首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
红土型镍矿是基性、超基性岩在热带、亚热带地区常年高温、多雨的环境下,经过风化--淋滤--沉积富集而成。基性、超基性岩是此类矿床的成矿母岩。因此,以往针对红土型镍矿的找矿勘探首先是寻找基性、超基性岩。笔者近期在印度尼西亚苏拉威西省Kolaka县发现了一种新型红土镍矿床,该矿床成矿母岩并非是基性、超基性岩,而是砾石成分以超基性岩为主的一套砾岩。为了区分传统意义上由基性、超基性岩风化淋滤形成的红土型镍矿,笔者将其称为砾岩型红土镍矿。该矿床的结构分带由上往下可分为:腐植土层、红土层、强风化砾岩层、半风化砾岩层、砾岩层,镍矿体主要分布于半风化砾岩层中。初步认为矿床是由砾岩经过风化--水解-淋滤-沉淀富集等作用形成的。  相似文献   

2.
印度尼西亚苏拉威西岛―北马露姑群岛位于环太平洋成矿域与古特提斯成矿域交汇部位,拥有北科纳威、苏巴印、马布里等重要红土型镍矿床。研究表明:方辉橄榄岩、二辉橄榄岩、纯橄榄岩及其蚀变岩石是最有利的成矿母岩,白垩系、三叠系镁质超基性岩,镍品位与基岩的富集比3.3~5.48,风化后可形成大型或超大型红土型镍矿床。成矿作用经历了腐岩化阶段、红土化阶段、次生富集阶段。  相似文献   

3.
印度尼西亚红土镍矿的生成及找矿勘探   总被引:2,自引:0,他引:2  
通过对印度尼西亚东南部红土镍矿的找矿工作以及前人对红土镍矿找矿工作的总结,指出红土镍矿的生成条件及找矿勘探方法。红土镍矿是超基性岩在热带及亚热带常年高温、雨、旱交替且年降雨量较大的地区经风化、淋滤、沉积富集而成。找矿勘探工作要针对找矿区域的超基性岩进行化探次生晕扫面工作并确定矿化区。  相似文献   

4.
印度尼西亚红土型镍矿   总被引:3,自引:0,他引:3  
红土型镍矿分布在环太平洋亚热带-热带多雨地区。镍矿体产于趟基性岩上部的红土风化壳中,受地形控制明显,成因类型为红土型硅酸镍氧化矿,以褐铁矿型和腐岩型为主,矿石质量和可利用性均较好。  相似文献   

5.
菲律宾迪纳加特岛红土型镍矿床地质特征及找矿勘查方法   总被引:1,自引:0,他引:1  
通过对菲律宾迪纳加特岛风化壳氧化镍-硅酸镍矿床的成矿地质条件、矿床地质特征、成矿机制的分析和研究,认为矿床是由于超镁铁岩-橄榄岩在中生代、第三纪、第四纪的热带、亚热带气候条件下,经过风化作用,镍从含镍的硅酸盐矿物中淋滤出来,随地表水向下渗透到风化壳的下部,形成富含镍的次生矿物,具有典型的风化壳型硅酸镍矿床特点。找矿勘探工作要在找矿区域进行地质填图及工程取样扫面来确定矿化区。  相似文献   

6.
本区红土型镍矿预测中的主要原岩-蛇绿岩位于太平洋板块、欧亚板块与澳大利亚板块结合部构成的三联点构造控制的班达海左行旋卷构造带上。大面积分布的蛇绿岩带底部的镁质超基性岩普遍含镍0.2%0.4%,其风化壳具明显结构分带,超基性岩地区200.4%,其风化壳具明显结构分带,超基性岩地区20450 m标高的中、低山地貌,坡度角5°450 m标高的中、低山地貌,坡度角5°30°等是红土型镍矿主要预测标志。预测红土型镍矿A类远景区2400 km2,近海边红土型镍矿潜在资源量1500万t;B类远景区5500 km2;C类远景区面积5600 km2。  相似文献   

7.
东南亚地区红土型镍矿分布较广,成矿地质条件优越。该类矿床产于超基性岩带顶部红土型风化壳内,矿石多为含镍的褐铁矿化黏土,其产出规模、分布范围和品位高低与原岩类型、气候变化、地形地貌和构造条件关系密切。成矿物质主要来源于超基性岩体,是镁铁质-超镁铁质岩体风化-淋滤-淀积的产物,矿石的矿物组分与风化土的矿物组分大体一致,属黏土硅酸盐镍矿床。本文在收集前人资料的基础上,系统地阐述了矿床区域地质背景、矿床地质特征及成矿分布规律初步研究,总结出了该类矿区找矿标志及成矿规律,对寻找红土型镍矿床具有一定的指导作用。  相似文献   

