首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aircraft measurements of O2(1Δg) emission made over a 10-yr period provide information on the variation of ozone with latitude and season in the altitude region 50–90 km. Between 50 and 70 km there appears to be little variation (< ± 25%) whereas the abundance between 80 and 90 km exhibits a large seasonal change north of 30°N and much less at lower latitude. At mid and high latitude the column abundance above ~ 80 km changes from ? 1 × 1014 cm?2 in summer to about 3 × 1014 cm?2 in winter. There are occasional enhancements in both the day and twilight airglow which almost always occur in association with auroral activity or, at least, where such activity is statistically most likely. These enhancements appear to reflect a corresponding increase in the ozone mixing ratio in the upper stratosphere. While the gradient in ozone mixing ratio with latitude is generally small at altitudes between 50 and 90km there are occasions when a temporary latitude structure can be seen, particularly above 80 km.  相似文献   

2.
Measurements of the vertical and latitudinal variations of temperature and C2H2 and C2H6 abundances in the stratosphere of Saturn can be used as stringent constraints on seasonal climate models, photochemical models, and dynamics. The summertime photochemical loss timescale for C2H6 in Saturn's middle and lower stratosphere (∼40-10,000 years, depending on altitude and latitude) is much greater than the atmospheric transport timescale; ethane observations may therefore be used to trace stratospheric dynamics. The shorter chemical lifetime for C2H2 (∼1-7 years depending on altitude and latitude) makes the acetylene abundance less sensitive to transport effects and more sensitive to insolation and seasonal effects. To obtain information on the temperature and hydrocarbon abundance distributions in Saturn's stratosphere, high-resolution spectral observations were obtained on September 13-14, 2002 UT at NASA's IRTF using the mid-infrared TEXES grating spectrograph. At the time of the observations, Saturn was at a LS≈270°, corresponding to Saturn's southern summer solstice. The observed spectra exhibit a strong increase in the strength of methane emission at 1230 cm−1 with increasing southern latitude. Line-by-line radiative transfer calculations indicate that a temperature increase in the stratosphere of ≈10 K from the equator to the south pole between 10 and 0.01 mbar is implied. Similar observations of acetylene and ethane were also recorded. We find the 1.16 mbar mixing ratio of C2H2 at −1° and −83° planetocentric latitude to be and , respectively. The C2H2 mixing ratio at 0.12 mbar is found to be at −1° planetocentric latitude and at −83° planetocentric latitude. The 2.3 mbar mixing ratio of C2H6 inferred from the data is and at −1° and −83° planetocentric latitude, respectively. Further observations, creating a time baseline, will be required to completely resolve the question of how much the latitudinal variations of C2H2 and C2H6 are affected by seasonal forcing and/or stratospheric circulation.  相似文献   

3.
The diurnal and seasonal variations of H+, He+, N+, O+ and Ne are analyzed at 1400-km altitude. Using longitudinally averaged observations of ISIS-2 (April 1971 to December 1972), the ion and electron densities are decomposed via spherical harmonics and Fourier series into time-independent, seasonal and diurnal terms. The time-independent terms of H+ and He+ show a plateauor trough-like structure at medium to low latitudes and a strong decrease towards the poles; N+ and O+, on the other hand, yield an almost inverse picture with a density increase at high latitudes. All constituents, except He+, show at polar latitudes an enhancement during local summer conditions and a depletion during local winter conditions; He+, however, exhibits a winter bulge and a density minimum during local summer. The diurnal variations are strongly latitude dependent; while the amplitudes (relative) of H+, He+, and Ne are rather small, the heavier ions N+ and O+ show a deep minimum early in the morning and a high but flat maximum during daytime.  相似文献   

4.
Analysis of observed spectrograms is based on comparison with synthetic spectra. The O2(b1Σ+g?X3Σ?g Atm. (1,1) band in high latitude auroras observed from the ground is found to be the strongest in the Δv = 0 sequence. It is enhanced with altitude relative to the N2 1P(2, 0)and N+2 M(2,0) bands, but the O2 Atm. (2, 2) band has an unexpected low intensity. The range of rotational temperatures of the O2 Atm. bands varies from approx. 200 to above 500 K which indicates that the altitude of the centroid of the emission region varies from about 100 km to the F-region. The highest temperature is found in the midday aurora associated with the magnetospheric cusp. Conspicuous relative variations between the intensities of N2 and O2 spectra are documented, but a satisfactory explanation of the variety is not given. Deviations of the observed O2 Atm. band intensities from the vibrational intensity distribution predicted by Franck-Condor factors indicate that the excitation of the O2 Atm. bands in aurora is not mainly due to particle impact on O2, and the contribution due to energy transfer from hot O(1D) atoms has to be found in future research.  相似文献   

