首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mean seasonal cycle and distribution of various life history stages of C. finmarchicus throughout the Georges Bank (GB)-Gulf of Maine (GOM) region were characterized based on 5966 MARMAP zooplankton samples collected during 106 surveys over a 10-year period (autumn 1977–autumn 1987). A high degree of seasonal and spatial variability in C. finmarchicus abundance throughout the region was evident in contoured portrayals of data, grouped into standard stations and 2-month “seasons”.Eight subareas of the Gulf of Maine-Georges Bank region were identified through cluster analysis of standard stations having similar seasonal patterns in mean abundance of C. finmarchicus stages C3, C4, C5 and adults. These were the northern Gulf of Maine (Northern GOM); southern Gulf of Maine (Southern GOM); Scotian Shelf-coastal Gulf of Maine (Scotian-Coastal GOM); Mass Bay; tidally mixed Georges Bank (Mixed GB); tidal front on the Bank separating mixed from seasonally stratified water (Tidal Front GB); seasonally stratified water on the Bank (Stratified GB) and the Continental Slope adjacent to Georges Bank (SLOPE).A distinct seasonal abundance cycle was present in all subareas, but, the magnitude and timing of annual maxima varied greatly among subareas. Peak abundance was reached early (March–April) in Mixed GB, Tidal Front GB and Mass Bay, and late (July–August) in Northern GOM and Scotian-Coastal GOM. Remaining subareas had maxima in May–June. Abundance increased 10-fold from January–February to March–April and decreased sharply from July–August to September–October in all areas except southern GOM and northern GOM. The amplitude of the annual cycle was weakest in northern GOM and southern GOM, where high concentrations of C. finmarchicus persisted year-round, and strongest in the tidally mixed shallow water on GB, where the sparsest densities of C. finmarchicus occurred most of the year. Abundance curves for the various areas converged in March–April, when C. finmarchicus was ubiquitously very abundant (> 104/10 m2), and diverged from September to December.C. finmarchicus stage distribution in the GB-GOM area was highly negatively correlated with mean water column temperature during the stratified season. This seemed more related to the hydrography of the region, which isolates warmer well mixed Georges Bank from the Gulf of Maine and the stratified areas on the Bank, than to temperature, because Calanus abundances decline on the Bank before water temperatures exceed their preferences.A large part of the spatial and seasonal variation in C. finmarchicus abundance and age structure appears to be tightly coupled to major hydrographic regimes and to major circulation patterns in the region. There was a sharp ecotone between well-mixed Georges Bank and the Gulf of Maine as defined by C. finmarchicus abundance patterns and life history distributions. The ecotone is present year-round but is most apparent during the stratified season (May–October), when thermohaline density gradients and the near-surface current jet along the northern flank are generally strongest. The Gulf of Maine had the highest abundances of C. finmarchicus, and lowest spatial and seasonal variation in the region, while tidally mixed Georges Banks displayed the opposite pattern. This indication of stable population centers in the Gulf of Maine would make it a major source of Calanus in the region, particularly during March–April. Distributional patterns also suggest a strong Calanus influence from Scotian Shelf water in northern Gulf of Maine and on the southern flank of Georges Bank.  相似文献   

2.
In this paper we present results from dynamic simulations of the Northern California Current ecosystem, based on historical estimates of fishing mortality, relative fishing effort, and climate forcing. Climate can affect ecosystem productivity and dynamics both from the bottom-up (through short- and long-term variability in primary and secondary production) as well as from the top-down (through variability in the abundance and spatial distribution of key predators). We have explored how the simplistic application of climate forcing through both bottom-up and top-down mechanisms improves the fit of the model dynamics to observed population trends and reported catches for exploited components of the ecosystem. We find that using climate as either a bottom-up or a top-down forcing mechanism results in substantial improvements in model performance, such that much of the variability observed in single species models and dynamics can be replicated in a multi-species approach. Using multiple climate variables (both bottom-up and top-down) simultaneously did not provide significant improvement over a model with only one forcing. In general, results suggest that there do not appear to be strong trophic interactions among many of the longer-lived, slower-growing rockfish, roundfish and flatfish in this ecosystem, although strong interactions were observed in shrimp, salmon and small flatfish populations where high turnover and predation rates have been coupled with substantial changes in many predator populations over the last 40 years.  相似文献   

