首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
This paper presents a case study regarding slope stability problems and the remedial slope stabilization work executed during the construction of two reinforced concrete water storage tanks on a steep hill in Manisa, Turkey. Water storage tanks of different capacities were planned to be constructed, one under the other, on closely jointed and deformed shale and sandstone units. The tank on the upper elevation was constructed first and an approximately 20-m cut slope with two benches was excavated in front of this upper tank before the construction of the lower tank. The cut slope failed after a week and the failure threatened the stability of the upper water tank. In addition to re-sloping, a 15.6-m deep contiguous retaining pile wall without anchoring was built to support both the cut slope and the upper tank. Despite the construction of a retaining pile wall, a maximum of 10 mm of displacement was observed by inclinometer measurements due to the re-failure of the slope on the existing slip surface. Permanent stability was achieved after the placement of a granular fill buttress on the slope. Back analysis based on the non-linear (Hoek–Brown) failure criterion indicated that the geological strength index (GSI) value of the slope-forming material is around 21 and is compatible with the in situ-determined GSI value (24). The calculated normal–shear stress plots are also consistent with the Hoek–Brown failure envelope of the rock mass, indicating that the location of the sliding surface, GSI value estimated by back analysis, and the rock mass parameters are well defined. The long-term stability analysis illustrates a safe slope design after the placement of a permanent toe buttress.  相似文献   

2.
The seismic bearing capacity of shallow foundations resting on a modified Hoek–Brown rock mass is investigated within the framework of the kinematic approach of limit analysis theory. The analysis focuses on evaluating the reduction in bearing capacity induced by seismic loading and by the proximity of a rock slope. A pseudo‐static approach is adopted to account for the earthquake effects for the seismic bearing capacity evaluations. At the rock material level, the closed‐form expressions previously obtained for the support functions of the rock failure criterion allow the implementation of different failure mechanisms families, and thus to derive rigorous upper bounds estimates of the load‐bearing capacity in both static and seismic conditions. The effects of geometrical, strength and loading parameters are assessed through a large number of parametric computations. Finally, design tables are presented for practical use in rock engineering. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
岩质高边坡岩体变形参数及松弛带厚度研究   总被引:10,自引:0,他引:10  
预测岩质高边坡开挖后岩体变形模量的变化及松弛带厚度,是分析岩质高边坡在开挖后变形(位移)和作好防护设计的重要资料,运用波动力学关于平均应力与体积模量、岩体纵波速度与弹性模量、变形模量间的关系,通过部分实测资料及边坡应力场有限元分析的资料,分别建立了纵波速度与岩体变形模、岩体应力间的关系,研究了开挖边坡岩体变形模量的变化,预测了岩体松弛带的厚度。  相似文献   

4.
Deformability of rock masses influencing their behavior is an important geomechanical property for the design of rock structures. Due to the difficulties in determining the deformability of jointed rock masses at the laboratory-scale, various in-situ test methods such as pressuremeter, dilatometer, plate loading tests etc. have been developed. Although these techniques are currently the best and direct methods, they are time-consuming and expensive, and present operational difficulties. In addition, the influence of the test volume on deformation modulus depending on the method employed is also important. For these reasons empirical equations to indirectly estimate the deformation modulus have also been recommended by several investigators as an alternative approach. In this study; the geomechanical quality of weak, heavily jointed, sheared and/or blocky greywacke rock masses, on which very concentrated civil works are continuing at the southern and southwestern parts of Ankara (Turkey), was assessed. The deformation modulus was determined by pressuremeter tests, the possible effects of variables on the derived deformation modulus from the pressuremeter test were evaluated by numerical methods, and the comparisons between the deformation modulus of the greywackes obtained from the pressuremeter tests and their geomechanical quality (GSI and RMR) were made. Numerical simulations revealed that the presence of a disturbed annulus around the borehole causes underestimation of the deformation modulus, while the effect of length to diameter ratio of the pressuremeter probe on the deformation modulus is minor. Based on the geo-engineering characterization assessments, mainly two greywacke rock masses with different geomechanical qualities were identified. Geotechnical quality of one of these rock masses was verified by the back analysis of two slope failures. The empirical equations to indirectly estimate the deformation modulus of the greywackes using their GSI and RMR values yielded high coefficients of correlation.  相似文献   

