首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although poorly understood, the north–south distribution of the natural component of atmospheric CO2 offers information essential to improving our understanding of the exchange of CO2 between the atmosphere, oceans, and biosphere. The natural or unperturbed component is equivalent to that part of the atmospheric CO2 distribution which is controlled by non-anthropogenic CO2 fluxes from the ocean and terrestrial biosphere. Models should be able to reproduce the true north–south gradient in CO2 due to the natural component before they can reliably estimate present-day CO2 sources and sinks and predict future atmospheric CO2. We have estimated the natural latitudinal distribution of atmospheric CO2, relative to the South Pole, using measurements of atmospheric CO2 during 1959–1991 and corresponding estimates of anthropogenic CO2 emissions to the atmosphere. Key features of the natural latitudinal distribution include: (1) CO2 concentrations in the northern hemisphere that are lower than those in the southern hemisphere; (2) CO2 concentration differences that are higher in the tropics (associated with outgassing of the oceans) than those currently measured; and (3) CO2 concentrations over the southern ocean that are relatively uniform. This natural latitudinal distribution and its sensitivity to increasing fossil fuel emissions both indicate that near-surface concentrations of atmospheric CO2 in the northern hemisphere are naturally lower than those in the southern hemisphere. Models that find the contrary will also mismatch present-day CO2 in the northern hemisphere and incorrectly ascribe that region as a large sink of anthropogenic CO2.  相似文献   

2.
Limb-darkening curves are derived from Pioneer 10 imaging data for Jupiter's STrZ (?18 to ?21° latitude) and SEBn (?5 to ?8° latitude) in red and blue light at phase angles of 12, 23, 34, 109, 120, 127, and 150°. Inhomogeneous scattering models are computed and compared with the data to constrain the vertical structure and the single-scattering phase functions of the belt and the zone in each color. The very high brightness observed at a 150° phase angle seems to require the presence of at lleast a thin layer of reasonably bright and strongly forward-scattering haze particles at pressure levelsof about 100 mbar or less above both belts and zones. Marginally successful models have been constructed in which a moderate optical thickness (τ ≥ 0.5) of haze particles was uniformly distributed in the upper 25 km-amagats of H2. Excellent fits to the data were obtained with models having a thin (optical depths of a few tenths) haze conentraated above most of the gas. Following recent spectrospcopicanalyses, we have placed the main “cloud” layer or layers beneath about 25 km-amagats of H2, although successful fits to our continuum data probably could be achieved also if the clouds were permitted to extend all the way up to the thin haze layer. Similarly, below the haze level our data cannot distinguish between models having two clouds separated by a clear space as suggested by R. E. Danielson and M. G. Tomasko and models with a single extensive diffuse cloud having an H2 abundance of a few kilometer-amagats per scattering mean free path as described by W. D. Cochran. In either case, the relative brightness of the planet at each phase angle primarily serves to constrain the single-scattering phase functions of the Jovian clouds at the corresponding scattering angles. The clouds in these models are characterized by single-scattering phase functions having strong forward peaks and modest backward-scattering peaks, indicating cloud particles with dimensions larger than about 0.6 μm. In our models, a lower single-scattering albedo of the cloud particles in the belt relative to the zone accounts for the contrast between these regions. If an increased abundance of absorbing dust above uniformly bright clouds is used to explain the contrast between belts and zones at visible wavelengths, the limb darkening is steeper than that observed for the SEBn in blue light at small phase angles. The phase integral for the planet calculated for either the belt or the zone model in either color lies in the range 1.2 to 1.3. If a value of 1.25 is used with D.J. Taylor's bolometric geometric albedo of 0.28, the planet emits 2.25 or 1.7 times the energy it absorbs from the Sun if it effective temperature is 134 or 125°K, respectively—roughly as expected from current theories of the cooling of Jupiter's interior.  相似文献   

3.
Band models for CO2 and H2O absorption are described, and used to model the Venera 11 spectra near 1 μm. An effective-path approximation is used to allow for scattering in the clouds. The model has 10 layers and uses 211 CO2 and 15 H2O vibrational transitions, at 5 cm? resolution. Within a factor of 2, a maximum absorption in the 0.94-μm H2O band just below the clouds, corresponding to 200 ppm by volume, in agreement with V. I. Moroz, N. A. Parfen'ev, and N. F. San'ko (1979, Cosmic Res. 17, 601–614) is found. More accurate band strenghts are needed to model the bottom scale height accurately. The possibility that the 0.94-μm feature is blended with a band of some other molecule has been examined. Ten possible chemical species were examined, with negative results.  相似文献   

