首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Osterberg-Cell (O-Cell) tests are widely used to predict the load–settlement behavior of large-diameter drilled shafts socketed in rock. The loading direction of O-Cell tests for shaft resistance is opposite to that of conventional downward load tests, meaning that the equivalent top load–settlement curve determined by the summation of the mobilized shaft resistance and end bearing at the same deflection neglects the pile-toe settlement caused by the load transmitted along the pile shaft. The emphasis is on quantifying the effect of coupled shaft resistance, which is closely related to the ratios of pile diameter to soil modulus (D/Es) and total shaft resistance to total applied load (Rs/Q) in rock-socketed drilled shafts, using the coupled load-transfer method. The proposed analytical method, which takes into account the effect of coupled shaft resistance, was developed using a modified Mindlin’s point load solution. Through comparisons with field case studies, it was found that the proposed method reasonably estimated the load-transfer behavior of piles and coupling effects due to the transfer of shaft shear loading. These results represent a significant improvement in the prediction of load–settlement behaviors of drilled shafts subjected to bi-directional loading from the O-Cell test.  相似文献   

2.
This paper investigates the effects of post-grouting on the behavior of drilled shafts using a case study carried out at the Brazo River, Texas. Commercial finite element software, PLAXIS, was used to quantify the improvement of the tip resistance and side shear resistance of post-grouted drilled shafts (PGDS). The input material parameters of PLAXIS were initially estimated using CPT sounding results, and then the parameters were updated by calibrating the numerical results against full-scale STATNAMIC load test results. Based on the numerical analysis, the authors concluded that (1) the increase in total resistance of PGDS resulted from soil improvement at the shaft tip, (2) the apparent increase in side shear resistance resulted from side shear reversal that occurred during post-grouting, and (3) the apparent increase in the tip resistance of PGDS may be caused by stress relief of the grout. In addition, two approaches to estimate the resistance of PGDS were compared against numerical results. In this case study, the Axial Capacity Multiplier (ACM) approach over-predicted the total resistance whereas the Tip Capacity Multiplier (TCM) approach reasonably predicted the increase in total resistance.  相似文献   

3.
The pressure grouting of drilled shaft tips has become popular worldwide due to its effectiveness in mobilizing a larger portion of the available tip resistance under service displacements. This paper presents experimental and numerical studies on the load transfer mechanism and factors controlling the axial response of base grouted drilled shafts in cohesionless soils. The study found that the increased axial capacity of grout-tipped drilled shafts under service loads and displacements depended mainly on preloading effects and the increased tip area provided by the grouting process. A simple prediction approach for estimating the tip capacity of grouted shafts utilizing cone penetration resistance was suggested based on the results of the study. The validity of the proposed approach was verified by the analysis of full-scale case studies of grouted shafts reported in the literature.  相似文献   

4.
Load displacement analysis of drilled shafts can be accomplished by utilizing the “t-z” method, which models soil resistance along the length and tip of the drilled shaft as a series of springs. For non-linear soil springs, the governing differential equation that describes the soil-structure interaction may be discretized into a set of algebraic equations based upon finite difference methods. This system of algebraic equations may be solved to determine the load–displacement behavior of the drilled shaft when subjected to compression or pullout. By combining the finite difference method with Monte Carlo simulation techniques, a probabilistic load–displacement analysis can be conducted. The probabilistic analysis is advantageous compared to standard factor of safety design because uncertainties with the shaft–soil interface and tip properties can be independently quantified. This paper presents a reliability analysis of drilled shaft behavior by combining the finite difference technique for analyzing non-linear load–displacement behavior with Monte Carlo simulation method. As a result we develop probabilistic relationships for drilled shaft design for both total stress (undrained) and effective stress (drained) parameters. The results are presented in the form of factor of safety or resistance factors suitable for serviceability design of drilled shafts.  相似文献   

5.
The load distribution and deformation of rock-socketed drilled shafts subjected to axial loads are evaluated by a load transfer method. The emphasis is on quantifying the effect of coupled soil resistance in rock-socketed drilled shafts using 2D elasto-plastic finite element analysis. Slippage and shear-load transfer behavior at the pile–soil interface are investigated by using a user-subroutine interface model (FRIC). It is shown that the coupled soil resistance acts as pile-toe settlement as the shaft resistance is increased to its ultimate limit state. Based on the results obtained, the coupling effect is closely related to the ratio of the pile diameter to soil modulus (D/Es) and the ratio of total shaft resistance against total applied load (Rs/Q). Through comparison with field case studies, the 2D numerical analysis reasonably estimated load transfer of pile and coupling effect, and thus represents a significant improvement in the prediction of load deflections of drilled shafts.  相似文献   