3.
Abundance and biomass of the most important fish species inhabited the Barents and Norwegian Sea ecosystems have shown considerable fluctuations over the last decades. These fluctuations connected with fishing pressure resulted in the trophic structure alterations of the ecosystems. Resilience and other theoretical concepts (top-down, wasp-waste and bottom-up control, trophic cascades) were viewed to examine different response of the Norwegian and Barents Sea ecosystems on disturbing forces. Differences in the trophic structure and functioning of Barents and Norwegian Sea ecosystems as well as factors that might influence the resilience of the marine ecosystems, including climatic fluctuation, variations in prey and predator species abundance, alterations in their regular migrations, and fishing exploitation were also considered. The trophic chain lengths in the deep Norwegian Sea are shorter, and energy transfer occurs mainly through the pelagic fish/invertebrates communities. The shallow Barents Sea is characterized by longer trophic chains, providing more energy flow into their benthic assemblages. The trophic mechanisms observed in the Norwegian Sea food webs dominated by the top-down control, i.e. the past removal of Norwegian Spring spawning followed by zooplankton development and intrusion of blue whiting and mackerel into the area. The wasp-waist response is shown to be the most pronounced effect in the Barents Sea, related to the position of capelin in the ecosystem; large fluctuations in the capelin abundance have been strengthened by intensive fishery. Closer links between ecological and fisheries sciences are needed to elaborate and test various food webs and multispecies models available.  相似文献   

4.
Functioning of the Black Sea ecosystem has profoundly changed since the early 1970s under cumulative effects of excessive nutrient enrichment, strong cooling/warming, over-exploitation of pelagic fish stocks, and population outbreak of gelatinous carnivores. Applying a set of criteria to the long-term (1960–2000) ecological time-series data, the present study demonstrates that the Black Sea ecosystem was reorganised during this transition phase in different forms of top-down controlled food web structure through successive regime-shifts of distinct ecological properties. The Secchi disc depth, oxic–anoxic interface zone, dissolved oxygen and hydrogen sulphide concentrations also exhibit abrupt transition between their alternate regimes, and indicate tight coupling between the lower trophic food web structure and the biogeochemical pump in terms of regime-shift events.The first shift, in 1973–1974, marks a switch from large predatory fish to small planktivore fish-controlled system, which persisted until 1989 in the form of increasing small pelagic and phytoplankton biomass and decreasing zooplankton biomass. The increase in phytoplankton biomass is further supported by a bottom-up contribution due to the cumulative response to high anthropogenic nutrient load and the concurrent shift of the physical system to the “cold climate regime” following its ∼20-year persistence in the “warm climate regime”. The end of the 1980s signifies the depletion of small planktivores and the transition to a gelatinous carnivore-controlled system. By the end of the 1990s, small planktivore populations take over control of the system again. Concomitantly, their top-down pressure when combined with diminishing anthropogenic nutrient load and more limited nutrient supply into the surface waters due to stabilizing effects of relatively warm winter conditions switched the “high production” regime of phytoplankton to its background “low production” regime.The Black Sea regime-shifts appear to be sporadic events forced by strong transient decadal perturbations, and therefore differ from the multi-decadal scale cyclical events observed in pelagic ocean ecosystems under low-frequency climatic forcing. The Black Sea observations illustrate that eutrophication and extreme fishery exploitation can indeed induce hysteresis in large marine ecosystems, when they can exert sufficiently strong forcing onto the system. They further illustrate the link between the disruption of the top predators, proliferation of new predator stocks, and regime-shift events. Examples of these features have been reported for some aquatic ecosystems, but are extremely limited for large marine ecosystems.  相似文献   

