首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Archean Shawmere Anorthosite Complex, at the southern end of the Kapuskasing Structural Zone, consists dominantly of anorthosite (An65 –85) with minor gabbroic and ultramafic units, which are completely enclosed and cut by tonalites. Both the anorthosites and the tonalites are themselves cut by narrow dikes of gabbroic anorthosite. All of the rocks have undergone high grade metamorphism and are recrystallized so that few igneous textures remain.The anorthosites, gabbros and ultramafic rocks of this complex are cumulates which contain calcic plagioclase (An65–95) and have atomic Mg/(Mg + Fe2+) ratios (Mg#) greater than 0.6; less than 3 ppm Rb; 150–210 ppm Sr; and less than 60 ppm Ba. REE abundanees range from 0.2 to 10 times chondritic and exhibit both light-enriched and light-depleted REE patterns. The lower Mg# for the samples having more enriched light REE indicates substantial fractions of ferromagnesian minerals crystallized in addition to plagioclase during fractional crystallization, suggesting that the parent magma was basaltic, and not anorthositic. The ranges in Sr, Ba and REE abundances required for the magmas are typical of those for tholeiitic basalts from Archean greenstone belts. Thus the Shawmere Anorthosite Complex may represent cumulates of a crustal-level magma chamber which could have been the immediate source of basic Archean volcanics.One gabbroic anorthositic dike sample has a steeply fractionalted REE pattern with heavy REE abundances less than chondrites and a large positive Eu anomaly. The proposed interpretations is that this rock formed by partial melting of mafic cumulates, perhaps those of the Shawmere Anorthosite Complex itself.  相似文献   

2.
Rocks enriched in iron oxide and mafic silicates are commonly present as minor volumes of Proterozoic anorthosite complexes. In the Laramie Range, Wyoming, anorthositic rocks, gabbros, and iron oxide ore have been chemically analyzed to determine if the spatial association is a result of genetic relationships between the rock types.Variations in abundances of REE, Th, Sc, and Sr in whole-rock and in mineral separates from anorthositic rocks provide evidence for the presence of trapped intercumulus liquid. Initial 87Sr/86Sr ratios in apatites separated from iron oxide ore (0.70535±0.00004) are analogous to initial 87Sr/86Sr ratios in Laramie Range anorthosite (0.70531 and 0.70537). In addition, REE abundances in calculated parental liquids for both anorthositic rocks and iron ore are similar, providing further evidence for a comagmatic relationship.Trace element and textural characteristics of spatially associated Laramie Range gabbros indicate that they are not mixtures of the trapped liquid and cumulus components which formed anorthositic rocks. It is suggested that gabbros are early differentiation products of a high-Al gabbroic magma which subsequently crystallized large volumes of plagioclase to produce the anorthosite massif.  相似文献   

3.
High-Al gabbro represents one of the latest phases of magmatism in the 1.43 Ga Laramie anorthosite complex (LAC) in southeastern Wyoming. This lithology, which is mineralogically and geochemically the most primitive in the LAC, forms dikes and small intrusions that cross cut monzonitic and anorthositic rocks. High-Al gabbro is characterized by high Al2O3 (15–19 wt%), REE patterns with positive europium anomalies (Eu/Eu*=1.2–3.8), and the lowest initial 87Sr/86Sr (as low as 0.7033) and highest initial Nd (up to +2) in the LAC. Their Sr and Nd isotopic characteristics indicate a mantle origin followed by crustal assimilation during ascent. Intermediate plagioclase (An50–60) and mafic silicate (Fo54–63) compositions suggest that they are not primary mantle melts and that they differentiated prior to final emplacement. High-Al gabbros of the LAC are similar compositionally to gabbros from several other Proterozoic anorthosite complexes, including rocks from the Harp Lake complex and the Hettasch intrusion in Labrador and the Adirondack Mountains of New York. These gabbros are considered to be parental to their associated anorthositic rocks, a theory that is supported by recent experimental work. We interpret LAC high-Al gabbros to represent mantle-derived melts produced by the differentiation of a basaltic magma in an upper mantle chamber. Continued evolution of this magma eventually resulted in the formation of plagioclase-rich diapirs which ascended to mid-crustal levels and formed the anorthositic rocks of the LAC. Because these gabbros intrude the anorthositic rocks, they do not represent directly the magma from which anorthosite crystallized and instead are younger samples of magma formed by identical processes.  相似文献   

