首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Consolidation theory and concepts of rock failure can be used to evaluate the probable risk of induced seismicity as a result of filling of reservoirs. This evaluation indicates the safest way to fill a reservoir, and depends only on the geometry of the load, the rate of filling and the geological structures in the area. The stability function is actually a measure of the risk of having failure, with time, for a particular loading history in respect to a plane of weakness.

The stability function is applied to the area of the Itzantun reservoir, which will be in southern Mexico. Drawdowns can increase the risk of triggering earthquakes in this area, which is prone to thrust faulting. It is possible to estimate the stresses after a period during which the water level is maintained and a decrease in stresses with the depth of the observation point.

The estimates of the probable induced seismicity are limited as the residual stress in the area prior to the impounding is unknown. With a measure of the residual tectonic stress it will be possible to determine an optimal filling rate to reduce the probability of induced seismicity.  相似文献   


2.
In the region of Three Gorges Reservoir (TGR) in China, there has been occurrence of several frequent earthquakes of moderate intensity since reservoir impounding occurred in 2003. These earthquakes are generally believed to be induced by reservoir impoundment and water-level variations. Usually, the geo-stress will change, when natural earthquakes occur. Following this principle, this paper adopted the rate and state theory to simulate and estimate Coulomb stress changes in the TGR region and obtained the pattern of Coulomb stress changes with time and the event sequence as well as the distribution of Coulomb stress changes in space. First, the TGR regional catalogue was analyzed and processed, leading to quantification of the magnitude of completeness and all of the parameters that are used in the stress–seismicity inversion process, including the reference seismicity rates, characteristic relaxation time, fault constitutive parameters, and stress rates. Second, the temporal evolution of the stress changes in different time windows was computed and analyzed, and it was found that there is an association between the Coulomb stress changes and rates of increase in the cumulative number of earthquakes. In addition, the earthquake occurred in November 2008 (M S = 4.1) was analyzed and attempted to simulate the distribution of stress changes in space through the stress–seismicity inversion model. The results proved that the modeled area coincides with the historical area of earthquakes that occurred after 2008. Finally, a prediction was made about the earthquake productivity rates after 2015, which showed a declining earthquake rate over time that ultimately returned to the background seismicity. This result is essentially in agreement with Omori’s law. To conclude, it is rational to use the stress-inversion method to analyze the relationship between induced earthquake seismicity and local stress changes as well as to simulate the area of earthquake occurrence and productivity rates of reservoir-induced earthquakes.  相似文献   

3.
In 1986 shortly after the impounding of Mosul reservoir, shallow earthquakes began occurring in the immediate reservoir vicinity, with magnitudes up to ML 3.0, at rates of up to 3 events per week. These events were almost certainly reservoir-induced and coincided with steadily increasing water levels. Cluster of epicenters was observed in the area located within a complex fault zone called the Sinjar-Dohouk-Kuchuk fault system. The presence of such fault system considers a potential source of earthquakes. A composite fault plane solution, based on first p-wave motion analyses, indicates that the mechanisms of seismicity were right-lateral strike-slip faulting along N44°E plane dipping 58° NW, in conformity with the local tectonics.  相似文献   

4.
Seismicity and faulting attributable to fluid extraction   总被引:6,自引:0,他引:6  
The association between fluid injection and seismicity has been well documented and widely publicized. Less well known, but probably equally widespread are faulting and shallow seismicity attributable solely to fluid extraction, particularly in association with petroleum production.

Two unequivocable examples of seismicity and faulting associated with fluid extraction in the United States are: The Goose Creek, Texas oil field event of 1925 (involving surface rupture); and the Wilmington, California oil field events (involving subsurface rupture) of 1947, 1949, 1951 (2), 1955, and 1961. Six additional cases of intensity I–VII earthquakes (M < 4.6) without reported faulting may be attributable to shallow production from other large oil and gas fields. In addition to these examples are thirteen cases of apparently aseismic surface rupture associated with production from California and Texas oil fields. Small earthquakes in the Eloy—Picacho area of Arizona may be attributable to withdrawal of groundwater, but their relation to widespread fissuring is enigmatic. The clearest example of extraction-induced seismicity outside of North America is the 1951 series of earthquakes associated with gas production from the Po River delta near Caviga, Italy.