5.
高陡岩质边坡稳定性三维离散元分析   总被引:3,自引:2,他引:1  
某高陡岩质边坡地质条件复杂、软弱结构面发育、开挖高度大、坡度陡、临空面多,为边坡变形提供了有利的空间,边坡多处出现失稳破坏迹象。通过对边坡工程地质条件调查,岩体结构特征和边坡开挖等影响因素的分析,认为边坡变形主要发生在强风化强卸荷岩体内,受软弱结构面的控制比较明显,表现为结构面组合控制的块体变形失稳破坏模式。采用3DEC数值模拟软件,模拟了边坡开挖后坡体变形特征,数值模拟结果表明,边坡浅表层块体以及控制性块体稳定性差,可能导致边坡产生整体失稳。  相似文献   

6.
Static and dynamic rock slope stability analyses were performed using a numerical discontinuum modelling technique for a 700-m high rock slope in western Norway. The rock slope has been investigated by the Geological Survey of Norway (NGU), which has been carrying out rock slide studies for the county Møre and Romsdal in western Norway. The purpose of numerical modelling was to estimate the volume of the rock mass that could potentially slide under static and dynamic forces. This estimation was required to assess the run-up heights (tsunami) in a fjord that could potentially be caused by the rockslide. Three cases have been simulated for predicting the behaviour of the rock slope. First, an initial static loading is applied in the numerical model to simulate the prevailing rock mass conditions at the site. Second, saturated and weathered joint conditions are modelled by reducing the residual friction angle along the discontinuities of the rock mass. In doing so, the model simulates the effect of degradation of discontinuities in the rock slope. Third, a dynamic loading, based on peak ground accelerations expected in the area, is applied to simulate dynamic earthquake conditions.

These numerical studies have provided some useful insights into the deformation mechanisms in the rock slope. Both sliding and rotation of blocks start to occur once the residual friction angle along the discontinuities is reduced and when the region is shaken by a strong earthquake. The results indicate that, due to variations in the inclination of discontinuities, the entire slope does not become unstable and that down-slope sliding and rotation of blocks occur mainly on the top layers of the slope. Within the range of parameter values considered for this study, it is unlikely that the whole rock slope can be destabilised. The study provides an illustration of how the geo-mechanical properties of a rock mass can be integrated in a discontinuum rock slope model, which is used for predicting the behaviour of the slope under existing environmental and earthquake conditions. This model has helped not only to better understand the dynamics of the rockslide but also to estimate the potential rock volume that can become unstable when subjected to static and dynamic loads.  相似文献   


7.
We present validations and applications of the numerical Discontinuous Deformation Analysis method (DDA) for different cases of dynamic loading in the context of rock mass deformation. Following a review of 2D and 3D-DDA validations against analytical solutions for single and double face sliding, we present dynamic DDA applications in natural rock slopes and underground openings. Modelling dynamic rock slope deformation is demonstrated using the case of Masada rock slopes, with some new findings on the dynamic deformation of overhanging cliffs in general. Modelling underground deformation is demonstrated using the case of an active open pit mine in Israel developed in a rock mass containing multiple karstic caverns. The DDA method is shown here to be a powerful numerical tool for modelling dynamic rock mass deformation when the interaction between multiple discrete elements dictates the expected global deformation.  相似文献   

8.
Havasan dam site is located in northwest of Iran. The planned concrete dam is to be built on Cretaceous limestone. Faulted and fractured limestone is exposed at the dam abutments and in the reservoir area. Rock mass properties including the deformation modulus and uniaxial compressive strength were calculated using different rock mass classification systems (RMR, Q, GSI and DMR). Laboratory tests indicate that joint filling materials contain clay with low to high plasticity (CL to CH) and low to medium potential swelling pressures. X-ray diffraction analysis confirms that the reason for potential swelling of joint fillings is the existence of clay minerals (such as illite and montmorillonite). The study results about the shear strength of clay-filled joints show that under JRC–JCS condition (laboratory scale), JRC n –JCS n (large scale) and normal stress equal to 0.25–4 MPa, the range of shear strength of clay-filled joints will be equal to 0.2–2.17 and 0.14–1.72 MPa. In some areas dissolution along the joints results in high permeability, especially in the right abutment. Three dominant joint sets occur in the exploration galleries which have been excavated in the right abutment. The maximum aperture of these joints varies from 7 to 9 cm, and the joints are typically filled with clay. Preliminary analysis shows that the presence of open joints which will cause seepage of water, combined with the impact of the clay-filled joints and forces acting on the slopes, could lead to slope failures and rock falls. In addition, the assessment of slope stability results in abutments using limited equilibrium method and Swedge software under dynamic and static conditions shows that two wedges formed on the slopes of the abutment by the natural joints are potentially unstable. The rock wedge on the left abutment is smaller but presents higher sliding potential. In addition, there is no probability of planar failure due to the geological condition of the dam abutments. This paper summarizes the site investigation and subsequent analysis, which resulted in a recommendation not to construct this site. We offer some potential mitigation plans to consider if a dam were to be built at this site.  相似文献   

