首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long-term series of midnight temperature in the mesopause region have been obtained from spectral observations of hydroxyl airglow emission (OH(6-2) λ840 nm band) at the Tory station (52° N, 103° E) in 2008–2016 and Zvenigorod (56° N, 37° E) station in 2000–2016. On their basis, the Lomb-Scargle spectra of the variations in the period range from ~12 days to ~11 years have been determined. Estimates of the amplitudes of statistically significant temperature fluctuations are made. The dominant oscillations are the first and second harmonics of the annual variation, the amplitudes of which are 23–24 K and 4–7 K, respectively. The remaining variations, the number of which was 16 for the Tory and 22 for Zvenigorod stations, have small amplitudes (0.5–3 K). Oscillations with combinational frequencies, which arise from modulation of the annual variation harmonics, are observed in a structure of the variation spectra in addition to interannual oscillations (periods from ~2 to ~11 years) and harmonics of the annual variation (up to its tenth harmonic).  相似文献   

2.
The seasonal dependences of the response of the hydroxyl ((6–2) band) and molecular oxygen O2(b 1Σ g + ) ((0–1) band) emission intensities, temperature, and density indicator in the region of the hydroxyl emission maximum (87 km) to solar activity have been obtained based on the spectral observations of the mesopause emissions at Zvenigorod observatory during 2000–2007. The ratio of the OH (7–3) and (9–4) band intensities, characterizing the behavior of the vibrational temperature, has been used as an indicator of density. It has been established that the response of the studied mesopause characteristics to solar activity is positive in all seasons. In winter the response is maximal in the intensities and temperature and is minimal in the density indicator. The main mechanisms by which solar activity affects the mesopause characteristics have been considered. The behavior of the internal gravity waves with periods of 0.33–7 h depending on solar activity has been studied. It has been noted that these waves become more active at a minimum of the 11-year solar cycle.  相似文献   

3.
It is well known that the 630-nm nightglow emission intensity in midlatitudes increases by more than a factor of 2 during a sunspot maximum. It has been assumed that the phenomenon is caused by variations in solar UV radiation during a solar cycle (Fishkova, 1983). We present the results of photometric measurements of the nightglow 630.0 nm emission intensity at a latitude of 63° E and longitude of 130° E (Yakutsk) in 1990–2007. The dependence of the 630-nm emission intensity on solar activity on magnetically quiet days in the 22nd and 23rd solar cycles is shown. The close relationship between the 630-nm nightglow intensity and the intensity of extreme UV (EUV) with a correlation coefficient of 0.8–0.9 in 1997–2007 is ascertained from the SOHO/SEM data. The dominance of solar EUV in the excitation of nightglow 630-nm emission has thus been experimentally proved.  相似文献   

4.
Based on observations of mesopause emissions, namely, emissions of hydroxyl (band (6-2)) and molecular oxygen (band (0-1) of the atmospheric system), their systematic nighttime and seasonal variations are determined at Zvenigorod Observatory in 2000–2008. It is shown that the intensity of hydroxyl emission decreases during the entire night or first half-night, probably due to the influence of the chemical sink of atomic oxygen on the nighttime behavior of hydroxyl emission. The nighttime behavior of the intensity of molecular oxygen emission is explained by the action of atmospheric tides. The seasonal behavior of emissions is characterized by two minima, in April–May and December; it is caused by the annual behavior of the atomic oxygen content, temperature, and atmospheric density in the emitting layer. Based on the emission data, we determined the seasonal variations of atomic oxygen at heights of ∼87 km (maximum of hydroxyl emission) and ∼95 km (maximum of molecular oxygen emission).  相似文献   

5.
Estimation of the infiltration/natural recharge to groundwater from rainfall is an important issue in hydrology, particularly in arid regions. This paper proposes the application of The Natural Resources Conservation Service (NRCS) mass balance model to develop infiltration (F)–rainfall (P) relationship from flash flood events. Moreover, the NRCS method is compared with the rational and the Ф-index methods to investigate the discrepancies between these methods. The methods have been applied to five gauged basins and their 19 sub-basins (representative basins with detailed measurements) in the southwestern part of Saudi Arabia with 161 storms recorded in 4 years. The F–P relationships developed in this study based on NRCS method are: F = 39% P with R2 = 0.932 for the initial abstraction factor, λ = 0.2. However, F = 77% P with R2 = 0.986 for λ = 0.01. The model at λ = 0.01 is the best to fit the data, therefore, it is recommended to use the formula at λ = 0.01. The results show that the NRCS model is appropriate for the estimation of the F–P relationships in arid regions when compared with the rational and the Ф index methods. The latter overestimates the infiltration because they do not take λ into account. There is no significant difference between F–P relationships at different time scales. This helps the prediction of infiltration rates for aquifer recharge at ungauged basins from monthly and annual rainfall data with a single formula.  相似文献   