Faulting and seismicity associated with fluid extraction are attributed to differential compaction at depth caused by reduction of reservoir fluid pressure and attendant increase in effective stress. Surface and subsurface measurements and theoretical and model studies show that differential compaction leads not only to differential subsidence and centripetally-directed horizontal displacements, but to changes in both vertical- and horizontal-strain regimes. Study of well-documented examples indicates that the occurrence and nature of faulting and seismicity associated with compaction are functions chiefly of: (1) the pre-exploitation strain regime, and (2) the magnitude of contractional horizontal strain centered over the compacting materials relative to that of the surrounding annulus of extensional horizontal strain.

The examples cited include natural systems strained only by extraction of fluids, as well as some subsequently subjected to injection. Faulting and seismicity have accompanied both decrease and subsequent increase of fluid pressures; reversal of fluid-pressure decline by injection may enhance the likelihood of subsurface faulting and seismicity due chiefly to earlier fluid pressure reduction. A consistent common denominator appears to be continuing compaction at depth; the relative effects of fluid extraction followed by injection are not easily separated.  相似文献   


5.
In 1986 shortly after the impounding of Mosul reservoir, shallow earthquakes began occurring in the immediate reservoir vicinity, with magnitudes up to ML 3.0, at rates of up to 3 events per week. These events were almost certainly reservoir-induced and coincided with steadily increasing water levels. Cluster of epicenters was observed in the area located within a complex fault zone called the Sinjar-Dohouk-Kuchuk fault system. The presence of such fault system considers a potential source of earthquakes. A composite fault plane solution, based on first p-wave motion analyses, indicates that the mechanisms of seismicity were right-lateral strike-slip faulting along N44°E plane dipping 58° NW, in conformity with the local tectonics.  相似文献   

6.
The filling of the Koyna reservoir in western India and the associated triggered earthquakes have been well documented. Several studies have suggested that earthquakes are triggered on pre-existing faults in the region due to changes in pore pressure caused by pore pressure diffusion. To study in-situ pore pressure variations twenty-one borewells were drilled in the Koyna-Warna region under an Indo-German research program during 1995–1998. In most of these wells tidal signals are observed in well level variations indicating sensitivity to small strain changes in hydraulically connected, confined aquifers. Those signals, hence, are suitable to reflect variations in the stress field of local rock formations. More than a decade of well level monitoring has shown four types of earthquake related changes. The pre- and post-earthquake changes are mostly interpretative in nature and difficult to substantiate. The co-seismic and transient changes which are observed for local and large teleseismic events are well established. Wells connected to unconfined aquifers also showed changes related to seismicity in case of large magnitude earthquakes at closer distances. Some anomalous water level fluctuations are seen which are not associated with local or teleseismic earthquakes. These changes are coherent in nature and reflect aseismic regional volume strain.  相似文献   

7.
In 1982 the U.S. Army Corps of Engineers published a study of reservoir-induced seismicity. The study evaluated the evidence of induced earthquakes from eight cases including Koyna, Hoover, Nurek, and Kariba. In this paper, the methods used in the 1982 study are applied to more recent data from Koyna and Aswan. The data from Aswan do not support classification of the 1981 earthquake as reservoir-induced. The data from Koyna confirm the findings of the 1982 study that the earthquakes at Koyna are not closely correlated to the reservoir operation.  相似文献   

8.
自2002年7月温州珊溪水库首次发生地震后,其地震活动持续至今,但目前人们对水库地震成因了解较少.基于对库区所处的区域地震地质背景、库区地形地貌、岩性及新构造运动特征的分析,采用野外地质调查的方法,获得了库区主要断层的地质特征,并评价了其渗透性.在此基础上,结合地震活动特征及震源机制解的研究成果,探讨了水库地震时间序列及发震机理.结果表明珊溪水库地震活动与库区岩性、断层(尤其是库区内的双溪-焦溪垟断层)及库水特征关系密切.水库地震主要发生在侏罗系凝灰岩夹砂岩、泥岩等隔水性好的层状岩层中,而渗透性较好的双溪-焦溪垟断层结构面则更利于库水下渗,这种岩体结构面组合方式一方面使库水容易沿断层结构面向深部渗透,另一方面断层结构面上的孔隙压力容易升高,因此降低了断层结构面上的正应力,应力平衡被打破,进而诱发地震.在水的渗透和地震活动的相互作用下,水库地震沿双溪-焦溪垟断层(尤其是第三分支断层)从SE向NW持续发生.   相似文献   