9.
川藏铁路沿线岩体受地质构造、风化作用以及酸雨作用的影响,广泛发育有深厚的碎裂带,工程开挖常形成长大碎裂岩质边坡.该类边坡除坡面碎块石的崩落外,还存在整体失稳风险,常规主动网难以有效加固.基于此,提出锚墩式主动网新型组合结构,以预应力锚索代替主动网中的短锚杆,约束碎裂岩质边坡坡面岩块位移的同时进行边坡的深层加固.设计了1...  相似文献   

10.
Probabilistic evaluation of slope failures is increasingly seen as the most appropriate framework for accounting for uncertainties in design. This paper performs reliability assessments for rock slopes based on the latest version of the Hoek–Brown failure criterion. The purpose of this study is to demonstrate the use of a new form of stability number for rock slope designs that has been recently developed from finite element upper and lower bound limit analysis methods, and to provide guidance for its use in probabilistic assessments. The analyses show that by using this newly proposed stability number, the probability of failure (Pf) obtained from case studies agrees well with the true state of the slope. In addition, this paper details a procedure to determine the magnitude of safety factor required for rock slope design.  相似文献   

11.
龙滩水电站左岸蠕变体B区边坡位移监测分析   总被引:4,自引:2,他引:2  
结合地下水位监测与降雨量监测结果,对龙滩水电站左岸蠕变体B区边坡位移监测资料进行综合分析,认为边坡蠕变岩体位移主要发生在高程520m以上,且强风化线或蠕变岩体折断面控制着边坡岩体的变形,由于边坡排水、坡体压脚,岩体变形速率逐渐变小,目前已经基本稳定。应加强边坡强风化线或蠕变岩体折断面附近的位移监测,特别是蓄水期监测;同时要保证地表和地下排水系统的正常运行。  相似文献   

12.
13.
复杂条件下露天采场边坡变形分析   总被引:3,自引:0,他引:3  
露天采场边坡的变形特征对边坡稳定性评价、露天开采以及对边坡变形监测具有重要意义 ,复杂条件下 ,露天采场边坡的变形特征难以预测。本文采用快速拉格朗日分析 (FL AC)方法对金牛公司露天采场稳定边坡、不稳定边坡时空上的变形特征以及空区和分步开挖对边坡变形特征的影响进行了综合分析。结果表明 :FL AC方法在分析复杂条件下的边坡变形特征方面显示了较强的优势 ,稳定边坡和不稳定边坡有着各自不同的变形特征 ,空区和开采速度对边坡变形产生一定的影响。  相似文献   

14.
在地形、岩体结构、坡度、岩层倾角以及河流的作用下,澜沧江某水电站边坡已明显变形。鉴于边坡开挖后可能出现大变形问题,使用三维离散元数值计算软件建立相应的计算模型,对边坡开挖后的位移变形特征进行计算分析。结果表明,边坡开挖后浅表层岩体变形位移较大,可能产生剪切滑移破坏,对边坡稳定不利。  相似文献   

15.
《Engineering Geology》2001,59(1-2):161-172
This paper presents the results of preliminary support design of the subway tunnel for Ankara subway project in accordance with some empirical and numerical methods, using the phase 2D finite element method (FEM). The 5 m diameter subway tunnel will advance through slightly to moderately weathered dacite and weak zones. Rock masses were characterized in terms of rock mass rating (RMR), geological strength index (GSI) and Q System. Core samples were tested in the rock mechanics laboratory to determine uniaxial compressive strength, deformability parameters, unit weight, tensile strength and triaxial compressive strength properties. Finally, rock mass strengths were determined by empirical and numerical methods. Required support system was suggested.  相似文献   