5.
The Humboldt Current System, like all upwelling systems, has dramatic quantities of plankton-feeding fish, which suggested that their population dynamics may ‘drive’ or ‘control’ ecosystem dynamics. With this in mind we analysed the relationship between forage fish populations and their main prey, zooplankton populations. Our study combined a zooplankton sampling program (1961–2005) with simultaneous acoustic observations on fish from 40 pelagic surveys (1983–2005) conducted by the Peruvian Marine Research Institute (IMARPE) and landing statistics for anchoveta (Engraulis ringens) and sardine (Sardinops sagax) along the Peruvian coast from 1961 to 2005. The multi-year trend of anchoveta population abundance varied consistently with zooplankton biovolume trend, suggesting bottom-up control on anchovy at the population scale (since oceanographic conditions and phytoplankton production support the changes in zooplankton abundance). For a finer-scale analysis (km) we statistically modelled zooplankton biovolume as a function of geographical (latitude and distance from the 200-m isobath), environmental (sea surface temperature), temporal (year, month and time-of-day) and biological (acoustic anchovy and sardine biomass within 5 km of each zooplankton sample) covariates over all survey using both classification and regression trees (CART) and generalized additive models (GAM). CART showed local anchoveta density to have the strongest effect on zooplankton biovolume, with significantly reduced levels of biovolume for higher neighbourhood anchoveta biomass. Additionally, zooplankton biovolume was higher offshore than on the shelf. GAM results corroborated the CART findings, also showing a clear diel effect on zooplankton biovolume, probably due to diel migration or daytime net avoidance. Apparently, the observed multi-year population scale bottom-up control is not inconsistent with local depletion of zooplankton when anchoveta are locally abundant, since the latter effect was observed over a wide range of overall anchoveta abundance.  相似文献   

6.
Abstract

This paper reviews interactions involving stands of macroalgae on rocky reefs, and presents new data on changing sea surface temperatures (SSTs), as a contribution to the celebration of the fiftieth anniversary of the Leigh Marine Laboratory (LML) of the University of Auckland. The focus is on trophic interactions involving predators, sea urchins and large brown algae, particularly trophic cascades. Of the 369 publications arising from work at LML, 40 have been on key aspects of these trophic interactions. Quantitative investigations of the structure of kelp bed communities and mechanistic studies involving manipulative field-based experiments, essentially a bottom-up perspective based on habitats and key species, dominated the research through the 1980s. From the mid-1990s onwards, the focus was more on marine reserves and a hierarchical, top-down perspective of community structure, with a particular focus on the role of predatory fish, and marine reserves as a tool of management. I discuss these models of community structure of kelp beds within the wider context of the New Zealand nearshore zone, the varying biogeographic regimes around the coastline, diffuse stressors and the changing nearshore climate. I show there appears to have been a significant warming trend in SST in northeast and northwest New Zealand over the past 30 years. I conclude that a trophic effects model is unlikely to apply to much of the coastline of New Zealand, and that a model involving multiple effects, including bottom-up forces, environmental and climatic influences, species' demographics, and catchment-derived sedimentation is more appropriate for kelp communities over most of the country. New management models are needed to safeguard marine resources and the services they provide.  相似文献   