9.
CO2 capture and storage projects must consider the potential possibility ofinjection induced seismicity. Moderate earthquakes and strong earthquakes may endanger human life and property, and even felt earthquakes and microquakes also pose a threat to seal integrity of CO2 reservoir and increase the risk of leakage. Underground fluid injection induced seismicity usually happens in some geoengineering projects such as waste fluid disposal, EOR and EGS, and it occurs when fluid is injected along the fault. Therefore, it can be studied through stress analysis. The density of supercritical CO2 is smaller than water, which may develop density flow in the deep strata or water-rock interactions in pre-existing structures, and cause the variation in permeability and pressure to induce a seismic activity. In this paper, we reviewed the mechanism of underground fluid injection induced seismicity with the focus of CCS, combined with fluid injection projects and seismic monitoring analysis in both commercial scale and experimental scale, to investigate its impact on the integrity of the cap rock of the reservoir. Finally, we summarized the appropriate site selection, injection methods and monitoring programs to prevent the occurrence of induced seismicity.  相似文献   

10.
吉塞尔斯地震活动可能是因蒸汽开发引起的.水在一个承受很高构造剪应力和应变的大范围破裂体中汽化为蒸汽。 汽田地震震源机制解与区域构造应变场几乎一致,并且在该区域范围内汽田地震与别的构造地震不易区分。观测中注意到地震活动与注液历史无关,这表明孔隙水压力增高与注液不可能是吉塞尔斯诱发地震的成因。 相反,所有证据都表明诱发地震与孔隙水压力及温度降低有关。形成机制有两种最大可能:其一,是裂隙排水(汽)导致局部剪应力增加所致,其二,是由稳定滑动转化为不稳定滑动(粘滑)。没有其它记载的诱发地震机制与吉塞尔斯汽田条件相符。  相似文献   

11.
Chander, R., 1991. On the possibility of reservoir-induced seismicity in the Garhwal Himalaya. Eng. Geol., 30: 393–399.

It is argued from a brief review of available evidence that the possibility of reservoir-induced seismicity (RIS) in the Himalaya as a whole cannot be ruled out at the present time. On the other hand, a review of recent local investigations of small earthquakes ( mb less than 5) and teleseismic investigations of moderate earthquakes (mb between 5 and 6, mainly) occurring in the Garhwal segment of the Alpide-Himalayan seismic belt provides evidence that RIS in the region can be anticipated. While their epicentral belts coincide geographically, the estimated focal depths of small and moderate earthquakes of the Garhwal Himalaya are in the ranges of 0–14 and 10–20 km, respectively. Small earthquakes occur by reactivation of strike-slip and reverse faults and moderate earthquakes occur on thrust faults. Elsewhere in the world, RIS has been observed most often in the crust at the depths where small earthquakes have been observed in the Garhwal Himalaya. In addition, RIS has been experienced during the impoundment of reservoirs in strike-slip and reverse fault environments, while theoretical analyses indicate that, if suitably located in relation to the reservoir, even a thrust fault may be destabilised by impoundment.  相似文献   


12.
More than 30 cases of seismicity associated with dam reservoir sites are known throughout the world. Despite the lack of data in some areas, where seismicity occurred after reservoir impounding, there have been distinct seismic patterns observed in seismic areas after dam projects implantation. This has demonstrated that reservoir loading can trigger earthquakes. A mechanism of earthquake generation by reservoir impounding is proposed here with particular application to the Brazilian cases and to areas subject to low confining stress conditions in stable regions. Six artificial lakes are described and the associated earthquake sources are discussed in terms of natural or induced seismicity. Earthquake monitoring in Brazil up to 1967, when Brasilia's seismological station started operation, was mainly based in personal communications to the media. Therefore, there is a general lack of seismic records in relatively uninhabited areas, making it difficult to establish a seismic risk classification for the territory and to distinguish natural from induced seismicity. Despite this, cases reported here have shown an alteration of the original seismic stability in dam sites, after reservoir loading, as observed by the inhabitants or records from Brasilia's seismological station. All cases appear to be related to an increase in pore pressure in permeable rocks or fracture zones which are confined between impermeable rock slabs of more competent rock. It is apparent that some cases show some participation of high residual stress conditions in the area.  相似文献   