16.
浅析山区高等级公路中的边坡工程岩体   总被引:6,自引:1,他引:6  
晏鄂川  王晋等 《地球科学》2001,26(4):347-351
随着山区高等级公路建设的飞速发展,各类边坡工程岩体问题也日益增多。从卸荷岩体力学的基本观点入手,探讨了边坡工程岩体的变形破坏特性、稳定性评价方法以及开挖设计理论。研究表明,边坡工程岩体的变形破坏特性完全符合卸荷岩体力学行为,不同于常规的加载岩体行为;边坡工程岩体的稳定性分析计算中必须重视水力学因素和卸荷作用的影响,并得到了有意义的表达式;边坡工程岩体的开挖设计应在充分认识其工程力学性状的基础上,针对边坡岩体地质特性,结合已有各类稳定边坡的资料,进行既经济又可靠的优化设计。  相似文献   

17.
碎裂结构岩质边坡是地质工程中遇到的一种最不稳定边坡,其原岩松弛,结构面普遍张开,围岩自稳能力差,碎裂结构岩体出露不连续,空间分布存在差异,导致边坡破坏边界不明显,变形破坏机制很难确定。本文以雅砻江楞古水电站碎裂结构岩质边坡为例,在地质环境调查和平硐勘测的基础上,系统研究了碎裂岩体结构特征,分析了控制边坡变形破坏的边界条件和变形破坏模式,并运用UDEC离散元程序模拟验证。研究结果表明:碎裂岩质边坡的变形破坏主要受自身结构及内部相对长大结构面控制,变形演化过程依循应力调整、时效变形和局部失稳3个阶段,变形破坏模式分为断层主控底滑型和裂隙切割破坏型。目前针对碎裂结构岩质边坡研究相对较少,缺乏大型工程实例支撑,该研究成果为水利工程中这类边坡的研究提供了参考。  相似文献   

18.
《Engineering Geology》2002,63(1-2):69-82
The empirical method proposed by Hoek and Brown is combined with rock mass classifications to predict the deformation behaviour of İstanbul Metro. The rock mass was assessed using both Bieniawski's RMR89 and its strength was estimated from the formula of Hoek and Brown for the RMR89 system. The applicability and validity of the proposed procedure has been checked by comparing the predictions with actual observations. It is found that the predictions agree well with observations in the intact rock. Although there are some differences between predictions and observations in the faulted rock, these probably reflect the inevitable inaccuracies in empirical approaches, and differences in behaviour of the actual support system that is assumed in modelling. In addition, anisotropy features like faults which are not accounted properly in the Hoek et al. equation that assumes isotropic behaviour.  相似文献   

19.
In this paper, distinct element method numerical modeling is applied to evaluate bearing capacity of strip footing rested on anisotropic discontinuous rock mass. As yet, a little work has been carried out to investigate the effect of joint set orientation on the bearing capacity of rock mass. Generally, the overall behavior of rock mass under loading is very complicated and such analysis should include deformation determination, sliding along discontinuities and failure of rock material. Failure mechanism of rock mass depended on both geometrical parameters of joint sets and strength parameters of rock mass. In this research, it is assumed that rock mass contains one joint set, and therefore the anisotropy in bearing capacity and rock behavior is only due to the existence and orientation of the joint set. In this study, by assuming constant strength parameters and using Mohr–Coulomb failure criterion for the single joint set and nonlinear Hoek–Brown failure criterion for rock material, variation of the bearing capacity values and the type of failure mechanism of rock mass with different joint set dips is investigated. The obtained results indicate that the ultimate bearing capacity of rock mass containing one joint set varies between 27 and 86 % of intact rock.  相似文献   

20.
矿山复合开采岩体移动理论与安全评价方法   总被引:1,自引:0,他引:1  
文中分析了复合采动影响下边坡岩体的移动特点 ,研究两种开挖效应的相互作用机理和边坡岩体破坏机制。在此基础上 ,应用随机介质理论 ,推导出地下开挖在边坡岩体内所产生的形变力 ,并依据边坡岩体稳定性计算理论 ,最终推导复合叠加采动影响下边坡稳定性计算方法。同时应用随机介质理论 ,推导出复合采动影响下地面变形的预测模型和特殊地质条件下变形的预测方法。结合实例对变形参数的计算方法等内容进行了分析和研究 ,并对后续开采将产生的变形值进行预测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号