4.
The Sept Iles layered intrusion (Quebec, Canada) is dominated by a basal Layered Series made up of troctolites and gabbros, and by anorthosites occurring (1) at the roof of the magma chamber (100-500 m-thick) and (2) as cm- to m-size blocks in gabbros of the Layered Series. Anorthosite rocks are made up of plagioclase, with minor clinopyroxene, olivine and Fe-Ti oxide minerals. Plagioclase displays a very restricted range of compositions for major elements (An68-An60), trace elements (Sr: 1023-1071 ppm; Ba: 132-172 ppm) and Sr isotopic ratios (87Sr/86Sri: 0.70356-0.70379). This compositional range is identical to that observed in troctolites, the most primitive cumulates of the Layered Series, whereas plagioclase in layered gabbros is more evolved (An60-An38). The origin of Sept Iles anorthosites has been investigated by calculating the density of plagioclase and that of the evolving melts. The density of the FeO-rich tholeiitic basalt parent magma first increased from 2.70 to 2.75 g/cm3 during early fractionation of troctolites and then decreased continuously to 2.16 g/cm3 with fractionation of Fe-Ti oxide-bearing gabbros. Plagioclase (An69-An60) was initially positively buoyant and partly accumulated at the top of the magma chamber to form the roof anorthosite. With further differentiation, plagioclase (<An60) became negatively buoyant and anorthosite stopped forming. Blocks of anorthosite (autoliths) even fell downward to the basal cumulate pile. The presence of positively buoyant plagioclase in basal troctolites is explained by the low efficiency of plagioclase flotation due to crystallization at the floor and/or minor plagioclase nucleation within the main magma body. Dense mafic minerals of the roof anorthosite are shown to have crystallized from the interstitial liquid.The processes related to floating and sinking of plagioclase in a large and shallow layered intrusion serve as a proxy to refine the crystallization model of the lunar magma ocean and explain the vertically stratified structure of the lunar crust, with (gabbro-)noritic rocks at the base and anorthositic rocks at the top. We propose that the lunar crust mainly crystallized bottom-up. This basal crystallization formed a mafic lower crust that might have a geochemical signature similar to the magnesian-suite without KREEP contamination, while flotation of some plagioclase grains produced ferroan anorthosites in the upper crust.  相似文献   

5.
《Precambrian Research》1986,34(1):69-104
This investigation is based on detailed geological mapping of the western part of the Bolangir anorthosite massif of Orissa, India and its granulite borders, detailed petrography, whole-rock chemistry, mineralogy and an equilibrium thermodynamic analysis of the mineral phase relations. Structural analysis of the foliations of the granulites and the primary flow layers and the joint system of the anorthositic rocks strongly indicates that the pluton was forcefully intruded into the granulitic cover with considerable stretching and extension and approached the form and structure of a schlieren dome. The anorthositic suite of rocks includes anorthositic norites (median plagioclase composition An75), noritic anorthosites (median plagioclase composition An70) and anorthosites (median plagioclase composition An52), while the bordering granulites include leptynites (K-feldspar + plagioclase + quartz + orthopyroxene + biotite + garnet + ilmenite), khondalites (K-feldspar + quartz + sillimanite + garnet + graphite + ilmenite ± biotite), basic granulites (plagioclase + diopsidic clinopyroxene + orthopyroxene + garnet + hornblende + ilmenite ± K-feldspar ± quartz ± magnetite) and calc-granulites (diopside + scapolite + calcite + garnet + microline + quartz + sphene ± magnetite ± apatite). The anorthositic rocks have a relatively high K2O/SiO2 ratio with the MgO/FeO ratio mainly between 1 and 2. The MgO/FeO vs. plagioclase/mafics relations of the anorthositic suite indicate the fractionation trend: anorthositic norite → noritic anorthosite → anorthosite.The calculated PT curves for nine different mineral equilibria in the anorthosites and the granulites converge to a broad cluster within the region, 3–7 kbar and 600–740°C. The orthopyroxene—garnet thermometer (Harley) and orthopyroxene—plagioclase—garnet—quartz barometer (Newton and Perkins) restrict the convergence to a slightly narrower PT region: 4.7–7 kbar and 620–740°C. The two-pyroxene equilibria were possibly quenched at a somewhat higher temperature region and the temperature spread of the order of 200°C at pressures between 4.7 and 7 kbar may represent the PT path over which the pluton cooled in the final stage of its evolution. The parent magma of the anorthosites, believed to be coeval with the 1312 Ma old Chilka Lake massif anorthosites of Orissa, may have formed under a Proterozoic continental crust of well over 20 km thickness.  相似文献   