6.
The paper presents a numerical study on the side resistance of a drilled shaft in granular materials. The numerical result is used to develop new design equations for the side resistance of drilled shafts in granular soils. The Discrete Element Method (DEM) is used to model a drilled shaft in granular material. The granular material is represented as assemblies of ellipsoidal particles. Nominal side resistance is represented as the product of a parameter (β) and vertical stress. The numerical result shows that the relationship between β and void ratio can be described by a hyperbolic function for a given vertical stress. DEM result is also compared with three design equations. Although these design equations capture the decrease of β with depth, deviation is observed between the DEM results and the design equations. Finally, new design equations based on state parameter are proposed.  相似文献   

7.
8.
The increase of pile resistance with time is referred to as ‘set-up’. This behaviour of driven piles has been widely discussed in many studies by researchers. Meanwhile, there has been little, if any, information regarding this aspect for drilled shafts. Performing a bearing capacity test for a shaft over time, however, requires higher costs and more complicated rigs compared to a driven pile. A database including results from five Osterberg cell-tested drilled shafts conducted at two different stages is considered, from which the set-up effect is statistically analysed. The reliability-based analysis technique using Monte Carlo simulation (MCS) is used to develop separate resistance factors to account for different degrees of uncertainties associated with the predicted reference resistance and the predicted set-up resistance in the framework of the load and resistance factor design (LRFD) method. By incorporating set-up into design, shaft length or number of shafts can be reduced and economical design of drilled shafts can be achieved.  相似文献   

9.
Two‐dimensional slope stability analysis for a slope with a row of drilled shafts needs a mechanism to take into account the three‐dimensional effect of the soil arching due to the spaced drilled shafts on slope. To gain a better understanding of the arching mechanisms in a slope with evenly spaced drilled shafts socketed into a stable stratum (or a rock layer), the three‐dimensional finite element modelling technique was used for a comprehensive parametric study, where the nonlinear and plastic nature of the soil and the elastic behavior of the drilled shafts as well as the interface frictions were modelled. Various factors were varied in the parametric study to include (1) the rigidity of the drilled shafts as influenced by its diameter, modulus of elasticity, and total length; (2) shafts spacing and location on the slope; (3) the material properties of rock and the socket length of shaft; and (4) the soil movement and strength parameters. Evidences of soil arching and reduction in the stresses and displacements through the load transfer mechanisms due to the presence of the drilled shafts were elucidated through the finite element method (FEM) simulation results. Design charts based on regression analysis of FEM simulation results were created to obtain a numerical value of the load transfer factor for the arching mechanism provided by the drilled shafts on the slope. Observations of the arching behavior learned from the FEM simulations provide an insight into the behavior of drilled shafts stabilized slope. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
The use of drilled shafts to stabilize an unstable slope has been a widely accepted practice. There are two basic design and analysis issues involved: one is to determine the global factor of safety of the drilled shafts stabilized slope and the other one is to determine the design earth thrust on the drilled shafts for structural design of the shafts. In this paper, a limiting equilibrium method of slices based solution for calculating global factor of safety (FS) of a slope with the presence of a row of drilled shafts is developed. The arching mechanisms due to the presence of the drilled shafts on slope were taken into account by a load transfer factor. The method for calculating the net force applied to the drilled shaft from the soil mass was also developed. The interrelationships among the drilled shaft location on the slope, the load transfer factor, and the global FS of the slope/shaft system were derived utilizing the developed numerical closed‐form solution. An illustrative example is presented to elucidate the use of the solution in optimizing the location of the drilled shafts on slope to achieve the desired global factor of safety of the slope/shaft system. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
This paper presents a procedure to assess the mobilized pile side and tip resistance versus pile head and tip settlement under axial load in clay soil. The load transfer (tz) curve is evaluated at any point on the loaded pile based on the combined pile tip/side resistance–displacement mechanisms along the length of the pile. Unlike current methods that assume the pile settlements as a percentage of the pile/shaft diameter, the presented technique determines the side and tip resistance of the pile and the associated pile settlement under existing load based on the current stress/strain level in the surrounding soil up to failure (excessive settlement). The technique employs the concepts of the elastic theory and Ramberg–Osgood characterization of the stress–strain behavior of the clay soil. Case studies are also presented to exhibit the capabilities of the proposed procedure. The good agreement between measured and calculated load transfer curves along the pile and pile tip resistance versus pile head, side, and tip displacements shows the consistency of the proposed procedure. A computer code is developed to employ the presented technique.  相似文献   