7.
A review of oceanographic and climate data from the North Pacific and Bering Sea has revealed climate events that occur on two principal time scales: a) 2–7 years (i.e. El Niño Southern Oscillation, ENSO), and b) inter-decadal (i.e. Pacific Decadal Oscillation, PDO). The timing of ENSO events and of related oceanic changes at higher latitudes were examined. The frequency of ENSO was high in the 1980s. Evidence of ENSO forcing on ocean conditions in the North Pacific (Niño North conditions) showed ENSO events were more frequently observed along the West Coast than in the western Gulf of Alaska (GOA) and Eastern Bering Sea (EBS). Time series of catches for 30 region/species groups of salmon, and recruitment data for 29 groundfish and 5 non-salmonid pelagic species, were examined for evidence of a statistical relationship with any of the time scales associated with Niño North conditions or the PDO. Some flatfish stocks exhibited high autocorrelation in recruitment coupled with a significant step in recruitment in 1977 suggesting a relationship between PDO forcing and recruitment success. Five of the dominant gadid stocks (EBS and GOA Pacific cod, Pacific hake and EBS and GOA walleye pollock) exhibited low autocorrelation in recruitment. Of these, Pacific hake, GOA walleye pollock and GOA Pacific cod exhibited significantly higher incidence of strong year classes in years associated with Niño North conditions. These findings suggest that the PDO and ENSO may play an important role in governing year-class strength of several Northeast Pacific marine fish stocks.  相似文献   

8.
The consequences for pelagic communities of warming trends in mid and high latitude ocean regions could be substantial, but their magnitude and trajectory are not yet known. Environmental changes predicted by climate models (and beginning to be confirmed by observations) include warming and freshening of the upper ocean and reduction in the extent and duration of ice cover. One way to evaluate response scenarios is by comparing how “similar” zooplankton communities have differed among years and/or locations with differing temperature. The subarctic Pacific is a strong candidate for such comparisons, because the same mix of zooplankton species dominates over a wide range of temperature climatologies, and observations have spanned substantial temperature variability at interannual-to-decadal time scales. In this paper, we review and extend copepod abundance and phenology time series from net tow and Continuous Plankton Recorder surveys in the subarctic Northeast Pacific. The two strongest responses we have observed are latitudinal shifts in centers of abundance of many species (poleward under warm conditions), and changes in the life cycle timing of Neocalanus plumchrus in both oceanic and coastal regions (earlier by several weeks in warm years and at warmer locations). These zooplankton data, plus indices of higher trophic level responses such as reproduction, growth and survival of pelagic fish and seabirds, are all moderately-to-strongly intercorrelated (∣r∣ = 0.25-0.8) with indices of local and basin-scale temperature anomalies. A principal components analysis of the normalized anomaly time series from 1979 to 2004 shows that a single “warm-and-low-productivity” vs. “cool-and-high-productivity” component axis accounts for over half of the variance/covariance. Prior to 1990, the scores for this component were negative (“cool” and “productive”) or near zero except positive in the El Niño years 1983 and 1987. The scores were strongly and increasingly positive (“warm” and “low productivity”) from 1992 to 1998; negative from 1999 to 2002; and again increasingly positive from 2003-present. We suggest that, in strongly seasonal environments, anomalously high temperature may provide misleading environmental cues that contribute to timing mismatch between life history events and the more-nearly-fixed seasonality of insolation, stratification, and food supply.  相似文献   

9.
The basic elements of a prototype operational data assimilation modeling system that can provide near-real-time information on the ocean water property and circulation environment in the Gulf of Maine (GOM)/Georges Bank (GB) region are described in this paper. This application of the Harvard Ocean Prediction System (HOPS, Harvard University, Cambridge, MA) model includes development of protocols for the following: 1) the production of model initial fields from an objective blending of climatological and feature model (FM) hydrographic data with fishing-boat-measured bottom temperature data, 2) the ldquowarm startrdquo of the model to produce reasonably realistic initial model fields, 3) converting real-time Fleet Numerical Meteorological and Oceanographic Center (FNMOC, Monterey, CA) model nowcast and forecast winds and/or National Data Buoy Center (NDBC, Stennis Space Center, MS) operational wind measurements to model wind stress forcing fields, and 4) the assimilation of satellite-derived sea surface temperature (SST). These protocols are shown herein to evolve the initial model fields, which were dominated by climatological data, toward more dynamically balanced, realistic fields. Thus, the model nowcasts, with the assimilation of one SST field, are well positioned to produce reasonably realistic ocean fields within a few model days (MDs).  相似文献   