5.
Mid- and far-infrared spectra from the Composite InfraRed Spectrometer (CIRS) have been used to determine volume mixing ratios of nitriles in Titan's atmosphere. HCN, HC3N, C2H2, and temperature were derived from 2.5 cm−1 spectral resolution mid-IR mapping sequences taken during three flybys, which provide almost complete global coverage of Titan for latitudes south of 60° N. Three 0.5 cm−1 spectral resolution far-IR observations were used to retrieve C2N2 and act as a check on the mid-IR results for HCN. Contribution functions peak at around 0.5-5 mbar for temperature and 0.1-10 mbar for the chemical species, well into the stratosphere. The retrieved mixing ratios of HCN, HC3N, and C2N2 show a marked increase in abundance towards the north, whereas C2H2 remains relatively constant. Variations with longitude were much smaller and are consistent with high zonal wind speeds. For 90°-20° S the retrieved HCN abundance is fairly constant with a volume mixing ratio of around 1 × 10−7 at 3 mbar. More northerly latitudes indicate a steady increase, reaching around 4 × 10−7 at 60° N, where the data coverage stops. This variation is consistent with previous measurements and suggests subsidence over the northern (winter) pole at approximately 2 × 10−4 m s−1. HC3N displays a very sharp increase towards the north pole, where it has a mixing ratio of around 4 × 10−8 at 60° N at the 0.1-mbar level. The difference in gradient for the HCN and HC3N latitude variations can be explained by HC3N's much shorter photochemical lifetime, which prevents it from mixing with air at lower latitude. It is also consistent with a polar vortex which inhibits mixing of volatile rich air inside the vortex with that at lower latitudes. Only one observation was far enough north to detect significant amounts of C2N2, giving a value of around 9 × 10−10 at 50° N at the 3-mbar level.  相似文献   

6.
Hydrocarbons such as acetylene (C2H2) and ethane (C2H6) are important tracers in Jupiter's atmosphere, constraining our models of the chemical and dynamical processes. However, our knowledge of the vertical and meridional variations of their abundances has remained sparse. During the flyby of the Cassini spacecraft in December 2000, the Composite Infrared Spectrometer (CIRS) instrument was used to map the spatial variation of emissions from 10 to 1400 cm−1 (1000-7 μm). In this paper we analyze a zonally averaged set of CIRS spectra taken at the highest (0.48 cm−1) resolution, firstly to infer atmospheric temperatures in the stratosphere at 0.5-20 mbar via the ν4 band of CH4, and in the troposphere at 150-400 mbar, via the H2 absorption at 600-800 cm−1. Stratospheric temperatures at 5 mbar are generally warmer in the north than the south by 7-8 K, while tropospheric temperatures show no such asymmetry. Both latitudinal temperature profiles however do show a pattern of maxima and minima which are largely anti-correlated between the two levels. We then use the derived temperature profiles to infer the vertical abundances of C2H2 and C2H6 by modeling tropospheric absorption (∼200 mbar) and stratospheric emission (∼5 mbar) in the C2H2ν5 and C2H6ν9 bands, and also emission of the acetylene (ν4+ν5)−ν4 hotband (∼0.1 mbar). Acetylene shows a distinct north-south asymmetry in the stratosphere, with 5 mbar abundances greatest close to 20° N and decreasing from there towards both poles by a factor of ∼4. At 200 mbar in contrast, acetylene is nearly flat at a level of ∼3×10−9. Additionally, the abundance gradient of C2H2 between 10 and 0.1 mbar is derived, based on interpolated temperatures at 0.1 mbar, and is found to be positive and uniform with latitude to within errors. Ethane at both 5 and 200 mbar shows increasing VMR towards polar regions of ∼1.75 towards 70° N and ∼2.0 towards 70° S. An explanation for the meridional trends is proposed in terms of a combination of photochemistry and dynamics. Poleward, the decreasing UV flux is predicted to decrease the abundances of C2H2 and C2H6 by factors of 2.7 and 3.5, respectively, at latitude 70°. However, the lifetime of C2H6 in the stratosphere (3×1010 s at 5 mbar) is much longer than the dynamical timescale for meridional mixing inferred from Comet SL-9 debris (5-50×108 s), and therefore the rising abundance towards high latitudes likely indicates that meridional mixing dominates over photochemical effects. For C2H2, the opposite occurs, with the relatively short photochemical lifetime (3×107 s), compared to meridional mixing times, ensuring that the expected photochemical trends are visible.  相似文献   