6.
Equilibrium melt trace element contents are calculated from Proterozoic Nain Plutonic Suite (NPS) mafic and anorthositic cumulates, and from plagioclase and orthopyroxene megacrysts. Assumed trapped melt fractions (TMF) <20% generally eliminate all minor phases in most mafic cumulate rocks, reducing them to mixtures of feldspar, pyroxene and olivine, which would represent the high-temperature cumulus assemblage. In anorthosites, TMF <15% generally reduce the mode to a feldspar-only assemblage. All model melts have trace element profiles enriched in highly incompatible elements relative to normal mid-ocean ridge basalt (NMORB); commonly with negative Nb and Th anomalies. Most mafic cumulates yield similar profiles with constant incompatible element ratios, and can be linked through fractional crystallization. High K-La subtypes probably represent crust-contaminated facies. Mafic cumulates are inferred to belong to a tholeiitic differentiation series, variably contaminated by upper and lower crustal components, and probably related to coeval tholeiitic basaltic dyke swarms and lavas in Labrador. Model melts from anorthosites and megacrysts have normalized trace element profiles with steeper slopes than those calculated from mafic cumulates, indicating that mafic cumulates and anorthosites did not crystallize from the same melts. Orthopyroxene megacrysts yield model melts that are more enriched than typical anorthositic model melts, precluding an origin from parental melts. Jotunites have lower K-Rb-Ba-Y-Yb and higher La-Ce than model residues from fractionation of anorthositic model melts, suggesting they are not cosanguineous with them, but provide reasonable fits to evolved mafic cumulate model melts. Incompatible element profiles of anorthositic model melts closely resemble those of crustal melts such as tonalites, with steep Y-Yb-Lu segments that suggest residual garnet in the source. Inversion models yield protoliths similar to depleted lower crustal granulite xenoliths with aluminous compositions, suggesting that the incompatible trace element budget of the anorthosites are derived from remobilization of the lower crust. The similarity of the highly incompatible trace elements and LILE between anorthositic and mafic cumulate model melts suggests that the basalts parental to the mafic cumulates locally assimilated considerable quantities of the same crust that yielded the anorthosites. The reaction between underplating basalt and aluminous lower crust would have forced crystallization of abundant plagioclase, and remobilization of these hybrid plagioclase-rich mushes then produced the anorthosite massifs.  相似文献   

7.
A critical study of 311 published WR chemical analyses, isotopic and mineral chemistry of anorthosites and associated rocks from eight Proterozoic massif anorthosite complexes of India, North America and Norway indicates marked similarities in mineralogy and chemistry among similar rock types. The anorthosite and mafic-leucomafic rocks (e.g., leuconorite, leucogabbro, leucotroctolite, anorthositic gabbro, gabbroic anorthosite, etc.) constituting the major part of the massifs are characterized by higher Na2O + K2O, Al2O3, SiO2, Mg# and Sr contents, low in plagioclase incompatible elements and REE with positive Eu anomalies. Their δ 18O‰ (5.7–7.5), initial 87Sr/86Sr (0.7034–0.7066) and ɛ Nd values (+1.14 to +5.5) suggest a depleted mantle origin. The Fe-rich dioritic rocks occurring at the margin of massifs have isotopic, chemical and mineral composition more close to anorthosite-mafic-leucomafic rocks. However, there is a gradual decrease in plagioclase content, An content of plagioclase and XMg of orthopyroxene, and an increase in mafic silicates, oxide minerals content, plagioclase incompatible elements and REE from anorthosite-mafic-leucomafic rocks to Fe-rich dioritic rocks. The Fe-rich dioritic rocks are interpreted as residual melt from mantle derived high-Al gabbro melt, which produced the anorthosite and mafic-leucomafic rocks. Mineralogically and chemically, the K-rich felsic rocks are distinct from anorthosite-mafic-leucomafic-Fe-rich dioritic suite. They have higher δ 18O values (6.8–10.8‰) and initial 87Sr/86Sr (0.7067–0.7104). By contrast, the K-rich felsic suites are products of melting of crustal precursors.  相似文献   

8.
The Damiao anorthosite complex occurs in the high-grade metamorphic Precambrian rocks in the axial part of the Nei Mongol (Inner Mongolia) Anticline. It is a monoclinal, layered intrusion, with distinguishable layers of anorthosite, monzonite and quartz-monzonite from bottom to top. Gradation evidence can be noticed between these layers. Accumulation structure is obvious in anorthositic rocks. In the anorthositic rocks feldspars, mainly antiperthite and plagioclase, are hosted with An 44–49, while in the acid rock facies, perthite and plagioclase are present. The complex investigated can be assigned to andesine-type rocks. Both the Damiao anorthosites and the Miyun rapakivi granites are calc-alkaline in terms of petrochemical characteristics, and the latter exhibits a very close petrochemical similarity, i.e., high in Al and K, with the acid members in the upper layers of the complex at Damiao. In view of the close temporal-spatial relationship and the resemblance of rock structure, it is thought that the two suites are resulted from a single parent magma under approximate tectonic environments, and that gravitative fractionation may have played an important role in their evolution. Calculations show that the parent magma responsible for the suites bears obvious resemblance to quartz diorite and quartz monzonite in composition, which is in agreement with the experiments by T. H. Green. The Damiao anorthosite complex is characterized by deep source and shallow emplacement as evidenced by high-pressure and high-temperature experiments, geothermometry and petrochemical features as well as the occurrence of both pigeonite and primary “Al-pyroxene”.  相似文献   

