首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on an analysis of the available archived data from the Russian network of geomagnetic stations, it has been indicated that the known event of August–September 1859 was the first and the greatest event in the series of the recurrent geomagnetic storms. Similar series were repeatedly observed in the next years. These series are caused by the processes on the Sun and in the heliosphere related to the superposition of the solar wind flows. The sporadic and regular components in joint activity of the complex, including active regions and coronal holes on the rotating Sun, play the role of the Bartels M regions responsible for initiation and development of geomagnetic storms. Neither coronal holes nor active regions can separately explain observations. During interpretation, active regions and coronal holes should be considered as a unified complex.  相似文献   

2.
Great magnetic storms (geomagnetic index C9 is ≥8 for St. Petersburg, which can correspond to Kp ≥ 8 or Dst < ?200 nT), registered from 1841 to 1870 at the St. Petersburg, Yekaterinburg, Barnaul, Nerchinsk, Sitka, and Beijing (at the Russian embassy) observatories are analyzed. A catalog of intensive magnetic storms during this period, which includes solar cycles 9–11, has been compiled. The statistical characteristics of great magnetic storms during this historical period have been obtained. These results indicate that high solar activity played a decisive role in the generation of very intense magnetic storms during the considered period. These storms are characterized by only one peak in a solar cycle, which was registered in the years of the cycle minimum (or slightly earlier): the number of great geomagnetic storms near the solar activity maximum was twice as large as the number of such storms during less active periods. A maximum in September–October and an additional maximum in February are observed in the annual distribution of storms. In addition, the storm intensity inversely depends on the storm duration.  相似文献   

3.
The high-latitude geomagnetic effects of an unusually long initial phase of the largest magnetic storm (SymH ~–220 nT) in cycle 24 of the solar activity are considered. Three interplanetary shocks characterized by considerable solar wind density jumps (up to 50–60 cm–3) at a low solar wind velocity (350–400 km/s) approached the Earth’s magnetosphere during the storm initial phase. The first two dynamic impacts did not result in the development of a magnetic storm, since the IMF Bz remained positive for a long time after these shocks, but they caused daytime polar substorms (magnetic bays) near the boundary between the closed and open magnetosphere. The magnetic field vector diagrams at high latitudes and the behaviour of high-latitude long-period geomagnetic pulsations (ipcl and vlp) made it possible to specify the dynamics of this boundary position. The spatiotemporal features of daytime polar substorms (the dayside polar electrojet, PE) caused by sudden changes in the solar wind dynamic pressure are discussed in detail, and the singularities of ionospheric convection in the polar cap are considered. It has been shown that the main phase of this two-stage storm started rapidly developing only when the third most intense shock approached the Earth against a background of large negative IMF Bz values (to–39 nT). It was concluded that the dynamics of convective vortices and the related restructing of the field-aligned currents can result in spatiotemporal fluctuations in the closing ionospheric currents that are registered on the Earth’s surface as bay-like magnetic disturbances.  相似文献   

4.
We compare measurements of the ionospheric F region at Millstone Hillduring the severe geomagnetic disturbances of 5–11 June 1991 with results from the IZMIRANand FLIP time-dependent mathematical models of the Earths ionosphere and plasmasphere. Somecomparisons are also made with the Millstone Hill semi-empirical model which was previouslyused to model this storm. New rate coefficients from recent laboratory measurements of the O++N2 and O++O2 loss rates are included in theIZMIRAN and Millstone Hill models. The laboratory measurements show that vibrationallyexcited N2 and O2 (N2(v) and O2(v)) are both important at high temperatures such as found in the thermosphere during disturbedconditions at summer solar maximum. Increases in the O++N2 loss ratedue to N2(v) result in a factor ∼2 reduction in the daytime F2 peak electron density. On some days inclusion of N2(v) improves theagreement between the models and the data, and on other days it worsens it. In the present workwe show for the first time the significant effect that the increase in the O+recombination rate due to O2(v) may have on the calculated NmF2. There are considerable uncertainties in the model calculations during the unusual,extremely disturbed conditions found during the daytime on 6 June. The results illustratedifficulties involved and the current state of the art in modelling severe disturbances, and thusprovide a benchmark against which future progress can be gauged.  相似文献   

