickness of ring C are known, we can calculate the optical thickness of Cassini's division, τCASS. Using Barnard's and Sekiguchi's measurements, we have obtained 0.01 ? τCASS ? 0.05. A brightness profile of the condensations which agrees well with visual observations is also presented.We are able to set an upper limit of about 0.01 for the optical thickness of any hypothetical outer ring. This rules out a ring observed by C. Cragg in 1954, but does not eliminate the D′ ring observed by Feibelman in 1967.It is known that the outer edge of ring B is almost at the position of the 1/2 resonance with Mimas. Franklin, Colombo, and Cook explained this fact in 1971, postulating a total mass of ring B of 10?6MSATURN. We have derived a formula for the mass of the rings, which is a linear function of the mean particle size. We find that 10?6MSATURN implies large particles (~70m). If the particles are small (~10cm), as currently believed, the total mass of ring B is not enough to shift the outer edge. We conclude that the above explanation and current size estimates are inconsistent. 相似文献
10.
《Planetary and Space Science》1986,34(2):125-129
The spatial distributions of energetic ion and electron bursts observed on the IMP 7 and 8 satellites in the Earth's magnetotail were studied. It was found that the ion bursts were more frequently detected in the dusk than in the dawn quarter of the neutral sheet whereas the electron bursts, more frequently in the dawn than the dusk quarter. The degree of dawn-dusk asymmetry is however energy dependent; the distribution for higher energy particle bursts exhibits higher degree of asymmetry. The morphologies of the distributions manifest themselves as seasonal variations of the most probable solar ecliptic latitudes at which the ion and electron bursts were observed. The amplitudes of the variations are about 25° with the seasonal variation for ions leading that for electrons by about 2 months. 相似文献
11.
12.
Four-color photographic photometry of Saturn for the 1977–1979 apparitions has been analyzed to determine the dependence of ring brightness on wavelength, solar phase angle, ring particle orbital phase angle (azimuthal effect), declination of the Earth relative to the ring plane (tilt angle), and radial distance from Saturn. Azimuthal brightness variations up to ±20% relative to the ansae are clearly apparent for the maximum of ring A, but are not detectable for ring B or the outer portion of ring A. The shape of the intensity (I) versus orbital phase angle (θ) curve varies with ring tilt (B) and probably with wavelength, and shows 180° symmetry. As characterized by its slope near the ansae, this curve suggests that the azimuthal effect increases as B decreases from 26 to ≈11°. The phase curves l(α) for the ansae show very little dependence on ring tilt (26° > B > 6°), on wavelength, or on radial distance from Saturn; possibly the curves are somewhat steeper at the smallest tilt angles and for ring A relative to ring B. The radial profile of both rings becomes flatter with decreasing tilt angle and with decreasing wavelength. The latter effect is a natural result of the classical, many-particle-thick ring model. 相似文献
13.
The differential flux and energy spectra of solar cosmic ray heavy ions of He, C, O, Ne, Mg, Si, and Fe were determined in the energy interval E = 3–30 MeV amu-1 for two large solar events of January 24, 1971 and September 1, 1971 in rocket flights made from Ft. Churchill. From these data the relative abundances and the abundance enhancement factors, ξ, relative to photospheric abundances were obtained for these elements. Similar results were obtained for a third event on August 4, 1972 from the available published data. Characteristic features of ξ vs nuclear charge dependences were deduced for five energy intervals. The energy dependence of ξ for He shows a moderate change by a factor of about 3, whereas for Fe, ξ shows a very dramatic decrease by a factor of 10–20 with increasing energy. It is inferred that these abundance enhancements of solar cosmic ray heavy ions at low energies seem to be related to their ionization states (Z *) and hence studies of Z * can give information on the important parameters such as temperature and density in the accelerating region in the Sun. 相似文献
14.
Roger N. Clark 《Icarus》1980,44(2):388-409
The reflectance spectra of Ganymede, Europa, Callisto, and Saturn's rings are analyzed using recent laboratory reflectance studies of water frost, water ice, and water and mineral mixtures. It is found that the spectra of the icy Galilean satellites are characteristic of water ice (e.g., ice blocks or possibly very large ice crystals ? 1 cm) or frost on ice rather than pure water frost, and that the decrease in reflectance at visible wavelengths is caused by other mineral grains in the surface. The spectra of Saturn's rings are more characteristic of water frost with some other mineral grains mixed in the frost but not on the surface. The impurities on all these objects are not in spectrally isolated patches but appear to be intimately mixed with the water. The impurity grains appear to have reflectance spectra typical of minerals containing Fe3+. Some carbonaceous chondrite meteorite spectra show the necessary spectral shape. Ganymede is found to have more water ice on the surface than previously thought (~90 wt%), as is Callisto (30–90 wt%). The surface of Europa has a vast frozen water surface with only a few percent impurities. Saturn's rings also have only a few percent impurities. The amount of bound water or bound OH for these objects is 5 ± 5 wt% averaged over the entire surface. Thus with the small amount of nonicy material present on these objects, no hydrated minerals can be ruled out. A new absorption feature is identified in Ganymede, Callisto, and probably Europa at 1.5 μm which is also seen in the spectra of Io but not in Saturn's rings. This feature has not been seen in laboratory studies and its cause is unknown. 相似文献
15.