9.
We report whole-rock, major- and trace-element compositions (obtained by XRF and INA methods) for the amphibolite-facies Buksefjorden and granulite-facies Nordland anorthosites, SW Greenland. In a previous petrologic study on the same sample suite, we documented differences in texture, mineralogy, and mineral compositions between these two anorthosite bodies. Chemical analyses confirm differences in composition between the two bodies, but these differences cannot be explained by variations in metamorphic conditions, and point towards differences in the nature of their protoliths. Analyzed Nordland samples are anorthosites and leucogabbros with 88-98% normative plagioclase, whereas those from Buksefjorden include anorthosite, leucogabbro, and gabbro with ~55-95% normative plagioclase. Two or more compositional groupings can be recognized at each site, which correspond to differences in color and mineralogy of the hand samples. Samples from Buksefjorden are mainly quartz-normative, whereas those from Nordland are olivine (- nepheline) normative. Other differences include higher Ni/Co ratio and REE contents in the granulite-facies anorthosites from Nordland. REE pattern shapes are similar, however, being moderately fractionated at ~0.5-102 chondrites with positive Eu-anomalies. Calculated equilibrium melt patterns are similar for both anorthosites, being relatively flat at ~50-1502 chondrites, suggesting unfractionated (but evolved) parental magmas. Olivine must have been present in the protoliths of the Nordland rocks compared with Buksefjorden. Otherwise, the protoliths contained plagioclase with variable An-content (~An62-An92) and a mafic component with variable Fe/Mg (mg ~0.3-0.8). This mafic component was either hornblende or a combination of ortho- and clinopyroxene in fixed proportions, plus a small amount of magnetite. Mixing calculations demonstrate that some Buksefjorden anorthosites contain two varieties of plagioclase: a calcic type that may correspond to cumulus crystals, and a sodic-type that may correspond to a trapped-melt component. On plots of normative whole-rock An versus mg, compositions of the Buksefjorden and Nordland anorthosites form crude negative arrays that differ from the generally positive trends of mafic layered intrusions (Kiglapait, Skaergaard) and from the generally flats trends of plagioclase-rich cumulate rocks (St. Urbain and Stillwater anorthosites). This difference provides further evidence for the distinctive nature of Archean calcic-anorthosite complexes compared with other types of mafic intrusions. Moreover, this distribution of data points is consistent with the assembly of the protolith of the SW Greenland anorthosites mainly as mixtures of plagioclase and hornblende. Finally, the field for the Buksefjorden and Nordland anorthosites overlaps only slightly with that for the Fiskenaesset Complex, thus extending the known range of compositions for Archean anorthosites in West Greenland.  相似文献   

10.
Laminated anorthosite grading outwards into leucogabbro, gabbro,and monzogabbro occurs in a 2.6-km-diameter funnel-shaped intrusion,cut by a quartz alkali syenite plug and concentric syenite andgranite ring-dykes. The anorthosite-gabbro series is laminatedbut not modally or otherwise texturally layered. The lamination,defined by large tabular plagioclase crystals, forms a set ofinwarddipping cones, the dips of which decrease from 60–45?in the central anorthosite to < 25? in the outer gabbros.Rocks close to the outer contact are medium-grained isotropicgabbros. Plagioclase, forming >80% of the series, generallyhas homogeneous labradorite cores (An62–58 in the wholeseries) and thin strongly zoned rims, which follow progressivelylonger solidus paths from the anorthosites to the gabbros. Allrocks contain a late-magmatic alkali feldspar. Plagioclase isthe main or only cumulus phase, the anorthosites being ad- tomesocumulates and the gabbros orthocumulates. Olivine (FO49–41)is more abundant than clinopyroxene in most of the series. Dependingon quartz content, the syenites and granites are hypersolvusor subsolvus and the depth of crystallization was calculatedto be 5 ? 2 km. A Rb/Sr isochron for the syenites and granites gave an age of399 ? 10 Ma with an initial strontium isotopic ratio of 0.7084? 0.0005. Ten samples from the anorthosite-gabbro scries havean average calculated initial ratio of 0.70582 ? 0-00004 at– 400 Ma, showing that the two series are not comagmatic.The anorthosite-gabbro series has parallel REE trends (LaN/YbN{small tilde} 7–10) with decreasing positive Eu anomaliesand increasing total REE contents from anorthosite to gabbro;two monzogabbros have almost no Eu anomaly. The liquid calculatedto be in equilibrium with the lowest anorthosite has almostno Eu anomaly and its normalized REE pattern lies just abovethose for the monzogabbros. The syenites and granites have complementaryREE patterns with negative Eu anomalies. The inferred parental magma was alkalic and leucotroctoliticwith high TiO2 P2O5, Sr and K/Rb and with low MgO, very similarto parental magmas in the Gardar province, South Greenland.It was probably produced at depth by settling of olivine andclinopyroxene but not of plagioclase, which accumulated by flotation.It is suggested that plagioclase crystals from this lower chamberwere progressively entrained (from 0% in the gabbros to 30–40%in the anorthosites), giving rise to the flow lamination inthe upper chamber. The magma in the lower chamber may have beenlayered, because the plagioclase cores in the anorthosite areconsiderably richer in Or than those in the leucogabbros orgabbros. Overall convection did not occur in the upper chamber,whereas compositional convection occurred in the more slowlycooled central anorthositic adcumulates.  相似文献   