10.
11.
Oceanographic regimes on the continental shelf display a great range in the time scales of physical exchange, biochemical processes and trophic transfers. The close surface-to-seabed physical coupling at intermediate scales of weeks to months means that the open ocean simplification to a purely pelagic food web is inadequate. Top-down trophic depictions, starting from the fish populations, are insufficient to constrain a system involving extensive nutrient recycling at lower trophic levels and subject to physical forcing as well as fishing. These pelagic-benthic interactions are found on all continental shelves but are particularly important on the relatively shallow Georges Bank in the northwest Atlantic. We have generated budgets for the lower food web for three physical regimes (Well-mixed, Transitional and Stratified) and for three seasons (Spring, Summer and Fall/Winter). The calculations show that vertical mixing and lateral exchange between the three regimes are important for zooplankton production as well as for nutrient input. Benthic suspension feeders are an additional critical pathway for transfers to higher trophic levels. Estimates of production by mesozooplankton, benthic suspension feeders and deposit feeders, derived primarily from data collected during the GLOBEC years of 1995-1999, provide input to an upper food web. Diets of commercial fish populations are used to calculate food requirements in three fish categories, planktivores, benthivores and piscivores, for four decades, 1963-2002, between which there were major changes in the fish communities. Comparisons of inputs from the lower web with fish energetic requirements for plankton and benthos indicate that we obtained reasonable agreement for the last three decades, 1973-2002. However, for the first decade, the fish food requirements were significantly less than the inputs. This decade, 1963-1972, corresponds to a period characterized by a strong Labrador Current and lower nitrate levels at the shelf-edge, demonstrating how strong bottom-up physical forcing may determine overall fish yields.  相似文献   

12.
To illustrate areal differences in the structure of lower trophic levels of the pelagic ecosystems in the subarctic Pacific, data collected in the quasi-steady state summer/fall conditions were analysed for five areas, i.e. the Bering Basin, Western Subarctic Gyre, the area south of the Aleutians, the Gulf of Alaska, and the Oyashio Region. Average values of stock size of four components of the lower trophic levels showed a clear difference between areas with ranges of 7.5-fold for nitrate, 3.0 for chlorophyll a, 9.9 for microzooplankton, and 2.4 for mesozooplankton. Such differences were more striking when the structure of the lower trophic levels was expressed as a biomass pyramid. In the Gulf of Alaska, Western Subarctic Gyre, and south of the Aleutians, the relative biomass of microzooplankton to phytoplankton is large and large amounts of nitrate remained unused. In addition to possible iron limitation, grazing control by the microzooplankton on small phytoplankton must be substantial in these areas. Conversely, in the Oyashio Region, the nitrate stock is very small indicating higher efficiency of nitrate consumption by phytoplankton. However, since phytoplankton and zooplankton stocks are not particularly large, their products are likely to be transferred, also efficiently, to the higher trophic levels such as planktivorous pelagic fish. The situation in the Bering Basin is intermediate between the Oyashio Region and the other three areas. Inter-annual fluctuations in stock size of the planktivorous fish which migrate into the Oyashio Region in summer/fall were quite large. However, the inter-annual variation of mesozooplankton biomass was small, suggesting the existence of certain mechanisms to stabilize plankton abundance under increasing predation pressure. As a result, the increasing fish stocks likely keep the transfer efficiency from nitrate through to fish higher, at least in the Oyashio Region.  相似文献   