6.
The study is based on measuring fluctuations of the intensity and rotational temperatures of the molecular emissions of hydroxyl OH(6,2) and the first atmospheric band of oxygen O2(0–1), excited at approximately 87 and 95 km, respectively. The measurements are conducted at Maimaga station (63°N, 129.5°E), located 150 km north of Yakutsk. The semidiurnal tide parameters were obtained using the database compiled from 1999 to 2005. The data obtained from October to March were analyzed. The measurements conducted during 214 nights were used to determine the semidiurnal tide parameters. The wave amplitude at the height of the molecular oxygen emission (~95 km) is 8 K, which is larger than the amplitude at the height of the hydroxyl emission (~87 km) by approximately 2 K. Except November, the 12-h oscillation at the height of molecular oxygen excitation leads the oscillation at the height of hydroxyl excitation. On average, the phase is ~5.7 h at the OH emission height and ~6.4 h at the O2 emission height. We note that an abrupt increase in the tide amplitude in March at the molecular oxygen height can be related to a seasonal decrease in the so-called “wave” turbopause height.  相似文献   

7.
Solar flare films obtained on the TRACE spacecraft with a resolution of 1″ in the 160-nm (CIV) band with a frame separation of 2 s are examined. It has been indicated that the flare scenario is determined by the dynamics of numerous structures of about 1000 km in diameter. The fractal nature of the flare is confirmed. A self-organized criticality (SOC) mechanism is proposed to explain the flare formation and development. The most probable source of the flare energy is considered to be the chain of three-dimensional solitons.  相似文献   

8.
In this paper two models are presented for calculating the hourly evapotranspiration λE (W m?2) using the Penman–Monteith equation. These models were tested on four irrigated crops (grass, soya bean, sweet sorghum and vineyard), with heights between 0·1 and 2·2 m at the adult growth stage. In the first model (Katerji N, Perrier A. 1983. Modélisation de l'évapotranspiration réelle ETR d'une parcelle de luzerne : rôle d'un coefficient cultural. Agronomie 3(6): 513–521, KP model), the canopy resistance rc is parameterized by a semi‐empirical approach. In the second model (Todorovic M. 1999. Single‐layer evapotranspiration model with variable canopy resistance. Journal of Irrigation and Drainage Engineering—ASCE 125: 235–245, TD model), the resistance rc is parameterized by a mechanistic model. These two approaches are critically analysed with respect to the underlying hypotheses and the limitations of their practical application. In the case of the KP model, the mean slope between measured and calculated values of λE was 1·01 ± 0·6 and the relative correlation coefficients r2 ranged between 0·8 and 0·93. The observed differences in slopes, between 0·96 and 1·07, were not associated with the crop height. This model seemed to be applicable to all the crops examined. In the case of the TD model, the observed slope between measured and calculated values of λE for the grass canopy was 0·79. For the other crops, it varied between 1·24 and 1·34. In all the situations examined, the values of r2 ranged between 0·73 and 0·92. The TD model underestimated λE in the case of grass and overestimated it in the cases of the other three crops. The under‐ or overestimation of λE in the TD model were due: (i) to some inaccuracies in the theory of this model, (ii) to not taking into account the effect of aerodynamic resistance ra in the canopy resistance modelling. Therefore, the values of rc were under‐ or overestimated in consequence of mismatching the crop height. The high value of air vapour pressure deficit also contributed to the overestimation of λE, mainly for the tallest crop. The results clarify aspects of the scientific controversy in the literature about the mechanistic and semi‐empirical approaches for estimating λE. From the practical point of view the results also present ways for identifying the most appropriate approach for the experimental situations encountered. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents an innovative set of high‐seismic‐resistant structural systems termed Advanced Flag‐Shaped (AFS) systems, where self‐centering elements are used with combinations of various alternative energy dissipation elements (hysteretic, viscous or visco‐elasto‐plastic) in series and/or in parallel. AFS systems is developed using the rationale of combining velocity‐dependent with displacement‐dependent energy dissipation for self‐centering systems, particularly to counteract near‐fault earthquakes. Non‐linear time‐history analyses (NLTHA) on a set of four single‐degree‐of‐freedom (SDOF) systems under a suite of 20 far‐field and 20 near‐fault ground motions are used to compare the seismic performance of AFS systems with the conventional systems. It is shown that AFS systems with a combination in parallel of hysteretic and viscous energy dissipations achieved greater performance in terms of the three performance indices. Furthermore, the use of friction slip in series of viscous energy dissipation is shown to limit the peak response acceleration and induced base‐shear. An extensive parametric analysis is carried out to investigate the influence of two design parameters, λ1 and λ2 on the response of SDOF AFS systems with initial periods ranging from 0.2 to 3.0 s and with various strength levels when subjected to far‐field and near‐fault earthquakes. For the design of self‐centering systems with combined hysteretic and viscous energy dissipation (AFS) systems, λ1 is recommended to be in the range of 0.8–1.6 while λ2 to be between 0.25 and 0.75 to ensure sufficient self‐centering and energy dissipation capacities, respectively. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
The method for determining the rotational temperature of the hydroxyl emission of the upper atmosphere is analyzed. It is shown that a discrepancy of up to 14 K appears in the temperature values determined for the region of OH emission (~87 km) since different researchers use the intensity factors (line strengths) of the lines of the rotational structure of hydroxyl bands based on various theoretical calculations. This discrepancy considerably exceeds the error (2–3 K) of direct temperature measurements. The use of the set of such data in the analysis of the time and spatial temperature regime can lead to a distortion of the character of the long-term changes in the mesopause temperature. Analytical expressions are obtained making it possible to calculate a systematic correction for the temperatures determined with the use of various intensity factors. One should also take into account considerable seasonal variations in the dependence of rotational temperature values on the level of the hydroxyl vibrational excitation.  相似文献   