7.
The O2 dayglow at 1.27 μm is formed by high-altitude ozone on Mars and is a sensitive tracer of Mars photochemistry. Mapping of this dayglow using the IRTF/CSHELL long-slit spectrograph requires the extraction of weak emission lines against a strong continuum of the reflected solar light. Some new tools are suggested to improve the data processing. The observed O2 dayglow intensities at LS=67°, 112°, 148°, and 173° show a decrease from late spring (aphelion) to fall equinox by a factor of ≈5 at low latitudes (±30°). This decrease agrees with that predicted by a model of Clancy and Nair (1996, J. Geophys. Res. 101 (12) 12785-12790), although the dayglow intensities are weaker than those based on that model. The measured dayglow variations with latitude are rather low at LS=67°, 112°, and 148° and unexpectedly high at 173°. The dayglow intensity peaks near noon and is smaller at 9:00 and 16:30 LT by a factor of 2. Some data on the ozone profile near aphelion are obtained from a combination of the dayglow and ozone observations. It is hardly possible to detect the O2 night airglow at 1.27 μm on Mars using the existing ground-based and on-orbit instruments. The O2 dayglow intensity as a function of latitude and season from aphelion to fall equinox has been obtained. Our goal is to extend this distribution to the full martian year and get a database for Mars photochemistry to complement the MGS/TES observations of water vapor, atmospheric temperature, and dust and ice aerosol.  相似文献   

8.
The Galileo probe entered the jovian atmosphere at the southern edge of a 5-micron hot spot, one of typically 8-10 quasi-evenly-spaced longitudinal areas of anomalously high 5-micron IR emission that reside in a narrow latitude band centered on +7.5 degrees. These hot spots are characterized primarily by a low abundance of the cloud particles that dominate the 5-micron opacity at other locations on the planet, and by significant desiccation of ammonia, water and hydrogen sulfide in the upper layers of the troposphere. Ortiz et al. [1998. Evolution and persistence of 5-micron hot spots at the Galileo probe entry latitude. J. Geophys. Res. 103, 23,051-23,069] found that the latitude and drift rate of the hot spots could be explained if they are formed by an equatorially trapped Rossby wave of meridional degree 1 moving with a phase speed between 99 and 103 m s−1 relative to System III. Here we model additional properties of the hot spots in terms of the amplitude saturation of such a wave propagating in the weakly stratified deep troposphere. We identify the hot spots with locations where the wave plus mean thermal stratification becomes marginally stable. In these locations, potential temperature isotherms stretch downward to very deep levels in the troposphere. Since fluid parcels follow these isotherms under adiabatic flow conditions, the parcels dive downward when they enter the portion of the wave associated with the hot spot and soar upward upon leaving the spot. We show that this model can account for the anomalous vertical profiles of NH3, H2O, and H2S mixing ratio measured by the Galileo probe. Pressures vary by as much as 20 bar over potential temperature isotherms in solutions that produce sufficient desiccation of water and H2S in hot spots. Approximately 6×10−2 of Jupiter's internal heat flux must be tapped to maintain the wave over the mean hot spot lifetime of 107 s. The results suggest that the phenomenon that causes hot spots may occur widely, although in less dramatic form, across Jupiter's surface, and consequently NH3, H2S, and H2O mixing ratio profiles may vary significantly from location to location in Jupiter's troposphere.  相似文献   

9.
Far-IR (25-50 μm, 200-400 cm−1) nadir and limb spectra measured during Cassini's four year prime mission by the Composite InfraRed Spectrometer (CIRS) instrument have been used to determine the abundances of cyanogen (C2N2), methylacetylene (C3H4), and diacetylene (C4H2) in Titan's stratosphere as a function of latitude. All three gases are enriched at northern latitudes, consistent with north polar subsidence. C4H2 abundances agree with those derived previously from mid-IR data, but C3H4 abundances are about 2 times lower, suggesting a vertical gradient or incorrect band intensities in the C3H4 spectroscopic data. For the first time C2N2 was detected at southern and equatorial latitudes with an average volume mixing ratio of 5.5±1.4×10−11 derived from limb data (>3-σ significance). This limb result is also corroborated by nadir data, which give a C2N2 volume mixing ratio of 6±3×10−11 (2-σ significance) or alternatively a 3-σ upper limit of 17×10−11. Comparing these figures with photochemical models suggests that galactic cosmic rays may be an important source of N2 dissociation in Titan's stratosphere. Like other nitriles (HCN, HC3N), C2N2 displays greater north polar relative enrichment than hydrocarbons with similar photochemical lifetimes, suggesting an additional loss mechanism for all three of Titan's main nitrile species. Previous studies have suggested that HCN requires an additional sink process such as incorporation into hazes. This study suggests that such a sink may also be required for Titan's other nitrile species.  相似文献   