4.
We have analyzed the P6, P8, and P10 lines in the 0.7820 μm CO2 band of Venus using a scattering model. Our new results compare favorably with previous results from the 1.05 μm CO2 band. We considered nonabsorbing and absorbing clouds. We found that the anisotropic scattering mean free path for both models at the 0.2atm level is between 0.55 and 0.73km, a range close to the value of 1 km for terrestrial hazes. We used our scattering models to synthesize the 0.8226 μm H2O line, assuming that the clouds are composed of sulfuric acid drops, and found our nonabsorbing cloud required a sulfuric acid concentration of 82% by weight, while our thicker absorbing cloud required a concentration of 89%. A comparison of the variation of optical depth with height for our cloud models with the variation reported by Prinn (1973, Science182, 1132–1134) showed that, within a factor of 2, the variation for Prinn's thinnest cloud agreed with ours. Whitehill and Hansen (1973, Icarus20, 146–152) have recently confirmed the work of Regas et al. (1973a, J. Quant. Spectry. Radiative Transfer13, 461–463) which showed that two cloud layers are not required to explain the CO2 phase variation of Venus. Prinn's recent photochemical study of sulfuric acid clouds further supports a single, continuous cloud layer in the line formation region instead of two cloud layers with an extensive clear region between. The single layer model appears more likely because the maximum particle density in Prinn's cloud occurs in the clear region between the two layers in the models of Hunt (1972, J. Quant. Spectry. Radiative Transfer12, 405–419) and Carleton and Traub (1972, Bull. Amer. Astron. Soc.4, 362.).  相似文献   

5.
The response of the Earth's global mean vertical atmospheric temperature structure to large increases in the atmospheric CO2 concentration was examined using a 1-D radiative-convective atmospheric model. It was found that the greenhouse warming of the terrestrial surface can be strongly inhibited by the development of a more isothermal, moister and higher troposphere than at present. The saturation of the strong CO2 infrared bands for high CO2 concentrations further inhibits the greenhouse warming to such an extent that a runaway greenhouse fuelled only by a rise in the atmospheric CO2 is not possible. However, a continuously rising solar-constant does eventually lead to a runaway.  相似文献   

6.
The thermal emission spectrometer (TES) and the radio science (RS) experiment flying on board the Mars Global Surveyor (MGS) spacecraft have made observations of atmospheric temperatures below the saturation temperature of carbon dioxide (CO2). This supersaturated air provides a source of convective available potential energy (CAPE), which, when realized may result in vigorous convective mixing. To this point, most Mars atmospheric models have assumed vertical mixing only when the dry adiabatic lapse rate is exceeded. Mixing associated with the formation of CO2 clouds could have a profound effect on the vertical structure of the polar night, altering the distribution of temperature, aerosols, and gasses.Presented in this work are estimates of the total planetary inventory of CAPE and the potential convective energy flux (PCEF) derived from RS and TES temperature profiles. A new Mars Global Circulation Model (MGCM) CO2 cloud model is developed to better understand the distribution of observed CAPE and its potential effect on Martian polar dynamics and heat exchange, as well as effects on the climate as a whole. The new CO2 cloud model takes into account the necessary cloud microphysics that allow for supersaturation to occur and includes a parameterization for CO2 cloud convection. It is found that when CO2 cloud convective mixing is included, model results are in much better agreement with the observations of the total integrated CAPE as well as total column non-condensable gas concentrations presented by Sprague et al. [2005a, GRS measurements of Ar in Mars’ atmosphere, American Astronomical Society, DPS meeting #37, #24.08, and 2005b, Distribution and Abundance of Mars’ Atmospheric Argon, 36th Annual Lunar and Planetary Science Conference, #2085] When the radiative effects of water ice clouds are included the agreement is further improved.  相似文献   