11.
Geological mapping of the Tucumã area has enabled the identification of dike swarms intruded into an Archean basement. The disposition of these dikes is consistent with the well-defined NW-SE trending regional faults, and they can reach up to 20 km in length. They were divided into three main groups: (i) felsic dikes (70% of the dikes), composed exclusively of porphyritic rhyolite with euhedral phenocrysts of quartz and feldspars immersed in an aphyric felsite matrix; (ii) mafic dikes, with restricted occurrence, composed of basaltic andesite and subordinate basalt, with a mineralogical assembly consisting dominantly of plagioclase, clinopyroxene, orthopyroxene and olivine; and (iii) intermediate rocks, represented by andesite and dacite. Dacites are found in outcrops associated with felsic dikes, representing different degrees of hybridization or mixture of mafic and felsic magmas. This is evidenced by a large number of mafic enclaves in the felsic dikes and the frequent presence of embayment textures. SHRIMP U-Pb zircon dating of felsic dikes yielded an age of 1880.9 ± 3.3 Ma. The felsic dikes are peraluminous to slightly metaluminous and akin to A2, ferroan and reduced granites. The intermediate and mafic dikes are metaluminous and belong to the tholeiitic series. Geochemical modeling showed that mafic rocks evolved by pyroxene and plagioclase crystallization, while K-feldspar and biotite are the fractionate phases in felsic magma. A simple binary mixture model was used to determine the origin of intermediate rocks. It indicated that mixing 60% of rhyolite and 40% basaltic andesite melts could have generated the dacitic composition, while the andesite liquid could be produced by mixing of 60% and 40% basaltic andesite and rhyolite melts, respectively. The mixing of basaltic and andesitic magmas probably occurred during ascent and storage in the crust, where andesite dikes are likely produced by a more homogeneous mixture at high depths in the continental crust (mixing), while dacite dikes can be generated in the upper crust at a lower temperature, providing a less efficient mixing process (mingling). The affinities observed between the felsic to intermediate rocks of the Rio Maria and São Felix do Xingu areas and the bimodal magmatism of the Tucumã area reinforce the hypothesis that in the Paleoproterozoic the Carajás province was affected by processes involving thermal perturbations in the upper mantle, mafic underplating, and associated crustal extension or transtension. The 1.88 Ga fissure-controlled A-type magmatism of the Tucumã area was emplaced ∼1.0 to ∼0.65 Ga after stabilization of the Archean crust. Its origin is not related to subduction processes but to the disruption of the supercontinent at the end of the Paleoproterozoic.  相似文献   

12.
Geochemistry and origin of massif-type anorthosites   总被引:2,自引:0,他引:2  
Samples of Proterozoic anorthosite complexes from the Adirondack Mountains of New York, Burwash Area of Ontario, and the Nain Complex of Labrador, ranging in composition from anorthosite to anorthositic gabbro, have been analyzed for major elements, Rb, Sr, Ba and nine rare-earth elements (REE), in order to set limits on the compositions and origins of their parent magmas. Similar rock types from the different areas have similar major and trace element compositions. The anorthosites have high Sr/Ba ratios, low REE abundances (Ce about 10, Yb about 0.5–1.5 times chondrites) and large positive Eu anomalies. The associated anorthositic gabbros have lower Sr/Ba ratios, REE abundances nearly an order of magnitude higher than the anorthosites, and small to negligible positive Eu anomalies.Model calculations using the adcumulate rocks with the lowest REE abundances and published distribution coefficients yield parent liquids having REE abundances and patterns similar to those of the associated anorthositic gabbros with the highest REE abundances. Rocks with intermediate REE abundances are the result of incorporation of a liquid component by a plagioclase-rich cumulate similar to the adcumulate samples. The analytical data and model calculations both suggest parent liquids having compositions of 50–54% SiO2, greater than 20% Al2O3, about 1% K2O, atomic Mg/(Mg+Fe2+) ratios (Mg No.'s) of less than 0.4, 15–30 ppm Rb, 400–600 ppm Sr and 400–600 ppm Ba, 40–50 times chondrites for Ce and 8–10 times chondrites for Yb.The low atomic Mg/(Mg+Fe2+) values for these rocks combined with geophysical evidence suggesting there are not large quantities of ferromagnesian material at depth, indicate that the anorthositic masses are not products of fractional crystallization of mafic melt derived from melting of the mantle. Rather, it is suggested that they are a result of partial melting of tholeiitic compositions at depths shallower than the basalt-eclogite transformation, leaving a pyroxene-dominated residue.  相似文献   