13.
14.
We propose a new hypothesis, the Oscillating Control Hypothesis (OCH), which predicts that pelagic ecosystem function in the southeastern Bering Sea will alternate between primarily bottom-up control in cold regimes and primarily top-down control in warm regimes. The timing of spring primary production is determined predominately by the timing of ice retreat. Late ice retreat (late March or later) leads to an early, ice-associated bloom in cold water (e.g., 1995, 1997, 1999), whereas no ice, or early ice retreat before mid-March, leads to an open-water bloom in May or June in warm water (e.g., 1996, 1998, 2000). Zooplankton populations are not closely coupled to the spring bloom, but are sensitive to water temperature. In years when the spring bloom occurs in cold water, low temperatures limit the production of zooplankton, the survival of larval/juvenile fish, and their recruitment into the populations of species of large piscivorous fish, such as walleye pollock (Theragra chalcogramma), Pacific cod (Gadus macrocephalus) and arrowtooth flounder (Atheresthes stomias). When continued over decadal scales, this will lead to bottom-up limitation and a decreased biomass of piscivorous fish. Alternatively, in periods when the bloom occurs in warm water, zooplankton populations should grow rapidly, providing plentiful prey for larval and juvenile fish. Abundant zooplankton will support strong recruitment of fish and will lead to abundant predatory fish that control forage fish, including, in the case of pollock, their own juveniles. Piscivorous marine birds and pinnipeds may achieve higher production of young and survival in cold regimes, when there is less competition from large piscivorous fish for cold-water forage fish such as capelin (Mallotus villosus). Piscivorous seabirds and pinnipeds also may be expected to have high productivity in periods of transition from cold regimes to warm regimes, when young of large predatory species of fish are numerous enough to provide forage. The OCH predicts that the ability of large predatory fish populations to sustain fishing pressure will vary between warm and cold regimes.The OCH points to the importance of the timing of ice retreat and water temperatures during the spring bloom for the productivity of zooplankton, and the degree and direction of coupling between zooplankton and forage fish. Forage fish (e.g., juvenile pollock, capelin, Pacific herring [Clupea pallasii]) are key prey for adult pollock and other apex predators. In the southeastern Bering Sea, important changes in the biota since the mid-1970s include a marked increase in the biomass of large piscivorous fish and a concurrent decline in the biomass of forage fish, including age-1 walleye pollock, particularly over the southern portion of the shelf. Populations of northern fur seals (Callorhinus ursinus) and seabirds such as kittiwakes (Rissa spp.) at the Pribilof Islands have declined, most probably in response to a diminished prey base. The available evidence suggests that these changes are unlikely the result of a decrease in total annual new primary production, though the possibility of reduced post-bloom production during summer remains. An ecosystem approach to management of the Bering Sea and its fisheries is of great importance if all of the ecosystem components valued by society are to thrive. Cognizance of how climate regimes may alter relationships within this ecosystem will facilitate reaching that goal.  相似文献   

15.
Mass-balance models have been constructed using inverse methodology for the northern Gulf of St. Lawrence for the mid-1980s, the mid-1990s, and the early 2000s to describe ecosystem structure, trophic group interactions, and the effects of fishing and predation on the ecosystem for each time period. Our analyses indicate that the ecosystem structure shifted dramatically from one previously dominated by demersal (cod, redfish) and small-bodied forage (e.g., capelin, mackerel, herring, shrimp) species to one now dominated by small-bodied forage species. Overfishing removed a functional group in the late 1980s, large piscivorous fish (primarily cod and redfish), which has not recovered 14 years after the cessation of heavy fishing. This has left only marine mammals as top predators during the mid-1990s, and marine mammals and small Greenland halibut during the early 2000s. Predation by marine mammals on fish increased from the mid-1980s to the early 2000s while predation by large fish on fish decreased. Capelin and shrimp, the main prey in each period, showed an increase in biomass over the three periods. A switch in the main predators of capelin from cod to marine mammals occurred, while Greenland halibut progressively replaced cod as shrimp predators. Overfishing influenced community structure directly through preferential removal of larger-bodied fishes and indirectly through predation release because larger-bodied fishes exerted top-down control upon other community species or competed with other species for the same prey. Our modelling estimates showed that a change in predation structure or flows at the top of the trophic system led to changes in predation at all lower trophic levels in the northern Gulf of St. Lawrence. These changes represent a case of fishery-induced regime shift.  相似文献   