10.
The power spectra of the daily peak electron content measured at Hawaii are estimated via covariance estimations, bivariate autoregressive estimations and fast Fourier transforms for a year of data close to minimum solar activity (1965) and a year of data close to maximum solar activity (1969). The strong peaks about 6 days and 15 days in the 1965 and 1969 power spectra, respectively, suggest an influence of the interplanetary magnetic sector structure on the electron content at low latitude (21·3°N, geographic). The daily solar flux (Sa) at 2800 MHz of 1965 and 1969 are analysed similarly. The decrease in energy content with period range of 3–7 days in the 1969 Sa power spectrum supports the above point of view.  相似文献   

11.
The effects of F-region neutral winds on the distribution of He+ in the equatorial ionosphere have been examined using a theoretical model and an observational data set. It is shown by the model that components of neutral wind in the magnetic meridian up to only 50 m s? can produce He+ gradients in the northern and southern sectors of a flux tube that differ by more than 80%. This is associated with interhemisphere transport velocities of He+ as large as 15 m s?1 at 800 km. A substantial latitude gradient in the He+ distribution across the dip equator also results from the redistribution of He+ The changes in the He+ concentration at the dip equator and the latitude distribution of He+ in response to different neutral wind components is determined from the model and used to construct longitude distributions of He+ to compare with observations made at equinox. Good agreement between the calculations and observations is obtained both at the geographic and geomagnetic equators using the relationship between neutral winds, interhemispheric transport velocity and He+ concentration derived from the model. If these relationships can be extrapolated to accommodate the different conditions expected during solstice, we can also discuss the He+ distributions expected during this season.  相似文献   

12.
About a year's observations of the N2+ band (3914 Å) at Kitt Peak (latitude 32°) are reported. Morning intensities are the same throughout the year, but there is a strong winter maximum in the evening. It is suggested that the additional ionization is produced by photoelectrons from the magnetic conjugate point. Heights are estimated by the zenith-horizon method, which gives 235 km for the constant component and 350 km during the evening enhancement. The intensity variation through twilight is therefore entirely due to changes of the N2+ concentration; each ion scatters light at a constant rate. The rotational distribution resembles that for a temperature of 1600°K, much higher than the temperature of the atmosphere. It is suggested that part of the ions may be produced by charge transfer from metastable O+(2D). N2+ concentrations resulting from photoionization are calculated; they give a fair account of the observed horizon intensities, but not the zenith. Non-local electrons from higher in the atmosphere are suggested as a possible extra source; alternatively, the zenith measurements may be perturbed by scattered horizon light. The band intensity in the nightglow cannot be measured; the upper limit is 1 R.  相似文献   

13.
Data of sunspot groups at high latitude (35°), from the year 1874 to the present (2000 January), are collected to show their evolutional behaviour and to investigate features of the yearly number of sunspot groups at high latitude. Subsequently, an evolutional pattern of sunspot group number at high latitude is given in this paper. Results obtained show that the number of sunspot groups of a solar cycle at high latitude rises to a maximum value about 1 yr earlier than the time of the maximum of sunspot relative numbers of the solar cycle, and then falls to zero more rapidly. The results also show that, at the moment, solar activity described by the sunspot relative numbers has not yet reached its minimum. In general, sunspot groups at high latitude have not appeared on the solar disc during the last 3 yr of a Wolf solar cycle. The asymmetry of the high latitude sunspot group number of a Wolf solar cycle can reflect the asymmetry of solar activity in the Wolf solar cycle, and it is suggested that one could further use the high latitude sunspot group number during the rising time of a Wolf solar cycle, maximum year included, to judge the asymmetry of solar activity over the whole solar cycle.  相似文献   