Starting with the assumption that negatively charged micron-sized dust grains may be elevated above Saturn's ring plane by plasma interactions, the subsequent evolution of the system is discussed. The discharge of the fine dust by solar uv radiation produces a cloud of electrons which moves adiabatically in Saturn's dipolar magnetic field. The electron cloud is absorbed by the ring after one bounce, alters the local ring potential significantly, and reduces the local Debye length. As a result, more micron-sized dust particles may be elevated above the ring plane and the spoke grows. This process continues until the electron cloud has dissipated. 相似文献
16.
A.M.T. Pollock 《Astronomische Nachrichten》2012,333(4):351-354
Charge exchange occurs between charged ions with enough energy to overcome Coulomb repulsion, a condition satisfied for collisions at velocities like those of the winds driven from hot stars by radiation pressure. X‐ray line ratios in some hot stars are inconsistent with those expected from thermal plasmas excited by electron impact. Ion‐ion interactions including charge exchange might be responsible instead if high‐velocity collisions between ions are enabled by the presence of a magnetic field in the wind, suggesting a possible alternative mechanism to the widely accepted instability‐driven shock model. The nature of a plasma in charge‐exchange equilibrium is yet to be determined (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
17.
Abstract— We present the basic differential equations of meteor physics (the single body equations). We solve them numerically including two possible types of fragmentation: into large pieces and into a cluster of small fragments. We have written a Fortran code that computes the motion, ablation and light intensity of a meteoroid at chosen heights, and allows for the ablation and shape density coefficients σ and K, as well as the luminous efficiency τ, to be variable with height/time. We calibrated our fragmentation model (FM) by the best fit to observational values for the motion, ablation, radiation, fragmentation and the terminal masses (recovered meteorites) for the Lost City bolide. The FM can also handle multiple and overlapping meteor flares. We separately define both the apparent and intrinsic values of σ, K, and τ. We present in this paper values of the intrinsic luminous efficiency as function of velocity, mass, and normalized air density. Detailed results from the successful application of the FM to the Lost City, Innisfree, and Benesov bolides are also presented. Results of applying the FM to 15 bolides with very precise observational data are presented in a survey mode (Table 7). Standard deviations of applying our FM to all these events correspond to the precision of the observed values. Typical values of the intrinsic ablation coefficient are low, mostly in the range from 0.004 to 0.008 s2 km?2, and do not depend on the bolide type. The apparent ablation coefficients reflect the process of fragmentation. The bolide types indicate severity of the fragmentation process. The large differences of the “dynamic” and “photometric” mass from numerous earlier studies are completely explained by our FM. The fragmentation processes cannot be modeled simply by large values of the apparent ablation coefficient and of the apparent luminous efficiency. Moreover, our new FM can also well explain the radiation and full dynamics of very fast meteoroids at heights from 200 km to 130 km. 相似文献
18.
A theoretical model of the acceleration region of the solar wind with major species (p, , e) and minor ions (e.g., 3He, C, O, Mg, Si) is presented. Observed n
e
-profiles and the equations of continuity and momentum are used to calculate profiles of T, n, and u for all species, as well as charge states of minor ions. The disagreement of the results of a pure p-e model with observations is discussed in some detail, and it is shown that a model consistent with observations both in the corona and at 1 AU requires a finite abundance of He+ +. This model predicts a strong enhancement of He/H in the lower corona. The results for the frozen-in charge states in the p--e model are in agreement with measurements in the low speed solar wind, especially for the well determined pair O6+/O7+. Finally, a model for a coronal hole is investigated and it is found that wave pressure is necessary to model successfully the observed solar wind speeds and abundances.Although various simplifying assumptions had to be introduced, care was taken to ensure that the model remains physically consistent, i.e., that the same physics is used for the major species as well as the minor ions. 相似文献
19.
We suggest that spokes consist of charged micron-sized dust particles elevated from the rings by radially moving dense plasma columns created by meteor impacts on the ring. Dense plasma causes electrostatic wall-sheaths at the ring and charging of the ring with electric fields strong enough to overcome the gravitational force on small dust particles. Under “ordinary” conditions only very few dust particles will be elevated as the probability of a dust particle having at least one excess electronic charge is very low. Dense plasma raises this probability significantly. The radial motion of the plasma column is due to an azimuthal polarization electric field built up by the relative motion between the corotating plasma and the negatively charged dust particles which move with a Keplerian speed. 相似文献
20.
A.P. Ingersoll 《Icarus》1976,29(2):245-253
Three new results of the Pioneer 10 and 11 mission are discussed. The first is that effective temperature is the same at the poles and equator in spite of the large differences in solar energy deposition. This is consistent with theories of convection which suggest that an extremely small equator-to-pole temperature difference at the level of infrared emission could suppress the internal heat flux at the equator relative to the pole by an amount sufficient to balance the difference in solar energy deposition.The second result is that the effective temperature of belts is 3 to 4K greater than that of zones, which is almost exactly accounted for by the lower albedo of belts. This result cannot be interpreted uniquely, but is consistent with a model in which the internal heat flux is the same under belts and zones, and the horizontal atmospheric heat flux is zero.The third observation provides evidence of instability along the south edges of zones in the northern hemisphere. These are the latitudes of minimum prograde velocity, where instability is most likely to occur in a barotropic fluid, as pointed out by Ingersoll and Cuzzi (1969). A more realistic baroclinic stability analysis suggests instability at these same latitudes. 相似文献