11.
We will show that the presence of height-extended ionization in the night-time ionospheric E region during high-power radiowave transmission into the magnetic zenith could allow for strong self-focusing of the transmitter beam due to the resonance instability near the upper-hybrid resonance level (the so-called magnetic zenith effect, never before reported for the E region) and for unusually strong enhancement in effective radiowave power due to the parametric instability, occurring in the Langmuir resonance region. This leads to 36–40 times higher effective radiated power and 36–40 times brighter optical emissions as was observed during the extraordinary bright (4 kR) radiowave-induced 557.7-nm aurora event.  相似文献   

12.
目的:探究食管胃结合部癌病理型别的能谱CT鉴别诊断效果。方法:回顾性分析2015年1月至2018年1月期间我院收治的116例食管胃结合部癌患者的临床资料,其中64例为腺癌,52例为鳞癌。高分化27例,中分化45例,低分化44例。所有患者均行能谱CT扫描。比较腺癌和鳞癌患者动脉期和静脉期肿块内统一ROI碘浓度(IC)、有效原子序数(Eff-Z)、水浓度(WC)、能谱曲线斜率(λHU),并比较不同分化程度患者动脉期和静脉期肿块内IC、Eff-Z、WC、λHU。分析能谱CT对食管胃结合部癌病理型别和分化程度的鉴别诊断效能。对腺癌和鳞癌患者动脉期和静脉期能谱CT的IC、Eff-Z、WC、λHU比较,结果:①两组患者动脉期和静脉期的WC比较差异无统计学意义(P>0.05)。②两组患者动脉期和静脉期的IC、Eff-Z、λHU比较差异具有统计学意义(P<0.05),腺癌患者动脉期和静脉期的IC、Eff-Z、λHU均高于鳞癌患者。静脉期IC、Eff-Z、λHU具有较高的诊断效能,静脉期Eff-Z诊断效能最佳,AUC为0.97,以8.72为阈值时,鉴别敏感度为88.90%,特异度为94.70%。结论:能谱CT多参数定量分析对食管胃结合部癌病理类型具有较高的诊断价值。  相似文献   

13.
The seasonal temperature variations in the mesopause region and the inter-day and nighttime temperature variability, the measure of which is standard deviations, have been studied based on the hydroxyl emission spectral observations at the Zvenigorod station of the Obukhov Institute of Atmospheric Physics in 2000–2011 and Institute of Solar Terrestrial Physics geophysical station (Tory) in 2008–2011. The long-term variations in all temperature variability parameters have been analyzed.  相似文献   