12.
The drilled shafts have been widely used to support lateral loads (active load case) or as a means to stabilize an unstable slope (passive load case) due to their large lateral load resistance and structural capacity for shear and bending moments. However, there is a need to develop an analytical procedure that can use the actual measured deflection data of a drilled shaft subject to either active or passive load case to interpret the soil‐drilled shaft interaction behavior. The mathematical formulation and the accompanied numerical procedure based on the principle of superposition were developed in this paper to allow for deducing the relevant soil‐drilled shaft interaction behavior under the applied lateral load (i.e. net soil reaction force on the drilled shaft, the shear and bending moment in the shaft) from the measured deflection data. Both compatibility and force equilibrium conditions were utilized in formulating the mathematical equations for common single drilled shaft boundary conditions (free head and fixed bottom). The current application is limited to small deformation to meet the requirement that the drilled shaft responds in a linear elastic range. A total of three theoretical cases, along with two actual field cases, were used to demonstrate the validity of the proposed method and its engineering applications. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Drilled shafts are, typically, designed by considering the axial ultimate limit state. In this design methodology, the axial displacement requirements are verified once the design is completed. As an alternative, drilled shafts may be designed by considering the axial service limit state. Service limit state foundation design is more efficient when done using the load and resistance factor design (LRFD) approach. Furthermore, reliability may be rationally incorporated into the design process that utilizes the LRFD method. In this paper, we develop probabilistic approaches for axial service limit state analysis of drilled shafts. The variability of shaft-soil interface properties is modeled by lognormal probability distribution functions. The probability distributions are combined with a closed-form analytical relationship of axial load-displacement curves for drilled shafts. The closed-form analytical relationship is derived based upon the “t–z” approach. This analytical relationship is used with the Monte Carlo simulation method to obtain probabilistic load-displacement curves, which are analyzed to develop methods for determining the probability of drilled shaft failure at the service limit state. The developed method may be utilized to obtain resistance factors that can be applied to LRFD based service limit state design.  相似文献   

14.
A bridge pier supported on two drilled shafts collapsed due to the impact by a 130-ton rock in a landslide event. A series of static and dynamic numerical simulations is conducted using a nonlinear finite element analysis program to investigate the bearing behavior and responses of the bridge foundation under rock impact. The rock impact load is evaluated according to the site conditions. The deflection histories at the striking point and the internal forces in the drilled shafts during rock impacts in different directions are analyzed. The bridge pier exhibits significant system effects: the failure of the bridge pier is initiated by the failure of one pier column or one drilled shaft first, followed by the failure of the entire pier. The effects of impact loading direction, striking location, and characteristics of impact load on the behavior of the bridge pier are examined through a parametric study. The capacities of the pier along different loading directions are different due to differences in the group effects of the drilled shafts. The bridge pier is strongest when the impact load is along the 45° direction with respect to the shaft row, and weakest when the impact load is perpendicular to the shaft row.  相似文献   

15.
This paper presents a shear load transfer function and an analytical method for estimating the load transfer characteristics of rock-socketed drilled shafts subjected to axial loads. A shear load transfer (f–w) function of rock-socketed drilled shafts is proposed based on the constant normal stiffness (CNS) direct shear tests. It is presented in terms of the borehole roughness and the geological strength index (GSI) so that the structural discontinuities and the surface conditions of the rock mass can be considered. An analytical method that takes into account the coupled soil resistance effects is proposed using a modified Mindlin’s point load solution. Through comparisons with load test results, the proposed methodology is in good agreement with the general trend observed in in situ measurements and represents an improvement in the prediction of the shear behavior of rock-socketed drilled shafts.  相似文献   

16.
Han  Fei  Ganju  Eshan  Salgado  Rodrigo  Prezzi  Monica 《Acta Geotechnica》2019,14(6):1785-1803

Slow-maintained static load tests were performed on closed-ended and open-ended steel pipe piles driven side by side in a gravelly sand soil profile. The site investigation consisted of multiple cone penetration tests (CPTs) and standard penetration tests (SPTs), as well as laboratory tests on soil samples collected at various depths from the test site to determine basic soil properties. The test piles were densely instrumented with a combination of electrical-resistance and vibrating-wire strain gauges. The open-ended test pile was a specially fabricated double-wall, fully-instrumented pile, allowing for separation of the measurements of the inner and outer shaft resistances. Detailed comparison of the load test results, in terms of driving resistance, load response and profiles of unit shaft and base resistances for the two test piles, is presented and discussed. The applicability of three CPT-based pile design methods is assessed through a layer-by-layer comparison of the estimated resistances with those measured in the static load tests.