5.
This study presents the ionospheric effects caused by the series of geomagnetic storms of September 9–14, 2005. The behavior of different ionospheric parameters over the Yakutsk, Irkutsk, Millstone Hill and Arecibo stations during the considered period have been numerically calculated, using a global self-consistent model of the thermosphere, ionosphere, and protonosphere (GSM TIP) developed at WD IZMI-RAN. The model calculations of disturbances of the ionospheric parameters during storms qualitatively agree with the experimental data at these midlatitude stations. We suggest that the causes of the quantitative differences between the model calculations and the observational data were the use of the 3-hour Kp index of geomagnetic activity and the dipole approximation of geomagnetic field in GSM TIP, with additional contributions from the effects of solar flares which are not considered in GSM TIP.  相似文献   

6.
The work describes an intensive study of storm sudden commencement (SSC) impulses in horizontal (H), eastward (Y) and vertical (Z) fields at four Indian geomagnetic observatories between 1958–1992. The midday maximum of δH has been shown to exist even at the low-latitude station Alibag which is outside the equatorial electrojet belt, suggesting that SSC is associated with an eastward electric field at equatorial and low latitudes. The impulses in Y field are shown to be linearly and inversely related to δH at Annamalainagar and Alibag. The average SC disturbance vector is shown to be about 10–20°W of the geomagnetic meridian. The local time variation of the angle is more westerly during dusk hours in summer and around dawn in the winter months. This clearly suggests an effect of the orientation of shock front plane of the solar plasma with respect to the geomagnetic meridian. The δZ at δC have a positive impulse as in δH. The ratio of δZ/δH are abnormally large exceeding 1.0 in most of the cases at Trivandrum. The latitudinal variation of δZ shows a tendency towards a minimum over the equator during the nighttime hours. These effects are explained as (1) resulting from the electromagnetic induction effects due to the equatorial electrojet current in the subsurface conducting layers between India and Sri Lanka, due to channelling of ocean currents through the Palk Strait and (2) due to the concentration of induced currents over extended latitude zones towards the conducting graben between India and Sri Lanka just south of Trivandrum.  相似文献   

7.
A three-dimensional model describing the homogenization of titanomagnetites with magnetite–ulvospinel exsolution structures in the course of thermomagnetic analysis is presented. The implications of the size and shape of the exsolution structures and the initial titanomagnetite composition for the temperature dependence of saturation magnetization during repeated heating is analyzed. It is found that the dimension of the exsolution structures has the strongest effect, whereas the shape and composition only have an effect in the case of the small exsolution structures. A method is suggested for estimating the dimensions of the exsolution structures from the thermomagnetic curve. A close consistency of the results is revealed by comparing the distributions of the dimensions of the exsolution structures estimated by the electron microscopy and by the analysis of the thermomagnetic curve for the same sample.  相似文献   

8.
The molecular oxygen concentration at altitudes of 90–120 km has been estimated, using the CORONAS-F/VUSS-L data on the extreme UV absorption in the Earth’s atmosphere. It has been indicated that the concentration at these altitudes is a factor of 1.3 as high as the concentration according to the Jacchia-77 model. It has been revealed that the level of solar activity slightly affects the molecular oxygen concentration at these altitudes.  相似文献   

9.
Day-time Pc 3–4 (≃5–60 mHz) and night-time Pi 2 (≃5–20 mHz) ULF waves propagating down through the ionosphere can cause oscillations in the Doppler shift of HF radio transmissions that are correlated with the magnetic pulsations recorded on the ground. In order to examine properties of these correlated signals, we conducted a joint HF Doppler/magnetometer experiment for two six-month intervals at a location near L = 1.8. The magnetic pulsations were best correlated with ionospheric oscillations from near the F region peak. The Doppler oscillations were in phase at two different altitudes, and their amplitude increased in proportion to the radio sounding frequency. The same results were obtained for the O- and X-mode radio signals. A surprising finding was a constant phase difference between the pulsations in the ionosphere and on the ground for all frequencies below the local field line resonance frequency, independent of season or local time. These observations have been compared with theoretical predictions of the amplitude and phase of ionospheric Doppler oscillations driven by downgoing Alfvén mode waves. Our results agree with these predictions at or very near the field line resonance frequency but not at other frequencies. We conclude that the majority of the observations, which are for pulsations below the resonant frequency, are associated with downgoing fast mode waves, and models of the wave-ionosphere interaction need to be modified accordingly.  相似文献   