13.
长江三峡水库诱发地震地下水动态监测井网建设   总被引:3,自引:1,他引:3  
着重对长江三峡工程诱发地震地下水动态监测井网的建设过程、成果以及井网试运行与考核运行的情况进行了介绍 ,并对井网的观测数据进行了内在质量分析与评价。结果表明 ,井网数据具有较高的内在质量 ,不仅可为一定震级以上的水库诱发地震趋势预测提供地下水前兆依据 ,而且还可为水库诱发地震研究提供有价值的研究和参考资料.  相似文献   

14.
An earthquake of Mw 5.1 occurred on March 14, 2005, in the seismically active Koyna–Warna region in western India, the site known for the largest reservoir triggered seismicity (RTS) in the world. For more than four decades, earthquakes with M  4.0 have occurred in this region at regular intervals. Impoundment of reservoirs and changes in lake levels can trigger earthquakes by two processes of stress modifications, namely direct loading effect of the reservoir and diffusion through various faults and fractures. In this paper we analysed the reservoir water level data at Koyna and Warna reservoirs prior to the occurrence of the March 14, 2005 earthquake, to explain the dominant mechanism behind its occurrence and its correlation with the observed coseismic changes. We conclude that the diffusion process, not the reservoir load effect, is the dominating mechanism triggering earthquakes in the region. The coseismic changes in deep well water levels sensitive to earth tides are found to be to the order of 1–12 cm.  相似文献   

15.
The status of Reservoir Induced Seismicity (RIS) has been reviewed periodically (Rothé, 1968, 1973; Gupta and Rastogi, 1976; Simpson, 1976; Packer et al., 1979). In the present paper, the significant work carried out during the last three years on RIS is reviewed.An earthquake of magnitude occurred on November 14, 1981 in the vicinity of Aswan Lake, Egypt, 17 years after the filling started in 1964. This event occurred 4 days after the seasonal maximum in the reservoir water level and was followed by a long sequence of aftershocks. Another event of magnitude occurred in the vicinity of Aswan Lake on August 20, 1982. Results of preliminary investigations indicate that this seismic activity is reservoir induced. Recent analyses of induced seismic events at Nurek Reservoir U.S.S.R., show that the second stage of filling during August to December 1976, increasing the maximum depth from 120 m to 200 m, was accompanied by an intense burst of shallow seismic activity. An outward migration from the centre of the reservoir, possibly associated with diffusion of pore pressure, is revealed by the temporal distribution of earthquake foci. A variety of investigations including the in situ measurement of tectonic stress, pore pressure, permeability, distribution of faults, etc., in addition to monitoring seismicity, have been undertaken in the vicinity of the Monticello Reservoir, South Carolina. The largest reservoir induced earthquake is predicted not to exceed magnitude 5.The Koyna Reservoir, India, continues to be the most outstanding example of RIS. Three earthquakes of magnitude 5 occurred in September 1980. Earthquakes of magnitude 4 occur frequently in the vicinity of Koyna, the latest being on February 5, 1983. Events that occurred during the period 1967–1973 have been relocated using better procedures and are found to be much shallower and the epicentres less diffused. Location of 12 earthquakes of Ms 4.0, their foreshocks and aftershocks, that occurred during 1973–1976, composite focal mechanism solutions and related studies are consistent with the delineation of a N-S trending fault through the reservoir area. In a couple of interesting studies it has been demonstrated that earthquakes of magnitude 5.0 in the Koyna region are usually preceded by several magnitude 4 earthquakes in the preceding fortnight. Also, a rate of loading of Koyna reservoir of at least 40 ft/week appears to be a necessary, although not sufficient, condition for the occurrence of magnitude 5 earthquakes. Smooth filling/emptying appears to be the key to reduce the hazard of RIS.A map and a table of the reported cases of reservoir induced changes in seismicity through 1982 have been compiled.  相似文献   

16.
Instrumentation for observations of seismicity and ground acceleration near artificial reservoirs is evolving rapidly at the present time. Data recorded between 1936 and 1970, generally with only 1–3 seismograph stations, has established that the impounding of a large reservoir may lead to increased seismicity. Occasionally, shallow earthquakes in excess of magnitude 6 have occurred with resulting damage to surface structures and loss of life. Conditions leading to severe earthquakes have not been established but the pattern of enhanced seismicity as the reservoir level rises indicates that it is possible to predict when a dangerous level of earthquake rise is approaching. Increased use is now being made of larger arrays of detectors together with telemetry, storage of data on magnetic tape and even digital recording in the field. Future developments include complete digital recording of a broad range of instrumentation and detection and control of sampling rates by on-line micro-computers. As our instrumental sophistication increases and the relevant parameters for precursor activity are established it would appear that earthquake prediction near reservoirs is a possibility.  相似文献   

17.
After the filling up of the Hsinfengkiang Reservoir Kwangtung Province, seismicity was greatly increased. The majority of earthquakes occurred in the deep water gorge close to the dam, concentrated within a northwest belt. They are usually of shallow focal depths. A strong earthquake with magnitude 6.1 took place on March 19, 1962, about two and a half years since the impounding of the reservoir.