8.
通过对印度尼西亚卫古岛风化壳型硅酸镍矿床的成矿地质条件、矿床地质特征、成矿机制的分析和研究,认为矿床是由于超铗铁岩-橄榄岩在中生代、第三纪、第四纪的热带、亚热带气候条件下,经过风化作用,镍从含镍的硅酸盐矿物中淋滤出来,随地表水向下渗透到风化壳的下部,形成富含镍的次生矿物,具有典型的风化壳型硅酸镍矿床特点.  相似文献   

9.
印尼苏拉威西岛红土型镍矿的高效快速勘查模式   总被引:3,自引:0,他引:3  
崔敏利 《地质与勘探》2009,45(4):417-422
金属镍是我国紧缺资源之一,印度尼西亚拥有丰富的红土型镍矿,但是由于国外开采,在矿业政策、技术条件、气候条件上面临很多挑战,实施高效、快速、低成本勘探是解决这些问题的根本途径.文章以印尼苏拉威西岛的一个红土型镍矿勘查区为例,应用高精度磁法勘探,通过分析勘查区磁性特征圈定勘探靶区;对实验室和X-荧光仪分析的样品数据进行一元回归分析,将手持X-荧光分析仪成功应用于镍矿体的现场圈定,从而建立了红土型镍矿的高效、快速、低成本的勘查模式.  相似文献   

10.
Kolonodale矿床是东南亚红土镍矿带上一处典型矿床,位于印度尼西亚苏拉威西岛东部。矿床产自富镁超基性岩红土风化壳,矿化剖面自上而下出现红土层→腐岩层→基岩层垂向分带。红土镍矿石产在红土剖面上部,载镍矿物是铁质氧化物。硅镁镍矿石产在红土剖面中下部,载镍矿物为镍蛇纹石、镍滑石等含水层状硅酸盐矿物。地球化学分析显示,沿矿化剖面元素地球化学分异非常显著,Ni次生富集效应明显。超基性岩红土化过程的元素地球化学行为具有多样性,Fe、Al、Ti、Cr属残留富集组分,Si、Mg属淋滤缺失组分,Mn、Ca、Co、Ni属次生富集组分。通过典型矿床对比,Kolonodale矿床属原地自生硅酸盐型红土镍矿床,其发育受地质背景和地表环境条件的综合制约。富镁超基性岩、良好的构造组合、稳定的大地构造环境、湿热热带雨林气候、有利地形地貌等均是成矿有利条件。综合分析认为,Kolonodale矿床的成矿过程可划分为腐岩化、红土化和次生富集3个成矿阶段。  相似文献   

11.
王兴昌  冷青林  苗迪  潘彦平 《吉林地质》2010,29(3):20-23,28
狼洞沟金银矿床是浑江古生界凹陷中发现的第二个小型矿床,通过对矿床的矿体形态﹑矿石组成﹑结构构造﹑围岩蚀变﹑硫同位素测定及矿石爆裂温度测定分析,成矿物质来源于含矿岩体和地层,在成岩成矿作用中,岩浆同熔和交代作用较强烈,其成矿期可分二期,成矿温度可划分三阶段.认为狼洞沟金银矿床是与中温浅成岩浆热液有关的裂隙充填脉状金银矿床.  相似文献   

12.
杨金沟白钨矿床产于五道沟群中。矿体以含白钨矿石英脉为主.顺层产出,含矿层位为中、上段的斜长角闪片岩、钙质云母片岩.云母石英片岩。不同方向展布的石英脉成群成带出现,相交部位形成密集区,南北延长达1500m。在总结矿床地质特征的基础上.从成矿物质来源、成矿物理化学环境等方面的研究.推测其为层控叠加矿床。  相似文献   

13.
迟斌  衣欣  孙洪涛 《吉林地质》2010,29(4):18-22
弯月金矿床是我队在吉林省东部地区发现有金矿化集中区之一,通过地表工程的深部稀疏钻孔控制,目前为一小型金矿床,普查结果表明,矿化系统有一定延深。本文对金矿床地质特征及矿床成因分析,认为构造、岩浆活动在成矿过程中起着重要作用,对吉林省东部金矿找矿有着指导作用,明确了本区深部找矿方向。  相似文献   