10.
The magnetization of ceramics from the eastern Mediterranean dated within a short period (mostly shorter than ±20 years) has been studied, which made it possible to specify the geomagnetic field variations on the time interval 5th–3rd centuries BC. The 11-year time series of the geomagnetic field strength values has been constructed. The field strength changes have been considered, which indicated that the centennial variation with a characteristic time of ~130 years (according to the obtained data) is observed on this time interval as well as during the last two millennia. The ceramic material from the Mayskaya Gora archeological site (Taman), the preparation succession of which was established based on the shape of pottery but the problem of absolute dating was not solved, has been dated.  相似文献   

11.
A study of HF wave propagation in the three-dimensional inhomogeneous ionosphere has been carried out in an approximation of geometrical optics. The three-dimensional medium of radio wave propagation is considered to be inhomogeneous, absorbing, and anisotropic due to the influence of the geomagnetic field. The parameters of the medium are described by the results of calculations on the basis of the Global Self-Consistent Model of the Thermosphere, Ionosphere, and Protonosphere (GSM TIP). The propagation of radio waves in the equatorial, middle-, and high-latitude ionosphere was studied. Comparisons of the ray trajectories, integral attenuation, deviations of the projection of radio wave trajectories onto the Earth’s surface from the great-circle arc, and the behavior of the angle between the wave phase and wave energy directions, as well as the angle between the direction of propagation and the external magnetic field obtained for quiet and disturbed conditions, have been performed. We consider a geomagnetic storm that occurred in 2011, with the main storm phase occurring on September 26, and the day after geomagnetic disturbances, September 29, as disturbed conditions in the ionosphere.  相似文献   

12.
13.
14.
Abstract

Intensity–Duration–Frequency (IDF) curves for precipitation constitute a probabilistic tool and have proven useful in water resources management. In particular, IDF curves for precipitation enable questions on the extreme character of precipitation to be answered. The construction of IDF curves for precipitation is difficult or impossible in tropical areas due to the lack of long-term extreme precipitation data. A technique is proposed to overcome this shortcoming by combining limited high-frequency information on rainfall extremes with long-term daily rainfall information. It may be regarded as an extension of Koutsoyiannis' approach. Using this technique, IDF curves for precipitation are produced for Lubumbashi in Congo.

Citation Van de Vyver, H. & Demarée, G. R. (2010) Construction of Intensity–Duration–Frequency (IDF) curves for precipitation at Lubumbashi, Congo, under the hypothesis of inadequate data. Hydrol. Sci. J. 55(4), 555–564.  相似文献   

15.
The observations of active region (AR) NOAA 10792 in the Ca II 8498 ? line with an ATB-1 solar telescope at the Sternberg State Astronomical Institute, Moscow State University (SSAI MSU) on July 30, 2005, are illustrated, and the events are analyzed using the data obtained on spacecraft. Three flares and accompanying coronal mass ejections (CMEs) are considered. It has been indicated that the beginning of the first compact CME lagged behind the flare onset by 3 min. Plasma ascended with acceleration that reached 0.4 km/s2 at the flare maximum. The matter was also apparently accelerated after the flare maximum, since an ejection could only appear at the edge of the occulting C 2 LASCO coronograph disk at 0557 UT when acceleration is about 0.5 km/s2. The second CME (of the halo type) leaded the beginning of the corresponding flare.  相似文献   

16.
During an interaction of the Earth’s magnetosphere with the interplanetary magnetic cloud on October 18–19, 1995, a great magnetic storm took place. Extremely intense disturbances of the geomagnetic field and ionosphere were recorded at the midlatitude observatory at Irkutsk (Φ′≈45°, Λ′≈177°, L≈2) in the course of the storm. The most important storm features in the ionosphere and magnetic field are: a significant decrease in the geomagnetic field Z component during the storm main phase; unusually large amplitudes of geomagnetic pulsations in the Pi1 frequency band; extremely low values of critical frequencies of the ionospheric F2-layer; an appearance of intense Es-layers similar to auroral sporadic layers at the end of the recovery phase. These magnetic storm manifestations are typical for auroral and subauroral latitudes but are extremely rare in middle latitudes. We analyze the storm-time midlatitude phenomena and attempt to explore the magnetospheric storm processes using the data of ground observations of geomagnetic pulsations. It is concluded that the dominant mechanism responsible for the development of the October 18–19, 1995 storm is the quasi-stationary transport of plasma sheet particles up to L≈2 shells rather than multiple substorm injections of plasma clouds into the inner magnetosphere.  相似文献   