7.
D. Stauffer  C.S. Kiang 《Icarus》1974,21(2):129-146
For purified binary gas mixtures like NH3H2O or HClH2O, partial pressures appreciably greater than the two saturation partial pressures are needed to condense the gas mixture into small solution droplets (“homogeneous hetero-molecular nucleation”). Thus without foreign nuclei, clouds are not as easily formed as in the theories of Lewis; the latter should be valid only if large condensation nuclei are available. We calculate here from classical homogeneous heteromolecular nucleation theory the threshold partial pressures necessary to achieve droplet nucleation for the gas mixtures NH3H2O (Jupiter,…), HClH2O (Venus), H2SO4H2O (Venus), and C2H5OHH2O (laboratory). In the last case, theory and experiment agree satisfactorily. If no “dust” particles are available as condensation nuclei, then we expect in Jupiter's atmosphere the cloud base level to be around 40 km above the 400K level instead of 10–25 km in Lewis' models (1969) (similar upward shifts for the outer Jovian planets). For Venus, our corrections make the formation of HClH2O clouds less probable for the 60-km layer at 0°C. If H2SO4 is formed by (photo-)chemical oxidation of SO2 and if clouds are formed at that level where the H2SO4 production is largest, then the cloud base levels for H2SO4H2O mixture clouds will not be shifted by our nucleation effects. For more reliable predictions, one needs more accurate data on the water vapor content of the planetary atmospheres and laboratory experiments testing the theoretically predicted nucleation behavior of these gaseous mixtures.  相似文献   

8.
T.Y. Kong  M.B. McElroy 《Icarus》1977,32(2):168-189
A variety of models are explored to study the photochemistry of CO2 in the Martian atmosphere with emphasis on reactions involving compounds of carbon, hydrogen, and oxygen. Acceptable models are constrained to account for measured concentrations of CO and O above 90 km, with an additional requirement that they should be in accord with observations of CO, O2, and O3 in the lower atmosphere. Dynamical mixing must be exceedingly rapid at altitudes above 90 km, with effective eddy diffusion coefficients in excess of 107 cm2 sec?1. If recombination of CO2 is to occur mainly by gas phase chemistry, catalyzed by trace quantities of H, OH, and HO2, mixing must be rapid over the altitude interval 30 to 40 km. The value implied for the diffusion coefficient in this region is a function of assumptions made regarding the rates for reaction of OH with HO2 to form H2O and of the rate for reaction of HO2 with itself to form H2O2. If rates for these reactions are taken to have values similar to rates used in current models for the Earth's stratosphere, the eddy diffusion coefficient at 40 km on Mars should be about 5 × 107 cm2 sec?1, consistent with Zurek's (1976) estimate for this parameter inferred from tidal theory. Surface chemistry could have an influence on the abundances of atmospheric CO and O2, but a major effect would imply sluggish mixing at all altitudes below 50 km and in addition would carry implications for the magnitude of the rates for reaction of OH with HO2 and HO2 with itself.  相似文献   

9.
W. Macy  L. Trafton  E. Barker 《Icarus》1977,32(1):27-36
The shapes of Venus' CO2 profiles are found to vary with solar phase angle. High-resolution spectra of the P16 and P14 lines in the 8689- and 7820-Å bands, respectively, are presented for phase angles ranging from 6 to 158°. The scattering mean free path at 80 mbar, approximately the effective pressure, is 1.7 km. Use of the van de Hulst similarity relations with simple, parametric scattering models is inadequare to separate effects due to the scattering phase function from those due to inhomogeneities in depth when one attempts to determine the atmospheric structure by fitting a family of such models over a wide range of phase angles.  相似文献   

10.
It has been suggested that the residual polar caps of Mars contain a reservoir of permanently frozen carbon dioxide which is controlling the atmospheric pressure. However, observational data and models of the polar heat balance suggest that the temperatures of the Martian poles are too high for solid CO2 to survive permanently. On the other hand, the icelike compound carbon dioxide-water clathrate (CO2 · 6H2O) could function as a CO2 reservoir instead of solid CO2, because it is stable at higher temperatures. This paper shows that the permanent polar caps may contain several millibars of CO2 in the form of clathrate, and discusses the implications of this permanent clathrate reservoir for the present and past atmospheric pressure on Mars.  相似文献   