16.
There is currently a critical knowledge gap in how eutrophication and climate variables separately and interactively impact the dynamics of marine ecosystems. Based on long-term monitoring data we quantified the separate and combined impacts of nutrient loading, temperature, salinity, and wind conditions on zooplankton, zoobenthos and fish inhabiting a brackish water ecosystem in the Gulf of Riga. Changes in zoobenthos communities and herring stock were largely explained by climate variables. Zooplankton species were related to both eutrophication and climate variables, and models combining all environmental variables explained additional variation in zooplankton data compared to the separate models of climate and eutrophication. This suggests that zoobenthos communities and herring stock are largely driven by weather conditions, whereas the combined effect of weather and nutrient loads are likely the cause for dynamic zooplankton communities in the Gulf of Riga.  相似文献   

17.
Mass-balance models (Ecopath) of the ecosystem before and after collapse (1959-1961 and 1997-1999) of fish stocks were developed with Ecopath software to compare the differences in ecosystem structure, functioning and ecosystem properties of the Beibu Gulf. The model includes 20 functional groups consisting of commercial important fish groups and other ecologically important groups in the ecosystem such as zooplankton, phytoplankton, and detritus. Results indicated that biomass and catches of the system have changed drastically between the 1960s and 1990s, especially for the high trophic levels (TL). The biomass of level V in the early 1960s was 32 times higher than that of the late 1990s, however, the biomass of level I and II in the 1990s was higher than the 1960s. Despite the higher catches in the 1990s, fishing was ecologically less expensive during the 1990s than 1960s due to small fish catches were large. Mean transfer efficiency decreased from for 10.2% in the 1960s to 9.1% in the 1990s periods. According to the summary statistics, the parameters of net system production (NPS) and total primary production to total respiration ratio were increased from 1.013 in the 1960s to 2.184 in the 1990s, however, the connectance index (CI), system omnivore index, Finn’s cycling index and mean path length decreased from the 1960s to the 1990s. The overhead (O) was higher in the 1990s model while the ascendancy (A) decreased nearly 10% in the 1960s. The ‘Keystoneness’ result indicate that zooplankton was identified as keystone species in 1960s, however, the elasmobranches was keystone species in the late 1990s. The average trophic level of the fishery decreased from 3.32 in the 1960s to 2.98 in the 1990s, and exhibits classic symptoms of “fishing down the food web”. All the indices of the system attributes suggests that the Beibu Gulf ecosystem in 1960s was found to be more mature than in the 1990s due to the collapse of demersal ecosystem, and the ecosystem changed from being dominated by long-lived, high trophic level groundfish dominated system toward a system with small-size and low-value species over fifty years.  相似文献   

18.
During the last three decades, population abundances of eastern Bering Sea (EBS) crab stocks fluctuated greatly, driven by highly variable recruitment. In recent years, abundances of these stocks have been very low compared to historical levels. This study aims to understand recruitment variation of six stocks of red king (Paralithodes camtschaticus), blue king (P. platypus), Tanner (Chionoecetes bairdi), and snow (C. opilio) crabs in the EBS. Most crab recruitment time series are not significantly correlated with each other. Spatial distributions of three broadly distributed crab stocks (EBS snow and Tanner crabs and Bristol Bay red king crab) have changed considerably over time, possibly related in part to the regime shift in climate and physical oceanography in 1976–1977. Three climate-forcing hypotheses on larval survival have been proposed to explain crab recruitment variation of Bristol Bay red king crab and EBS Tanner and snow crabs. Some empirical evidence supports speculation that groundfish predation may play an important role in crab recruitment success in the EBS. However, spatial dynamics in the geographic distributions of groundfish and crabs over time make it difficult to relate crab recruitment strength to groundfish biomass. Comprehensive field and spatially explicit modeling studies are needed to test the hypotheses and better understand the relative importance and compound effects of bottom-up and top-down controls on crab recruitment.  相似文献   