17.
The effect of auroral electrojets on the variations in the low-latitude geomagnetic disturbances and Dst during a strong magnetic storm of November 20–21, 2003, with Dst ≈ ?472 nT has been studied based on the global magnetic observations. It has been indicated that the magnetospheric storm expansive phase with Δt ≈ 1–2 h results in positive low-latitude disturbances (ΔH) of the same duration and with an amplitude of ~ 1–2 h results in positive low-latitude disturbances (ΔH) of the same duration and with an amplitude of ~ 30–100 nT in the premidnight-dawn sector. A growth of negative low-latitude ΔH values and Dst is mainly caused by regular convection electrojets with Δt ≥ 10 h, the centers of which shift to latitudes of ~ 50°–55° during the storm development. It has been established that the maximal low-latitude values of the field ΔH component at 1800–2400 MLT are observed when the auroral luminosity equatorward boundary shifts maximally southward during an increase in the negative values of the IMF B z component. It has been assumed that, during this storm, a magnetic field depression at low latitudes was mainly caused by an enhancement of the partially-ring current which closes through field-aligned currents into the ionosphere at the equatorward boundary of the auroral luminosity zone.  相似文献   

18.
19.
Seismic methods are becoming an established choice for deep mineral exploration after being extensively tested and employed for the past two decades. To investigate whether the early European mineral-exploration datasets had potential for seismic imaging that was overlooked, we recovered a low-fold legacy seismic dataset from the Neves–Corvo mine site in the Iberian Pyrite Belt in southern Portugal. This dataset comprises six 4–6 km long profiles acquired in 1996 for deep targeting. Using today's industry-scale processing algorithms, the world-class, ca. 150 Mt, Lombador massive sulphide and other smaller deposits were better imaged. Additionally, we also reveal a number of shallow but steeply dipping reflections that were absent in the original processing results. This study highlights that legacy seismic data are valuable and should be revisited regularly to take advantage of new processing algorithms and the experiences gained from processing such data in hard-rock environments elsewhere. Remembering that an initial processing job in hard rock should always aim to first obtain an overall image of the subsurface and make reflections visible, and then subsequent goals of the workflow could be set to, for example understanding relative amplitude ratios. The imaging of the known mineralization implies that this survey could likely have been among one of the pioneer studies in the world that demonstrated the capability of directly imaging massive sulphide deposits using the seismic method.  相似文献   

20.
The Kevitsa mafic-ultramafic intrusion, located within the Central Lapland Greenstone Belt in northern Finland, hosts a large, disseminated Ni–Cu–PGE sulphide deposit. A three-dimensional seismic reflection survey was conducted over the Kevitsa intrusion in 2010 primarily for open-pit mine planning and for deep mineral exploration purposes. In the Kevitsa three-dimensional seismic data, laterally continuous reflections are observed within a constrained region within the intrusion. In earlier studies, it has been suggested that this internal reflectivity mainly originates from contacts between the tops and more sulphide-rich bottoms of smaller scale, internally differentiated magma layers that represent a spectrum of olivine pyroxenites. However, this interpretation is not unequivocally supported by the borehole data. In this study, data mining, namely the Self-Organizing Map analysis, of extensive Kevitsa borehole data is used to investigate the possible causes for the observed internal reflectivity within the Kevitsa intrusion. Modelling of the effect of mineralization and alteration on the reflectivity properties of Kevitsa rock types, based on average modal compositions of the rock types, is presented to support the results of the Self-Organizing Map analysis. Based on the results, we suggest that the seismic reflectivity observed within the Kevitsa intrusion can possibly be attributed to alteration, and may also be linked to the presence of sulphide minerals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号