  相似文献   

17.
云南南盘江大桥为7跨预应力钢构连续桥, 1、2号墩为桩基,采用人工挖孔灌注桩。No. 2嵌岩桩底下部12m处为强风化白云岩。对拟定的端承区域勘探发现在桩底的岩石- 混凝土接触区域有一溶洞,溶洞高约20m,垂直发育,洞底有粘土、碎石土充填,结构松散,粘土为软塑状。东南大学采用与O-cel l试验类似的平衡内部千斤顶系统进行了桩的荷载实验。O-cell试验安装在距桩底12m处,即靠近桩下部的弱风化与强风化岩石之间的接触区域。本文阐述了O-cell试验数值分析中用来反算桩体/岩石交接区域特性的部分。采用的数值分析软件为BAQUS,版本6. 4 ( ABAQ US, 2004) 。同时采用二维轴对称模型来对桩径2. 5m、桩长49m的钻孔桩进行O-cell试验数值模拟。假设加载的钻孔桩的变形与屈服发生在混凝土桩体与岩石的交接区域,混凝土桩为线弹性,强风化白云岩与弱风化白云岩为弹- 塑性,并可用Drucker- Prag er 模型( ABAQUS, 2004)表示,对岩石和混凝土- 岩体接触面的特性进行反算,然后用反算结果模拟桩顶荷载特征。数值模拟计算和现场载荷试验检测的载荷- 位移曲线对比表明,除了非弹性和永久变形外,整个向上与向下的变形与试验检测到的值基本相同。这主要是由于接触面模型的弹性性质所决定的,即它在卸载过程中会将滑动的接触面复原;而永久变形是岩体-混凝土接触面屈服的结果。必须指出的是,由于桩的承载力相对较高( 2. 5m桩径,嵌岩长度37m) ,试验不能达到最终荷载, 所以检测到的变形也较小( <10mm)。分别在桩端、O-单元荷载盒上37m处检测向上弯沉,并将结果与O-单元荷载盒顶部的弯沉作比较。结果发现,由于桩是由O-单元荷载盒底部向上加载,所以桩端的弯沉预计比O-单元荷载盒的弯沉小约5mm。这一差值几乎等于施加荷载状态下无限制(Δ= P L /A E )桩体的理论弹性缩短量。通过O-cell现场试验可以有效地观测加载状态下荷载弯沉反应情况和调整或校准数值分析中的材料模型,并可将之推广应用到相同地质条件下类似项目施工的其它桩的反应过程中。此外,还可以通过溶洞区域中的高承载力桩的O-cell试验结果来构建桩体摩擦反应的模型; 在模型摩擦反应基础上,可以估计桩端预计的变形反应值; 在交接面反应中,可以采用正弦接触面有效地引入人工粘结和表面粘结。   相似文献   

18.
自平衡检测法在桩基检测中有效解决了传统静载法面临的许多问题,已得到广泛地推广和运用,其中自平衡法承载力计算中转换系数γ的取值是关键性问题之一。针对我国桥梁工程地基土质普遍存在黏性土的情况,依托台州湾项目工程,对黏性土中自平衡承载力测试法中的转换系数的取值进行了原位试验研究。选取3根钻孔灌注桩,桩径为1.5 m、桩长83.5 m,在原桩上先后进行自平衡法和堆载法试验,在桩身土层交界处布设钢筋计得到相应的桩侧摩阻力,将每根桩的上段桩在同一土层处自平衡法测的极限侧摩阻力值与堆载法测的极限侧摩阻力值进行对比,得到了各层土自平衡转换系数值,在该基础上收集了相似工程2根桩检测数据进行分析,结果表明在黏性土中钻孔灌注桩自平衡法与堆载法测得的上段桩极限摩阻力之比为0.7~0.8。  相似文献   

19.
In most limit state design codes, the serviceability limit checks for drilled shafts still use deterministic approaches. Moreover, different limit states are usually considered separately. This paper develops a probabilistic framework to assess the serviceability performance with the consideration of soil spatial variability in reliability analysis. Specifically, the performance of a drilled shaft is defined in terms of the vertical settlement, lateral deflection, and angular distortion at the top of the shaft, corresponding to three limit states in the reliability analysis. Failure is defined as the event that the displacements exceed the corresponding tolerable displacements. The spatial variability of soil properties is considered using random field modeling. To illustrate the proposed framework, this study assesses the reliability of each limit state and the system reliability of a numerical example of a drilled shaft. The results show the system reliability should be considered for the serviceability performance. The importance measures of the random variables indicate that the external loads, the performance criteria, the model errors of load transfer curves and soil strength parameter are the most important factors in reliability analysis. Moreover, it is shown that the correlation length and coefficient of variation of soil strength can exert significant impacts on the calculated failure probability.  相似文献   

20.
群桩沉降简化计算方法   总被引:2,自引:0,他引:2  
张乾青  张忠苗 《岩土力学》2012,33(2):382-388
将均质土和成层土中的单桩桩顶沉降分成桩端力引起的沉降、桩身压缩和桩侧阻力引起的沉降3部分分别计算,获得单桩沉降后,运用等代墩法可获得群桩的平均沉降。单桩沉降计算方法可考虑桩端力与桩端位移的非线性关系和桩侧阻力引起沉降的非线性特性,同时计算方法可考虑桩身压缩对桩顶沉降的贡献。算例分析表明,计算值与实测值和其他方法的计算值有较好的一致性,验证了该方法的合理性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号