13.
The massif-type anorthosite complex at Bolangir in the northern part of the Eastern Ghats belt occurs in a milieu of predominantly supracrustal granulite-grade rocks. The massif is separated from the host gneisses by coarse-grained garnetiferous granitoid gneisses which are interpreted as coeval crustallyderived melts. Melanocratic ferrodiorite rocks occur at the immediate contact with the anorthosite massif which they intrude in cross-cutting dikes and sheets. The emplacement age of the anorthosite diapir and the associated igneous suites is deemed to be pre-D2. Recrystallization of the igneous assemblages of the ferrodiorite suite (750–800°C, 7–8kbar, ) during a period of near-isobaric cooling from the igneous crystallization stage to the regionalP-T regime led to extensive development of coronitic garnet at the interface of plagioclase phenocrysts with the mafic matrix assemblage (opx + fay + cpx + ilm ± amph, bio). Abundant accessory phases are zircon, apatite and thorite. The mafic phases have extremely ferrous compositions (XFe gar: 0.93-0.87, fay: 0.90-0.87, opx: 0.80-0.60, cpx: 0.70-0.47, amph: 0.81-0.71) reflecting the low Mg-number (16-8) of the rocks. Compared to worldwide occurrences of similar rocks, the Bolangir ferrodiorites (SiO2 36–58 wt.%, FeO*: 39-10 wt.%) are characterized by exceptionally high concentrations of HFSE and REE (TiO2: 4.8-1.0 wt.%, P2O5: 1.7-0.5 wt.%, Zr: 5900-1300 ppm, Y: 240-80 ppm, La: 540-100 ppm, Ce: 1100-200 ppm, Yb: 22-10 ppm, Th: 195-65 ppm). Well defined linear variation trends for major and trace elements reflect progressive plagioclase accumulation towards the felsic members of the suite. The ferrodiorites are interpreted to represent residual liquids of anorthosite crystallization which after segregation and extraction from the ascending diapir became enriched in HFSE and REE through selective assimilation of accessory phases (zircon, monazite, apatite) from crustal felsic melts. Ferromonzodioritic rock presumably formed through hybridization between the ferrodiorite and overlying felsic melts.  相似文献   

14.
Geochemical and isotopic investigation of three small mafic intrusions (Løyning: 1250 × 150 m, Hogstad: 2000 × 200 m, Koldal: 1250 × 500 m) in the marginal zones of the Egersund-Ogna (Løyning, Koldal) and Åna-Sira massif-type anorthosites (Hogstad) (Rogaland Anorthositic Province, south Norway: 930 Ma) provides new insights into the late evolution of anorthositic diapirs. These layered mafic intrusions are essentially of norite, gabbronorite as well as leuconorite and display conspicuous evidence of subsolidus recrystallization. In Løyning and Hogstad, the modal layering is parallel to the subvertical foliation in the enclosing anorthosite. The northern part of the Koldal intrusion cuts across the foliation of the anorthosite, whereas in its southern part the subvertical layering is parallel to the anorthosite's foliation. The regularity of the layered structures suggests that the layering was initially acquired horizontally and later tilted during the final movements of the diapirs.

The least differentiated compositions of plagioclase and orthopyroxene in the three intrusions (An59–En68 in Løyning, An49–En64 in Hogstad and An44–En61 in Koldal) and the REE contents in apatite (Hogstad) indicate that their parent magmas were progressively more differentiated in the sequence Løyning–Hogstad–Koldal. Isotopic data (Løyning: 87Sr/86Sr: 0.70376–0.70457, εNdt: + 6.8 to + 2.7; Hogstad: 87Sr/86Sr: 0.70537–0.70588, εNdt: + 2.1 to − 0.5; Koldal: 87Sr/86Sr: 0.70659–0.70911, εNdt: + 3.5 to − 1.6) also indicate that in this sequence, parent magmas were characterized by a progressively more enriched Sr and Nd isotopic signature. In Løyning, the parent magma was slightly more magnesian and anorthitic than a primitive jotunite; in Hogstad, it is a primitive jotunite; and, in Koldal, an evolved jotunite. Given that plagioclase and orthopyroxene of the three intrusions display more differentiated compositions than the orthopyroxene and plagioclase megacryts of the enclosing anorthosites, it is suggested that the parent magmas of the small intrusions are residual melts after anorthosite formation which were entrained in the anorthositic diapir during its rise from lower crustal chambers.

Calculated densities of primitive jotunites (2.73–2.74 at FMQ, 0.15% H2O, 200 ppm CO2, 435 ppm F, 1150 °C, 3 kb) and evolved jotunites (2.75–2.76 at FMQ, 0.30% H2O, 400 ppm CO2, 870 ppm F, 1135 °C, 3 kb) demonstrate that they are much denser than the plagioclase of the surrounding anorthositic crystal mush (2.61–2.65). Efficient migration and draining of dense residual melts through the anorthositic crystal mush could have taken place along sloping floors (zones of lesser permeability in the mush), which occur along the margins of the rising anorthositic diapirs. This process takes into account the restricted occurrence of the mafic intrusions in the margins of the massif anorthosites. In a later stage, when the anorthosite was nearly consolidated, the residual melts were more differentiated (evolved jotunites) and could have been extracted into extensional fractures in the cooling and contracting anorthositic body in a similar way as aplitic dikes are emplaced in granitic plutons. As in the Rogaland Anorthositic Province, these dikes are much more abundant than the small mafic intrusions, collection and transport along dikes was probably more efficient than draining through the crystal mush.  相似文献   