14.
Abstract

Nonlinear interactions of deviatoric stress components and the velocity field occur in all dynamic flows where convected elasticity is accounted for. By incorporating a linear Maxwellian constitutive relation (Oldroyd ‘B’ type) into a finite-amplitude convection model we quantify the magnitude of some of the effects of these nonlinear interactions. For viscoelastic flows the relevant nondimensional parameter is the ratio of viscoelastic constitutive relaxation time constant, λ1, to the basic flow process time. The Rayleigh number, Ra, and the nondimensional ratio of λ1 to thermal conduction time, τc, are part of the parameter space investigated. However, shorter basic flow time scales than that for thermal equilibration are of interest since most viscoelastic fluids have relatively small values of λ1 The ratio of λ1 to buoyant time [bcirc], or λ1/[bcirc], is, therefore, a pertinent parameter. Using both lithospheric and aesthenospheric values for λ1, the ratio appropriate to mantle convection is roughly bounded by O(1)[bcirc]>λ1/[bcirc]>O(10?6). Employing these bounds and computing low Rayleigh number time-dependent convective flows in a two-dimensional box, it is demonstrated that viscoelasticity has a negligible influence on quasi-steady heat transport even for λ1/[bcirc]~O(1) For any time-dependent behavior with time scales as short, or shorter than, the buoyant time, [bcirc], viscoelasticity might be important to the local exchange of mechanical energy. The recoverable strain energy in the descending portion of the lithosphere is comparable to the local viscous dissipation. The magnitude of this recoverable component of shear is proportional to λ1/[bcirc].  相似文献   

15.
Analysis of instrumental data on earthquakes of 1960–2005 in the Irkutsk amphitheater shows that the majority of the earthquakes form a wide (150–300 km) band of diffuse seismicity along the marginal suture of the Siberian platform. In accordance with established regular spatiotemporal patterns of the distribution of earthquakes, this band belongs to the Sayan-Baikal seismic belt, associated with the destruction process at the boundary of large lithospheric blocks. The band is located on the northern periphery of the belt and, the deformable substrate being highly monolithic, this sharply weakens the seismicity within the band. Because of the tectonic origin of earthquakes in such a vast platform territory, undoubted evidence for induced seismicity around the Angara cascade reservoirs, and the intense economic development of the region, the problem of seismic hazard in the southern Siberian platform should be regarded as one of the most significant objects of geodynamic research.  相似文献   

16.
The Raman spectra of carbonaceous material (CM) from 19 metasediment samples collected from six widely separated areas of Southwest Japan and metamorphosed at temperatures from 165 to 655°C show systematic changes with metamorphic temperature that can be classified into four types: low‐grade CM (c. 150–280°C), medium‐grade CM (c. 280–400°C), high‐grade CM (c. 400–650°C), and well‐crystallized graphite (> c. 650°C). The Raman spectra of low‐grade CM exhibit features typical of amorphous carbon, in which several disordered bands (D‐band) appear in the first‐order region. In the Raman spectra of medium‐grade CM, the graphite band (G‐band) can be recognized and several abrupt changes occur in the trends for several band parameters. The observed changes indicate that CM starts to transform from amorphous carbon to crystallized graphite at around 280°C, and this transformation continues until 400°C. The G‐band becomes the most prominent peak at high‐grade CM suggesting that the CM structure is close to that of well‐crystallized graphite. In the highest temperature sample of 655°C, the Raman spectra of CM show a strong G‐band with almost no recognizable D‐band, implying the CM grain is well‐crystallized graphite. In the Raman spectra of low‐ to medium‐grade CM, comparisons of several band parameters with the known metamorphic temperature show inverse correlations between metamorphic temperature and the full width at half maximum (FWHM) of the D1‐ and D2‐bands. These correlations are calibrated as new Raman CM geothermometers, applicable in the range of c. 150–400°C. Details of the methodology for peak decomposition of Raman spectra from the low to medium temperature range are also discussed with the aim of establishing a robust and user‐friendly geothermometer.  相似文献   