According to the results of analysis of data from geodetic leveling and the spectra of seismic waves, the fault parameters of the main shock were determined. The fault plane solutions of 150 small earthquakes, occurring within a period of 18 months before and after the main shock were determined from the amplitudes of the first motion of P wave. The directions of the earthquake generating stress of about 2000 small earthquakes were obtained by smoothing the first motion patterns. Displacement field and stress field in the rock bodies underneath the reservoir caused by the loading of the reservoir water were calculated. Variations of the velocity ratio of the P and S waves prior to the main shock and several strong aftershocks were analysed.

In consideration of the seismicity as well as the geological background, we endeavour to discuss the cause of reservoir impounding earthquakes at Hsinfengkiang. We have the opinion that the penetration of water along fissures becomes the most important cause of the main shock of March 19, 1962 at Hsinfengkiang.  相似文献   


18.
We present the results of the first airborne LiDAR survey flown in the Koyna-Warna region and examine the relationship between the lineament fabric and the ongoing seismicity in the region. Our studies reveal that earthquakes of M≥4.0 for the period 1968 to 2016 are strongly correlated with a 10 km wide N-S fracture zone, which not only represents the surface expression of seismically active basement faults, but also act as conduits for water percolation between the Koyna and Warna reservoirs. A decreasing trend in the annual distribution of earthquakes was observed from 1985. A new burst of seismic activity in 1993 followed the impoudment of the Warna reservoir. We report a change in annual seismicity pattern, where seismicity peaks during September and December in the pre-Warna period, with a new peak emerging during March-April subsequent to the impoundment of Warna reservoir. A model is proposed to explain the seismicity along dominant N-S lineaments and the impact of Warna reservoir impounding which altered the hydrogeologic regime in the region.  相似文献   

19.
《地学前缘(英文版)》2018,9(6):1903-1909
In order to adopt the best safety procedures, man-made earthquakes should be differentiated as a function of their origin. At least four different types of settings can be recognized in which anthropogenic activities may generate seismicity: (I) fluid removal from a stratigraphic reservoir in the underground can trigger the compaction of the voids and the collapse of the overlying volume, i.e., graviquakes; the deeper the reservoir, the bigger the volume and the earthquake magnitude; (II) wastewater or gas reinjection provides the reduction of friction in volumes and along fault planes, allowing creep or sudden activation of tectonic discontinuities, i.e., reinjection quakes; (III) fluid injection at supra-lithostatic pressure generates hydrofracturing and micro-seismicity, i.e., hydrofracturing quakes; (IV) fluid extraction or fluid injection, filling or unfilling of artificial lakes modifies the lithostatic load, which is the maximum principal stress in extensional tectonic settings, the minimum principal stress in contractional tectonic settings, and the intermediate principal stress in strike-slip settings, i.e., load quakes; over given pressure values, the increase of the lithostatic load may favour the activation of normal faults, whereas its decrease may favour thrust faults. For example, the filling of an artificial lake may generate normal fault-related seismicity. Therefore, each setting has its peculiarities and the knowledge of the different mechanisms may contribute to the adoption of the appropriate precautions in the various industrial activities.  相似文献   

20.
水库蓄水后, 在一定空间范围内形成了应力场、应变场和渗流场。我们建立了一个数学一力学模型, 以描述水压应力场的特征。通过运用弹塑性岩土体非线性应力一应变和稳定性静力分析NOLM83二维有限元程序发现, 水库水压应力场的最大主应力从水库中心向两侧、从水库表面向深部逐渐降低。在此基础上, 研究了在未来三峡水库水压应力场影响下, 水田坝断裂的应力、应变和影响范围。研究表明, 平面影响范围为该断裂两侧5~-6km.由于岩体的浮托作用, 地表面的累积位移量少于10mm, 并向下逐渐减小。因此, 水田坝断裂完全能够承受三峡水库蓄水后产生的水压应力, 不会出现中-强度水库诱发地震, 不会影响三峡工程的安全。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号