11.
We have measured the shape and absolute value of Venus' reflectivity spectrum in the 1.2-to 4.0-μm spectral region with a circular variable filter wheel spectrometer having a spectral resolution of 1.5%. The instrument package was mounted on the 91-cm telescope of NASA Ames Kuiper Airborne Observatory, and the measurements were obtained at an altitude of about 41,000 feet, when Venus had a phase angle of 86°. Comparing these spectra with synthetic spectra generated with a multiple-scattering computer code, we infer a number of properties of the Venus clouds. We obtain strong confirmatory evidence that the clouds are made of a water solution of sulfuric acid in their top unit optical depth and find that the clouds are made of this material down to an optical depth of at least 25. In addition, we determine that the acid concentration is 84 ± 2% H2SO4 by weight in the top unit optical depth, that the total optical depth of the clouds is 37.5 ± 12.5, and that the cross-sectional weighted mean particle radius lies between 0.5 and 1.4 μm in the top unit optical depth of the clouds. These results have been combined with a recent determination of the location of the clouds' bottom boundary [Marov et al., Cosmic Res.14, 637–642 (1976)] to infer additional properties about Venus' atmosphere. We find that the average volume mixing ratio of H2SO4 and H2O contained in the cloud material both equal approximately 2× 10?6. Employing vapor pressure arguments, we show that the acid concentration equals 84 ± 6% at the cloud bottom and that the water vapor mixing ratio beneath the clouds lies between 6 × 10?4 and 10?2.  相似文献   

12.
One-dimensional radial models of the chemistry in cometary comae have been constructed for heliocentric distances ranging from 2 to 0.125 AU. The coma's opacity to solar radiation is included and photolytic reaction rates are calculated. A parent volatile mixture similar to that found in interstellar molecular clouds is assumed. Profiles through the coma of number density and column density are presented for H2O, OH, O, CN, C2, C3, CH, and NH2. Whole-coma abundances are presented for NH2, CH, C2, C3, CN, OH, CO+, H2O+, CH+, N2+, and CO2+.  相似文献   

13.
The phase function ω?(1 + a cos θ) for anisotropic scattering is applied to a homogeneous atmospheric model to ascertain the effects of anisotropy on the near-infrared spectrum of Venus. L. D. G. Young's equivalent widths for the 820 Å CO2 band are analyzed to derive allowed combinations of CO2 specific abundance, continuum albedo, pressure, and degree of anisotropy. From these combinations, values are derived for the photon mean-free path and total optical thickness of the clouds. The Venera 10 measurement of the transmitted flux at 7200 Å is then used in conjunction with spherical albedo requirements to reduce the range of possible solutions to the equivalent-width analysis. Through the application of approximate similarity relations, the “true” (i.e., anisotropic) atmospheric parameters are derived from the isotropic values. For an assumed Mie scatterer with an average anisotropy factor of 〈cos θ〉 = 0.7, the results indicate a total optical thickness of about 55 with a single-scattering albedo of 0.9992 to 0.9995.  相似文献   

14.
We have constructed a model of the physical processes controlling Titan's clouds. Our model produces clouds that qualitatively match the present observational constraints in a wide variety of model atmospheres, including those with low atmospheric pressures (25 mbar) and high atmospheric pressures. We find the following: (1) high atmospheric temperatures (160°K) are important so that there is a large scale height in the first few optical depths of cloud; (2) the aerosol mass production occurs at very low aerosol optical depth so that the cloud particles do not directly affect the photochemistry producing them; (3) the production rate of aerosol mass by chemical processes is probably greater than 3.5 × 10?14 g cm?2 sec?1; (4) and the eddy diffusion coefficient is less than 5 × 106 cm2 sec?1 except perhaps in the top optical depth of the cloud. Our model is not extremely sensitive to particle shape, but it is sensitive to particle density. Higher particle densities require larger aerosol mass production rates to produce satisfactory clouds. Particle densities of unity require a mass production rate on the order of 3.5 × 10?13 g cm?2 sec?1. We also show that an increase in mass input causes a decrease in the mean particle size, as required by J. B. Pollack et al. (1980, Geophys. Res. Lett. 7, 829–832), to explain the observed correlation between the solar cycle and Titan's albedo; that coagulation need not be extremely inefficient in order to obtain realistic clouds as proposed by M. Podolak and E. Podolak (1980, Icarus43, 73–83); that coagulation could be inefficient due to photoelectric charging of the particles; and, that the lifetime of particles near the altitude of unit optical depth is a few months, as required to explain the temporal variability observed by S. T. Suess and G. W. Lockwood and D. P. Cruikshank and J. S. Morgan (1979, Bull. Amer. Astron. Soc.11, 564). Although Titan's aerosols are ottically thick in the vertical direction, the atmosphere is so extended that the horizontal visibility is greater than that found anywhere at Earth's surface.  相似文献   