14.
金谷山金矿床产于上古生界二叠系柯岛组地层中,矿化类型为构造蚀变岩型。火山喷发-沉积作用形成的中酸性火山-碎屑岩系,是金矿形成的基本因素和矿源层,变质变形作用是金矿形成的根本因素,脉岩活动是金矿成矿的叠加因素。矿体受韧性剪切变形变质带控制,矿床成因为变质热液与岩浆热液叠加的复合型。  相似文献   

15.
30~#矿权区位于菲律宾迪纳加特岛北部,区内发育有红土型镍矿床。本次勘查圈定4处矿(化)体,其中以Ⅰ、Ⅱ、Ⅲ矿(化)体的矿化范围较大,厚度变化系数为45%~50%(相对稳定),经济价值较高。红土型镍矿体平面上呈地毯状展布于地表,厚度受地形控制,富镍矿体分布于矿权区东部的5、6、11、12小区;剖面上从地表向深部矿体为铁质红土层、松散红土层及高岭土化蛇纹石化橄榄岩层。30~#矿权区红土镍矿矿床的形成经历了从普通矿到富矿两个阶段,红土镍矿石属于酸性矿石。  相似文献   

16.
汪志刚  牛继辉  孟广才 《吉林地质》2005,24(4):21-25,36
通过对岩石类型、矿石成分及古地理、古气候、古地球化学环境的初步分析认为,区内矿床形成于交替的氧化-还原环境的还原条件下,是受青山口组中、上部层位控制的内陆湖泊相沉积的层控沉积矿床.  相似文献   

17.
前山金矿床受断裂构造控制,矿体呈缓倾斜似板状赋存于黑云母斜长花岗岩和闪长岩接触部及其附近;地球物理、化学特征明显,深部及外围找矿潜力巨大。  相似文献   

18.
得耳布尔银铅锌矿床地质特征及找矿标志   总被引:1,自引:0,他引:1  
得耳布尔银铅锌矿床位于额尔古纳成矿带得耳布尔干成矿亚带,产于陆相火山岩分布区,与次火山岩关系密切,矿体受断层控制。矿床成因类型为浅成低温热液型。断裂构造、热液蚀变、铁帽、物化探异常为重要的找矿标志。  相似文献   

19.
Although two-thirds of the present nickel production is derived from nickel sulfides, lateritic nickel reserves are estimated to be around three times as large as those of sulfides. This discrepancy is largely caused by the mineralogical complexity of lateritic nickel which precludes low-cost beneficiation by conventional physical methods. Nevertheless, lateritic nickel reserves are bound to become increasingly important because of expected metallurgical advances. Lateritic nickel deposits were formed from peridotitic rocks on peneplaned surfaces during a tropical or subtropical climate. The most important deposits were formed during the Tertiary and the lateritization process still continues in deposits situated in the present tropical or subtropical belts. Other deposits, like those in East Europe and Greece, were formed during much older periods (Palaeogene-Cretaceous). The various types of lateritic nickel deposits, covered or uncovered,in situ or transported, are listed and their characteristics briefly mentioned. Large differences exist in depth, grade, specific gravity, and mineralogical composition—the latter especially in the nickel silicate section as opposed to the overlying limonitic section. These large differences exist even within one individual mining area. Because of the mineralogical complexities and highly irregular boundaries of lateritic nickel deposits (especially the upper and lower boundaries of the nickel silicate section), thorough studies are required to determine the mineralogical composition and ratios of the components. Only then may it be possible to specify with confidence the most suitable metallurgical process which has a strong bearing on the cost and consequently the viability of the deposit. This condition makes the exploitability rating in the McKelvey classification diagram relatively more difficult. Because of the quickly changing geological attributes of deposits even within limited areas, it seems necessary to develop various deposit models for many, if not most, individual metallogenic regions. It does not seens justified or practical to use estimation methodologies based on straight extrapolation. This is especially the case when dealing with the young uncovered type of deposit which constitutes the bulk of global resources. Consequently methodologies no. I (areal value estimation. Cargill, Meyer, Picklyk, Urquidi, 1977) and no. 2 (volumetric estimation) are not considered suitable. It is thought that methodology no. 3 (abundance estimation) in conjunction with no. 5 (Delphi estimation) would work satisfactorily but, as could be expected, the most meaningful results should come from a combination of methodologies nos. 4 (deposit modeling), 5 (Delphi estimation), and 6 (integrated synthesis). A classification of leteritic nickel deposit types is proposed. This paper was presented at the International Geological Conclation Program (IGCP) Project 98: “Standards for Computer Applications in Resource Studies” held at Taita Hills, Kenya, November 8–15, 1977.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号