17.
The Zuccale fault is a regional, low-angle, normal fault, exposed on the Isle of Elba in central Italy that accommodated a total shear displacement of 6–8 km. The fault zone structure and fault rocks formed at <8 km crustal depth. The present-day fault structure is the final product of several deformation processes superposed during the fault history. In this study, we report results from a series of rotary shear experiments performed on 1-mm thick powdered gouges made from several fault rock types obtained from the Zuccale fault. The tests were done under conditions ranging from room temperature to in situ conditions (i.e., at temperatures up to 300 °C, applied normal stresses up to 150 MPa, and fluid-saturated.) The ratio of fluid pressure to normal stress was held constant at either λ = 0.4 or λ = 0.8 to simulate an overpressurized fault. The samples were sheared at a constant sliding velocity of 10 μm/s for at least 5 mm, after which a velocity-stepping sequence from 1 to 300 μm/s was started to determine the velocity dependence of friction. This can be represented by the rate-and-state parameter (a–b), which was determined by an inversion of the data to the rate-and-state equations. Friction of the various fault rocks varies between 0.3 and 0.8, similar to values obtained in previous studies, and decreases with increasing phyllosilicate content. Friction decreases mildly with temperature, whereas normal stress and fluid pressure do not affect friction values systematically. All samples exhibited velocity strengthening, conditionally stable behavior under room temperature conditions and (ab) increased with increasing sliding velocity. In contrast, velocity weakening, accompanied by stick–slips, was observed for the strongest samples at 300 °C and sliding velocities below 10 μm/s. An increase in fluid pressure under these conditions led to a further reduction in (a–b) for all samples, so that they exhibited unstable, stick–slip behavior at low sliding velocity. The results suggest that phyllosilicate-bearing fault rocks can deform by stable, aseismic creep at low, resolved shear stress and low shear rate conditions. An increase in fluid pressure or loading of stronger portions could lead to a runaway instability. The runaway instability might be limited in size because of (1) the fault heterogeneity, (2) the observed strengthening at higher sliding velocities, and (3) a co-seismic drop in pore-fluid pressure.  相似文献   

18.
The airglow hydroxyl temperature record from Longyearbyen, Svalbard, is updated with data from the last seven seasons (2005/2006–2011/2012). The temperatures are derived from ground-based spectral measurements of the hydroxyl airglow layer, which ranges from 76 to 90 km height. The overall daily average mesospheric temperature for the whole temperature record is 206 K. This is by 3 K less than what Dyrland and Sigernes (2007) reported in their last update on the temperature series. This temperature difference is due to cold winter seasons from 2008 to 2010. 2009/2010 was the coldest winter season ever recorded over Longyearbyen, with a seasonal average of 185 K. Temperature variability within the winter seasons is investigated, and the temperature difference between late December (local minimum) and late January (local maximum) is approximately 8 K.  相似文献   

19.
Over the last few decades, very low frequency electromagnetics has been widely and successfully applied in mineral exploration and groundwater exploration. Many radio transmitters with strong signal‐to‐noise ratios are scattered in the very low frequency band and low frequency band. Based on experiences gained from ground measurements with the radio‐magnetotelluric technique operating in the frequency interval 1–250 kHz, broadband magnetometers have been used to cover both very low frequency (3–30 kHz) and low frequency (30–300 kHz) bands to increase the resolution of the near‐surface structure. The metallic aircraft as a conductive body will distort the magnetic signal to some extent, and thus it is important to investigate aircraft interference on the electromagnetic signal. We studied noise caused by rotation of an aircraft and the aircraft itself as a metallic conductive body with three methods: 3D wave polarization, determination of transmitter direction and full tipper estimation. Both very low frequency and low frequency bands were investigated. The results show that the magnetic field is independent of the aircraft at low frequencies in the very low frequency band and part of the low frequency band (below 100 kHz). At high frequencies (above 100 kHz), the signals are more greatly influenced by the aircraft, and the wave polarization directions are more scattered, as observed when the aircraft turned. Some aircraft generated noise mixed with radio transmitter signals, detected as ‘dummy’ signals by the 3D wave polarization method. The estimated scalar magnetic transfer functions are dependent on the aircraft flight directions at high frequencies, because of aircraft interference. The aircraft eigenresponse in the transfer functions (tippers) between vertical and horizontal magnetic field components was compensated for in the real part of the estimated tippers, but some unknown effect was still observed in the imaginary parts.  相似文献   

20.
The power spectra of time variations in the electric field strength in the near-Earth’s atmosphere and in the geomagnetic field horizontal component, which were simultaneously observed at the Paratunka observatory (φ = 52°58.3′ N; λ = 158°14.9′ E) in September 1999, have been studied. The periods of the day (including sunrise, sunset, and night) have been considered. It has been indicated that oscillations with periods T ~ 2.0–2.5 h are present in the power spectra of these parameters during the day. The intensity of these oscillations increases noticeably and the oscillations in the band of periods T < 1 h increase simultaneously in the field strength power spectra at sunrise. The variations in the argument of the cross-spectrum of these parameters indicated that oscillations in the 2.0–2.5 h period band are caused by sources that are located above the ionospheric dynamo region; at the same time, oscillations in the 0.5–1 h period band are caused by sources in the lower atmosphere. A possible mechanism by which these oscillations are generated, related to the vortex motion of convective cells that originate at sunrise in the boundary atmospheric layer, is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号