14.
H.G. Roe  I. de Pater 《Icarus》2004,169(2):440-461
All previous observations of seasonal change on Titan have been of physical phenomena such as clouds and haze. We present here the first observational evidence of chemical change in Titan's atmosphere. Images taken during 1999-2002 (late southern spring on Titan) with the W.M. Keck I 10-meter telescope at 8-13 μm show a significant accumulation of ethylene (C2H4) in the south polar stratosphere as well as north-south stratospheric temperature variation (colder at poles). Our observations restrict this newly discovered south polar ethylene accumulation to latitudes south of 60° S. The only other observations of the spatial distribution of C2H4 were those of Voyager I, which found a significant north polar accumulation in early northern spring. We see no build-up in the north, although the highest northern latitudes are obstructed from view in the current season. Our observations constrain any unobserved north polar accumulation of C2H4 to north of 50° N latitude. Comparison of the Voyager I results with our new results show seasonal chemical change has occurred in Titan's atmosphere.  相似文献   

15.
L. Ben Jaffel  Y.J. Kim 《Icarus》2007,190(2):504-527
This study uses the adding-doubling radiative transfer method in which we take into account the curvature effect of the planetary atmosphere in order to test the sensitivity of the jovian Ly-α emission line in relation to H column density, eddy diffusion coefficient, frequency redistribution function for photon scattering, temperature vertical profile, and an added hot atomic H layer on the top of the atmosphere. We also focus here on developing new diagnostic tools that will help us to obtain more confidently the underlying thermospheric structure of Jupiter. First, using the brightness distribution for specific wavelength bands as proposed by Ben Jaffel et al. [Ben Jaffel, L., Magnan, C., Vidal-Madjar, A., 1988. Astron. Astrophys. 204, 319-326], we show that the spatial thickness of the atomic H layer above the homopause level can be measured directly as the separation between the vertical positions of respectively the line core and line wing optical limbs. This thickness also constrains the [H] column and the value KH of the eddy diffusion coefficient at the homopause level at the disc location under consideration. We also propose to refine the value of KH and [H], respectively, at a specific planetary latitude, using the Q ratio of the limb peak brightness to the intensity from other regions over the planetary disc. Finally, the relationship between the disc brightness distribution from specific wavelength bands of the emission line and the temperature gradient in the thermosphere is demonstrated, thus providing an accurate tool to access this key information from high resolution observations. Quick, preliminary comparisons with some existing HTS/STIS data show the H layer thickness at auroral latitudes (∼1700 km) is much smaller than at equatorial latitudes (∼3900 km). These results strongly support the existence of a gradient in both H density and KH versus latitude, with higher values of KH at high latitudes and higher values of the H density at the equatorial regions. Such a small H layer thickness at auroral latitudes is consistent with a high mixing in the atmosphere that brings the hydrocarbons upwards, reducing consequently the column of hydrogen that scatters photons. These preliminary results show the strength of the proposed approach and open new horizons to use strong resonant emission lines at high resolution as a diagnostic for the state and structure of planetary upper atmospheres.  相似文献   

16.
Hydrocarbons in the upper atmosphere of Saturn are known, from Voyager, ground-based, and early Cassini results, to vary in emission intensity with latitude. Of particular interest is the marked increase in hydrocarbon line intensity near the south pole during southern summer, as the increased line intensity cannot be simply explained by the increased temperatures observed in that region since the variations between C2H2 and C2H6 emission in the south pole region are different. In order to measure the latitudinal variations of hydrocarbons in Saturn's southern hemisphere we have used 3 cm−1 resolution Cassini CIRS data from 2006 and combined this with measurements from the ground in October 2006 at NASA's IRTF using Celeste, an infrared high-resolution cryogenic grating spectrometer. These two data sets have been used to infer the molecular abundances of C2H2 and C2H6 across the southern hemisphere in the 1-10 mbar altitude region. We find that the latitudinal acetylene profile follows the yearly average mean daily insolation except at the southern pole where it peaks in abundance. Near the equator (5° S) the C2H2 abundance at the 1.2 mbar level is (1.6±0.19)×10−7 and it decreases by a factor of 2.7 from the equator toward the pole. However, at the pole (∼87° S) the C2H2 abundance jumps to (1.8±0.3)×10−7, approximately the equatorial value. The C2H6 abundance near the equator at the 2 mbar level is (0.7±0.1)×10−5 and stays approximately constant until mid-latitudes where it increases gradually toward the pole, attaining a value of (1.4±0.4)×10−5 there. The increase in ethane toward the pole with the corresponding decrease in acetylene is consistent with southern hemisphere meridional winds [Greathouse, T.K., Lacy, J.H., Bézard, B., Moses, J.I., Griffith, C.A., Richter, M.J., 2005. Icarus 177, 18-31]. The localized increase in acetylene at the pole provides evidence that there is dynamical transport of hydrocarbons from the equator to the southern pole.  相似文献   