19.
An ecosystem approach to the management of the marine environment has received considerable attention over recent years. However, there are few examples which demonstrate its practical implementation. Much of this relates to the history of existing marine monitoring and assessment programmes which (for many countries) are sectoral, making it difficult to integrate monitoring data and knowledge across programmes at the operational level.To address this, a scientific expert group, under the auspices of the International Council for the Exploration of the Sea (ICES), prepared a plan for how ICES could contribute to the development of an Integrated Ecosystem Assessment (IEA) for the North Sea by undertaking a pilot study utilising marine monitoring data. This paper presents the main findings arising from the expert group and in particular it sets out one possible integrated approach for assessing the relative significance of environmental forcing and fishing pressure on the ecological status of the North Sea, it then compares the findings with assessments made of other Large Marine Ecosystems (LMEs).We define the North Sea ecosystem on the basis of 114 state and pressure variables resolved as annual averages between 1983 and 2003 and at the spatial scale of ICES rectangles. The paper presents results of integrated time-series and spatial analysis which identifies and explains significant spatial and temporal gradients in the data. For example, a significant shift in the status of the North Sea ecosystem (based upon 114 state-pressure variables) is identified to have occurred around 1993. This corresponds to previously documented shifts in the environmental conditions (particularly sea surface temperature) and changes in the distribution of key species of plankton (Calanus sp.), both reported to have occurred in 1989. The difference in specific timing between reported regime shifts for the North Sea may be explained, in part, by time-lag dependencies in the trophic structure of the ecosystem with shifts in higher trophic levels occurring later than 1989.By examining the connection (or relatedness) between ecosystem components (e.g. environment, plankton, fish, fishery and seabirds) for the identified regime states (1983–1993; 1993–2003) we conclude that both the North Sea pelagic and benthic parts of the ecosystem were predominantly top-down (fishery) controlled between 1983 and 1993, whereas between 1993 and 2003 the pelagic stocks shifted to a state responding mainly to bottom-up (environment) influences. However, for the demersal fish stocks between 1993 and 2003 top-down (fishery) pressure dominated even though over this period significant reductions in fishing pressure occurred. The present analysis, therefore, provides further evidence in support of the need for precautionary management measures taken in relation to setting fishery quotas.  相似文献   

20.
As part of a project comparing the structure and function of four marine ecosystems off Norway and the United States, this paper examines the oceanographic responses to climate forcing, with emphasis on recent changes. The four Northern Hemisphere ecosystems include two in the Pacific Ocean (Bering Sea and Gulf of Alaska) and two in the Atlantic Ocean (Georges Bank/Gulf of Maine and the Barents/Norwegian Seas). Air temperatures, wind forcing and heat fluxes over the four regions are compared as well as ocean hydrography and sea-ice conditions where seasonal sea ice is found. The long-term interannual variability in air temperatures, winds and net heat fluxes show strong similarity between adjacent ecosystems and within subregions of an ecosystem, but no significant correlations between Pacific and Atlantic ecosystems and few across the Atlantic. In spite of the lack of correlation between climate forcing and ocean conditions between most of the ecosystems, recent years have seen record or near record highs in air and sea temperatures in all ecosystems. The apparent causes of the warming differ. In the Atlantic, they appear to be due to advection, while in the Pacific temperatures are more closely linked to air-sea heat exchanges. Advection is also responsible for the observed changes in salinity in the Atlantic ecosystems (generally increasing salinity in the Barents and Norwegian Seas and decreasing in the Gulf of Maine and Georges Bank) while salinity changes in the Gulf of Alaska are largely related to increased local runoff.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号