15.
斜长岩呈长条带出露于朝鲜半岛南部,侵入到年代约为2.0Ga的Yeongnam前寒武纪基底岩石中,虽然岩石类型简单(斜长岩和辉长岩质斜长岩),但可以同世界已知块状类型斜长岩相对比。这些斜长岩具有几个重要的差别,例如呈层状构造,镁铁相成分是角闪石而不是辉石,并且不具斜方辉石巨晶。应用Rb-Sr和Sm-Nd同位素系统研究这些岩石的年龄和成因,测定出一种页理化辉长岩质斜长岩矿物的Sm-Nd等时线年龄为1678±90Ma,推断其为侵位年龄,因为中生代绿岩相变质期间这些岩石的Sm-Nd同位素体系呈封闭状态。这一年龄和过去曾报道的元古宙块状斜长岩的年龄范围(1.1~1.7Ga)相吻合。认为斜长岩成因可以用所谓元古宙斜长岩事件来解释。斜长岩的岩浆活动对朝鲜半岛南部前寒武纪基底岩石的构造历史有重要意义。全岩εNd(t)值范围-1.6~-5.2,而87Sr/86Sr初始值变化于0.704~0.706之间,据此可解释地幔成因的斜长岩岩浆是在其结晶作用期间吸收了地壳物质的结果。然而不能排除是下地壳源的可能性。  相似文献   

16.
Isotopic analyses of ancient mantle-derived magmatic rocks are used to trace the geochemical evolution of the Earth’s mantle, but it is often difficult to determine their primary, initial isotope ratios due to the detrimental effects of metamorphism and secondary alteration. We present in situ analyses by LA-MC-ICPMS for the Pb isotopic compositions of igneous plagioclase (An75–89) megacrysts and the Hf isotopic compositions of BSE-imaged domains of zircon grains from two mantle-derived anorthosite complexes from south West Greenland, Fiskenæsset and Nunataarsuk, which represent two of the best-preserved Archean anorthosites in the world. In situ LA-ICPMS U–Pb geochronology of the zircon grains suggests that the minimum crystallization age of the Fiskenæsset complex is 2,936 ± 13 Ma (2σ, MSWD = 1.5) and the Nunataarsuk complex is 2,914 ± 6.9 Ma (2σ, MSWD = 2.0). Initial Hf isotopic compositions of zircon grains from both anorthosite complexes fall between depleted mantle and a less radiogenic crustal source with a total range up to 5 εHf units. In terms of Pb isotopic compositions of plagioclase, both anorthosite complexes share a depleted mantle end member yet their Pb isotopic compositions diverge in opposite directions from this point: Fiskenæsset toward a high-μ, more radiogenic Pb, crustal composition and Nunataarsuk toward low-μ, less radiogenic Pb, crustal composition. By using Hf isotopes in zircon in conjunction with Pb isotopes in plagioclase, we are able to constrain both the timing of mantle extraction of the crustal end member and its composition. At Fiskenæsset, the depleted mantle melt interacted with an Eoarchean (~3,700 Ma) mafic crust with a maximum 176Lu/177Hf ~0.028. At Nunataarsuk, the depleted mantle melt interacted with a Hadean (~4,200 Ma) mafic crust with a maximum 176Lu/177Hf ~0.0315. Evidence from both anorthosite complexes provides support for the long-term survival of ancient mafic crusts that, although unidentified at the surface to date, could still be present within the Fiskenæsset and Nunataarsuk regions.  相似文献   

17.
大庙斜长岩的40Ar/39Ar年龄测定呈现出一条典型的马鞍型年龄谱,在中温阶段有二个明显的坪年龄1656±15 Ma和1029±7 Ma,结合其构造位置和全球斜长岩分布来看,它们分别代表了侵位年龄和后期热扰动的时代。密云奥长环斑花岗岩中角闪石的40Ar/39Ar坪年龄为1716±21 Ma。两者时空上密切相关,代表了裂谷作用初期非造山环境中双模式岩浆作用产物。斜长岩类和苏长岩之间稀土配分模式的相似性表明,它们明显为同一成因的岩浆分异系列的产物。  相似文献   

18.
The Khan-Taishir ophiolitic complex is situated within Early Caledonian structures of Western Mongolia. It consists (from below upward) of strongly differentiated ultramafics (dunites and harzburgites), pyroxenites and gabbro, sheeted dikes, pillow lavas and sediments, including in their uppermost part archaeocyatic limestones of Lower Cambrian age. Geological, petrochemical and geochemical data indicate that the ultramafics are turn off from the overlying ophiolitic sequence. Igneous rocks of the ophiolitic complex, except the ultramafics, were formed by two-stage differentiation of mantle magma of quartz-tholeiitic composition exhausted in potassium and titanium. Pyroxenites and gabbro with an anorthositic trend of differentiation were generated during the first stage, and sheeted dikes and pillow lavas with a quartz trend of differentiation were formed during the second one. Ophiolites of the Khan-Taishir complex petrochemically and geochemically differ strongly from mafic and ultramafic rocks of midoceanic ridges. Together with ophiolites of the Troodos complex (Cyprus) and Macquarie Island (eastern Indian Ocean) they constitute the special type of ophiolite peculiar rather to slip boundaries of lithosphere plates. The other type of ophiolite, including complexes like the Dzolen complex of south Mongolia, contains poorly differentiated ultramafics and does not contain sheeted dikes; while the igneous rocks are very similar to mafic and ultramafic rocks dredged from midoceanic and formed probably in midoceanic ridge environments as well.  相似文献   