17.
Pi2 micropulsations are recorded at four sites with approximately the same geo-magnetic longitude but spanning 36° in latitude. Frequency analyses on these signals show that they normally contain more than one spectral component and that these components, all of which commence simultaneously, are not normally harmonically related. In addition, the spectral content is found not to vary significantly with latitude.No significant correlations are found between Kp and the maximum period, the minimum period, or the number of frequency components, in a Pi2. However the ‘average’ Pi2 frequency is found to vary linearly with both Kp and the magnitude of the accompanying auroral bay. In addition, the signals measured at the ‘low’ and at the ‘high’ latitude sites are found to exhibit an overwhelming preference for the left-hand sense of polarisation, while those at the ‘middle’ latitude sites show no preference for either sense.  相似文献   

18.
An explicit formula is developed to explore the mechanism of the synchrotron radiation by using a bi-modal loss-cone distribution function. The variation of the distribution function along the field line is modeled in detail and the evaluation of the total power in the synchrotron radiation is presented. The variance of synchrotron radiation with latitude depends on the electron anisotropy; for low anisotropy, synchrotron radiation increases with latitude and reaches a maximum at the particle mirror points; for high anisotropy, it decreases with latitude and maximizes at the equator. A bi-modal population is therefore suggested to explain the radiation intensity which peaks both at the equator and at high latitude.  相似文献   

19.
We extracted the surface echo power from 2 years of MARSIS measurements. The retrieved values are calibrated to compensate for changes in the distance of the spacecraft to the surface and for the attenuation of the signal by the ionosphere. The results are used to build the first global map of surface echo power at 3–5 MHz. The surface echo power variations are primarily caused by kilometer-scale surface roughness. Then, we derive the values of dielectric constant of the shallow subsurface materials by normalizing the surface echo power map using a simulation of MARSIS signal from the MOLA topography. As a result, we obtain a map that characterizes the dielectric properties of the materials down to a few decameters below the surface. Dielectric properties vary with latitude, with high values in mid-latitudes belts (20–40°) and lower values at both equatorial and high latitudes. From the comparison of MARSIS reflectivity map to GRS observations, we conclude that the reflectivity decrease observed poleward of 50–60° corresponds to the onset of water-ice occurrence within the regolith. Assuming homogenous ground composition and texture at the scale of the MARSIS resolution cell, our inferred volume of ground water ice is of 106 km3, equivalent to a polar cap. Low reflectivity areas are also observed in equatorial regions. From radar studies alone, equatorial low dielectric constant values could have different interpretations but the correlation with GRS hydrogen distribution rather points toward a water-related explanation.  相似文献   

20.
The Carte Synoptique catalogue of solar filaments from 1919 March to 1957 July, corresponding to complete cycles 16‐18, is utilized to show the latitudinal migrations of solar filaments at low (≤50°) and high (>50°) latitudes and the latitudinal distributions of solar filaments for all solar filaments, solar filaments whose maximum lengths during solar disk passage are less than or equal to 70° and solar filaments whose maximum lengths during solar disk passage are larger than 70°. The results show the following. (1) The latitudinal migrations of all low‐latitude solar filaments and low‐latitude solar filaments whose maximum lengths during solar disk passage are less than or equal to 70° follow the Spörer sunspot law. However, the latitudinal migration of low‐latitude solar filaments whose maximum lengths during solar disk passage are larger than 70° do not follow the Spörer sunspot law: there is no equatorward and no poleward drift. The latitudinal migration of high‐latitude solar filaments whose maximum lengths during solar disk passage are larger than 70° is more significant than those of all high‐latitude solar filaments and high‐latitude solar filaments whose maximum lengths during solar disk passage are less than or equal to 70°: there is a poleward migration from the latitude of about 50° to 70° and an equatorward migration from the latitude of about 70° to 50° of all high‐latitude solar filaments and high‐latitude solar filaments whose maximum lengths during solar disk passage are less than or equal to 70° and there is a poleward migration from the latitude of about 50° to 80° and an equatorward migration from the latitude of about 80° to 50° of high‐latitude solar filaments whose maximum lengths during solar disk passage are larger than 70°. (2) The statistical characteristics of latitudinal distribution of solar filaments whose maximum lengths during solar disk passage are larger than 70° is different from those of all solar filaments and solar filaments whose maximum lengths during solar disk passage are less than or equal to 70° (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号