15.
Geologic evidence of the prior existence of liquid water on Mars suggests surface temperatures Ts were once considerably warmer than at present; and that such a condition may have arisen from a larger atmospheric greenhouse. Here we develop a simple climate model for a CO2/H2O Mars atmosphere including water vapor-longwave opacity feedback in the atmosphere and temperature-albedo feedback at surface icecaps, under the assumption that once the Martian surface pressure was ps ≥ 1 atm CO2. Longwave flux to space is computed as a function of Ts and ps using band-absorption models for the effect of the 15-μm fundamental, and the 10- and 15-μm hot bands, of the CO2 molecule; as well as the pure rotation bands and e continuum of H2O. The derived global radiative balance predicts a global mean surface temperature of 283°K at 1 atm CO2. When the emission model is coupled to a latitudinally resolved energy balance climate model, including the effect of poleward heat transfer by atmospheric baroclinic eddies, the solutions vary, depending on ps. We considered two cases: (1) the present Mars (ps ? 0.007 atm) with pressure-buffering by solid CO2 icecaps, and limited poleward heat flux by the atmosphere; and (2) a hypothetical “hot Mars” (ps ? 1.0 atm), whose much higher CO2 amount augmented by H2O evaporative feedback yields a theoretical Ts distribution with latitude admitting liquid water over 95% of the surface, water icecaps at the poles, and a diminished equator-to-pole temperature gradient relative to the present.  相似文献   

16.
Mesospheric clouds have been previously observed on Mars in a variety of datasets. However, because the clouds are optically thin and most missions have performed surface-focussed nadir sounding, geographic and seasonal coverage is sparse. We present new detections of mesospheric clouds using a limb spectra dataset with global coverage acquired by NASA’s Mars Climate Sounder (MCS) aboard Mars Reconnaissance Orbiter. Mesospheric aerosol layers, which can be CO2 ice, water ice or dust clouds, cause high radiances in limb spectra, either by thermal emission or scattering of sunlight. We employ an object recognition and classification algorithm to identify and map aerosol layers in limb spectra acquired between December 2006 and April 2011, covering more than two Mars years. We use data from MCS band A4, to show thermal signatures of day and nightside features, and A6, which is sensitive to short wave IR and visible daytime features only. This large dataset provides several thousand detections of mesospheric clouds, more than an order of magnitude more than in previous studies.Our results show that aerosol layers tend to occur in two distinct regimes. They form in equatorial regions (30°S–30°N) during the aphelion season/northern hemisphere summer (Ls < 150°), which is in agreement with previous published observations of mesospheric clouds. During perihelion/dust storm season (Ls > 150°) a greater number of features are observed and are distributed in two mid-latitude bands, with a southern hemisphere bias. We observe temporal and longitudinal clustering of cloud occurrence, which we suggest is consistent with a formation mechanism dictated by interaction of broad temperature regimes imposed by global circulation and the propagation to the mesosphere of small-scale dynamics such as gravity waves and thermal tides.Using calculated frost point temperatures and a parameterization based on synthetic spectra we find that aphelion clouds are present in generally cooler conditions and are spectrally more consistent with H2O or CO2 ice. A significant fraction has nearby temperature retrievals that are within a few degrees of the CO2 frost point, indicating a CO2 composition for those clouds. Perihelion season clouds are spectrally most similar to H2O ice and dust aerosols, consistent with temperature retrievals near to the clouds that are 30–80 K above the CO2 frost point.  相似文献   