19.
Four massif-type anorthosite bodies 25–100 km2 in area occur within high-pressure granulite facies supracrustal gneisses in southwestern Madagascar. Two of these bodies (Ankafotia and Saririaky) appear to have been pulled apart by 40 km in a ductile shear zone, but structural features such as sub-vertical stretching lineations indicate an origin by intense west-directed flattening and pure shear. Country rocks (Graphite Series) include abundant graphite schist (some with >60% graphite), marble, quartzite, and minor amphibolite and leucogneiss. Comagmatic granitoids (e.g. charnockites) are conspicuously absent. The anorthosite bodies are dominated by coarse grained anorthosites and leuconorites (feldspars typically 3–5 cm, up to 1 m); minor norites and oxide-rich ferrogabbros occur near the margins, but ultramafic rocks are absent. Typical mineralogy of the anorthositic rocks is: plagioclase (An41–54) + orthopyroxene (En38–66) ± augite (Mg♯ = 32–68) ± ilmenite ± magnetite ± apatite. High-alumina (to 6.1 wt% Al2O3) orthopyroxene megacrysts are widespread; most have exsolutions of calcic plagioclase (An72–85) but some contain garnet lamellae. Metamorphism has produced abundant recrystallization and sporadic coronitic garnet (Mg ♯=12–36) + clinopyroxene assemblages. Rb-Sr isotopic analyses of whole-rocks and minerals reveal no meaningful age relationships. The age of late Neoproterozoic metamorphism is best constrained at 559 ± 50 Ma by a 6-point Sm-Nd mineral isochron (whole rock, plag, pyx, ilm, apat, gar) from a Saririaky oxide-rich gabbro. The igneous crystallization age of the anorthosites is estimated at 660 ± 60 Ma by a 19-point combined whole-rock and mineral Sm-Nd isochron for samples from both the Ankafotia and Saririaky bodies. Initial isotopic ratios calculated at 0.66 Ga among 13 whole rocks are: Nd=+2.6 to +5.2 (mean=+3.7) and ISr=0.70328–0.70407 (mean=0.70347), indicating derivation of the Malagasy anorthosites from a depleted mantle source, and little, if any, contamination with Archean crustal material. One anorthosite sample with Nd=−1.4 and ISr=0.70344 (calculated at 0.66 Ga) probably reflects the effects of assimilation of Early to Middle Proterozoic crustal basement, but typical surrounding graphite schist (Nd=+0.3, ISr=0.70636, both at 0.66 Ga; TDM= 1131 Ma) represents only a minor potential contaminant for the anorthosite bodies. TDM model ages of the Malagasy anorthosites (797–1280 Ma; mean of 14 samples=949 Ma), as those of most other massif-type anorthosites, are older than the true crystallization age, because of crustal contamination effects. Our isotopic data, together with recent U-Pb data from the anorthosites and surrounding country rocks, are consistent with emplacement of the Malagasy anorthosite bodies at or before the start of a protracted, high-grade metamorphic event or series of events between about 630 and 550 Ma. This period coincides with the collision between, and amalgamation of, East and West Gondwana. Received: 19 December 1997 / Accepted: 12 June 1998  相似文献   

20.
Many Archean terranes are interpreted to have a tectonic and metamorphic evolution that indicates intra-crustal reorganization driven by lithospheric-scale gravitational instabilities. These processes are associated with the production of a significant amount of felsic and mafic crust, and are widely regarded to be a consequence of plume-lithosphere interactions. The juvenile Archean felsic crust is made predominantly of rocks of the tonalite–trondhjemite–granodiorite (TTG) suite, which are the result of partial melting of hydrous metabasalts. The geodynamic processes that have assisted the production of juvenile felsic crust, are still not well understood. Here, we perform 2D and 3D numerical simulations coupled with the state-of-the-art of petrological thermodynamical modelling to study the tectonic evolution of a primitive Archean oceanic plateau with particular regard on the condition of extraction of felsic melts. In our numerical simulations, the continuous emplacement of new, dry mafic intrusions and the extraction of the felsic melts, generate an unstable lower crust which drips into the mantle soon after the plume arrival. The subsequent tectonic evolution depends on the asthenosphere TP. If the TP is high enough (≥ 1500 C) the entire oceanic crust is recycled within 2 Myrs. By contrast at low TP, the thin oceanic plateau slowly propagates generating plate-boundary like features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号