17.
The trapping and release of H2, CO, CO2, CH4, Ar, Ne, and N2 by amorphous water ice was studied experimentally under dynamic conditions, at low temperatures starting at 16°K, with gas pressure of 5 × 10?8?10?6 Torr. CO, CH4, Ar, and N2 were found to be released in three or four distinct temperature ranges, each resulting from a different trapping mechanism: (a) 30–55°K, where the gas frozen on the water ice evaporates; (b) 135–155°K, where gas is squeezed out of the water ice during the transformation of amorphous ice to cubic ice; (c) 165–190°K, where gas and water are released simultaneously, probably by the evaporation of a clathrate hydrate, and, occasionally (d) 160–175°K, where deeply buried gas is released during the transformation of cubic ice to hexagonal ice. If the third range is indeed due to clathrate formation, CO was found to form this compound. CO2 did not form a clathrate under the experimental conditions. Excess hydrogen did not affect the occlusion of other gases. Hydrogen itself was trapped only at 16°K. Neon was not trapped at 25°K. With cubic ice, the only trapping mechanism is freezing of gas on the ice surface. No fractionation between the gas phase and the ice was observed with a mixture of CO and Ar. Massive ejection of ice grains was observed during the evaporation of the gas in three (a,c,d) out of the four ranges. The experimental results are used to explain several cometary phenomena, especially those occurring at large heliocentric distances, and are applied also to Titan's atmospheric composition and to the possible ejection of ice grains from Enceladus.  相似文献   

18.
The evolution of the atmosphere of the earth   总被引:1,自引:0,他引:1  
Michael H. Hart 《Icarus》1978,33(1):23-39
Computer simulations of the evolution of the Earth's atmospheric composition and surface temperature have been carried out. The program took into account changes in the solar luminosity, variations in the Earth's albedo, the greenhouse effect, variation in the biomass, and a variety of geochemical processes. Results indicate that prior to two billion years ago the Earth had a partially reduced atmosphere, which included N2, CO2, reduced carbon compounds, some NH3, but no free H2. Surface temperatures were higher than now, due to a large greenhouse effect. When free O2 appeared the temperature fell sharply. Had Earth been only slightly further from the Sun, runaway glaciation would have occured at that time. Simulations also indicate that a runaway greenhouse would have occured early in Earth's history had Earth been only a few percent closer to the Sun. It therefore appears that, taking into account the possibilities of either runaway glaciation or a runaway greenhouse effect, the continously habitable zone about a solar-type star is rather narrow, extending only from roughly 0.95 to 1.01 AU.  相似文献   

19.
A. Bar-Nun  M. Podolak 《Icarus》1985,64(1):112-124
The lightning energy dissipation rate on Jupiter from Voyager's observation is used, together with shock-tube experimental results and reasonable eddy diffusion coefficients for the various atmospheric layers, to compute the column abundances of lightning-produced CO, C2H2, and HCN. Shock-tube experiments on the hydrogenation of CO clearly rule out chemical “freezing” of CO at the 1064°K and 400-bar level and its subsequent upwelling to the upper atmosphere. Also, lightning in the water cloud cannot produce enough CO to meet its observed abundance. Hence, the CO is formed from an external source of oxygen or water. The production of acetylene both by lightning above the water cloud and by startospheric methane photolysis is required to maintain its observed abundance against destruction processes. This explains the decrease in the C2H2/C2H6 ratio from the equator to the pole, as observed in the IR. HCN production by lightning above the water cloud is sufficient to account for its observed abundance and meets the observational requirement of a tropospheric HCN source.  相似文献   

20.
Greenhouse warming due to carbon dioxide atmospheres may be responsible for maintaining the early Earth's surface temperature above freezing and may even have allowed for liquid water on early Mars. However, the high levels of CO2 required for such warming should have also resulted in the formation of CO2 clouds. These clouds, depending on their particle size, could lead to either warming or cooling. The particle size in turn is determined by the nucleation and growth conditions. Here we present laboratory studies of the nucleation and growth of carbon dioxide on water ice under martian atmospheric conditions. We find that a critical saturation, S=1.34, is required for nucleation, corresponding to a contact parameter between solid water and solid carbon dioxide of m=0.95. We also find that after nucleation occurs, growth of CO2 is very rapid, and we report the growth rates at a number of supersaturations. Because growth would be expected to continue until the CO2 pressure is lowered to its vapor pressure, we expect particles larger than those being currently suggested for the present and past martian atmospheres. Using this information in a microphysical model described in a companion paper, we find that CO2 clouds are best described as “snow,” having a relatively small number of large particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号