首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports the results of load and resistance factor design (LRFD) calibration for pullout and yield limit states for steel grid reinforced soil walls owing to soil self-weight loading plus permanent uniform surcharge. The calibration method uses bias statistics to account for prediction accuracy of the underlying deterministic models for reinforcement load, pullout capacity and yield strength of the steel grids, and random variability in input parameters. A new revised pullout design model is proposed to improve pullout resistance prediction accuracy and to remove hidden dependency with calculated pullout resistance values. Load and resistance factors are proposed that give a uniform probability of failure of 1% for both pullout and yield limit states. The approach adopted in this paper has application to a wide variety of other reinforced soil wall technologies.  相似文献   

2.
This paper details the development and potential of the drilled shaft load test (DSLT) database in which 351 case histories of static load tests from various countries can be freely retrieved and utilized worldwide. Employing the Entity-Relationship (ER) model to the structure design of the database provides considerable flexibility and extensibility while the open source MySQL server systematically compiles the historic data. DSLT enables quick browsing, inexpensive query, and utility of data as pile design tools or as relevant data for advanced research. Moreover, it can serve as a data platform for a centralized storage of information among interested pile data holders worldwide.  相似文献   

3.
Accurately predicting pile shaft resistance when designing pile foundations is necessary for ensuring appropriate structural and serviceability performance. The scope of this research includes four main components: (I) compiling shaft resistance datasets obtained from the published literature; (II) developing two artificial neural network (ANN) and non-linear multi regression models for predicting pile shaft resistance using cone penetration test (CPT) results; (III) investigating the influence of input parameters on the resulting shaft friction and their degrees of importance; and (IV) assessing the relative accuracies of the presented models using a number of traditional methods. It is quantitatively demonstrated that the ANN and non-linear multiple regression models proposed in the current study out perform the traditional methods and can be used by engineers to accurately predict pile shaft resistance.  相似文献   

4.
In a recent study, the time-dependent increase in axial load resistance of steel H-piles driven into cohesive soils, due to setup, was systematically quantified using measured field data. A method to estimate the setup based on measurable soil properties was subsequently established. These studies highlighted that the uncertainties of the measurements of soil properties and thus the semi-empirical approach to estimate setup are significantly different from those of the methodology used for measuring the pile resistance during retaps at any time after the end of driving. Recognizing that the two sets of uncertainties should be addressed concurrently, this paper presents a procedure for determining the factored resistance of a pile with due consideration to setup in accordance with the load and resistance factor design that targets a specific reliability index. Using the first-order second-moment method, the suggested procedure not only provides a simplified approach to incorporate any form of setup in design, but it also produces comparable results to the computationally intensive first-order reliability method. Incorporating setup in design and construction control is further shown to reduce foundation costs and minimize retap requirements on piles, ultimately reducing the construction costs of pile foundations.  相似文献   

5.
6.
This paper presents a framework for calculating the resistance factors of load and resistance factor design (LRFD) for axially-loaded driven piles in clays that can fully account for all necessary reliability-related parameters. The Imperial College Pile (ICP) design method was adopted to determine the resistance factors. The ICP design method was selected because it has been widely verified and has produced close matches to measured pile load capacities. A high-quality database, originally employed to develop the ICP design method, was used to assess the uncertainties of base and shaft capacities. The uncertainties of dead and live loads were determined from previously reported results. The challenge of this paper was to identify the effect of base-to-shaft capacity ratios on resistance factors, which has not been considered in previous methodologies. The resistance factors, compatible with the load factors given in the American Association of State Highway and Transportation Officials (AASHTO) LRFD design specifications and those provided in the American Petroleum Institute (API) LRFD recommended practice, were calculated and proposed for different levels of target reliability index. The effect of base-to-shaft capacity ratios on resistance factors was noticeable, while the effect of dead-to-live load ratios on resistance factors was relatively small.  相似文献   

7.
This study deals with the formulation of an analytical solution for load transfer in drilled shaft and its application. The emphasis is on quantifying the mobilization of side resistances, which are closely related to shear behaviors of the concrete-rock interface. In this modelling, the side resistance is idealized by using elasticity-brittleness-plasticity, and a simple slip-line field is built to identify the critical shear displacement. The closed-form solution of load transfer is obtained by using the proposed shear model. Comparison between predictions and field observations is also made to validate performance of the proposed method.  相似文献   

8.
The resistance factor for pile foundations in load and resistance factor design (LRFD) is traditionally calibrated considering target reliability index (βT) and statistics of load and resistance bias factors. However, the resistance bias factor is hard to quantify statistically. Consequently, the design obtained using the calibrated resistance factor can still miss βT if the variation in resistance bias factor has been underestimated. In this paper, we propose a new resistance factor calibration approach to address this dilemma by considering “feasibility robustness” of design in the calibration process. Herein, the feasibility robustness is defined as a probability that the βT requirement can still be satisfied even in the presence of uncertainty or variation in the computed bearing capacity. For illustration, LRFD approach for pile foundations commonly used in Shanghai, China is examined. Emphasis is placed on re-calibration of resistance factors at various feasibility robustness levels, with due consideration of the variation in the resistance bias factor. A case study is presented to illustrate the use of the re-calibrated resistance factors. The results show that the feasibility robustness is gained at the expense of cost efficiency; in other words, the two objectives are conflicting. To aid in the design decision-making, an optimal feasibility robustness level and corresponding resistance factors are suggested in the absence of a designer’s preference.  相似文献   

9.
The factor of safety used in designing pile foundations for vertical load should depend on three things, prior information on load capacity summarized by empirical correlations with load capacity models, site specific information derived from load tests, and an objective function reflecting economic and safety considerations. A statistical approach to factor of safety selection was developed in order to suggest improvements of current standards for driven pile design. This approach recognizes a distinction between the variability of pile load capacity within individual sites, and the global variability upon which model correlations are based. Charts have been prepared for determining the FS required to achieve specified reliability indices, as a function of the number of load tests at a particular site and their outcomes.  相似文献   

10.
This paper provides a simplified procedure for reliability-based robust geotechnical design (RGD) using spreadsheet. In the RGD methodology, design robustness is achieved by adjusting “design parameters” without reducing the uncertainties in noise factors. This design approach generally involves a multi-objective optimisation, which is computationally challenging. To improve the efficiency of the RGD methodology, the design robustness is evaluated in terms of sensitivity index and the safety requirement is evaluated using mean value first order second moment (MFOSM). To ease the concern that the reliability index obtained with MFOSM may not be sufficiently accurate, a mapping function that relates MFOSM to a more accurate method such as first order reliability method is introduced. To further improve the efficiency of the proposed simplified RGD method, a new simplified procedure along with a more accurate robustness measure is developed that eliminates the need for multi-objective optimisation. With these modifications, the proposed simplified RGD method can efficiently be implemented in a single Excel spreadsheet. The proposed simplified method, which goes beyond any existing reliability-based RGD methods in terms of ease of use and computational efficiency, is illustrated in this paper with an example of robust design of drilled shaft in clay.  相似文献   

11.
12.
In this paper, a limiting equilibrium based methodology, incorporating the method of slices and arching effects of the drilled shafts, is developed for optimizing the use of multiple rows of drilled shafts. This proposed method is focusing on the number of rows, the location of each row, the dimension and spacing of the drilled shafts. Three design criteria are used for optimization: target global factor of safety, the constructability and service limit. A PC-based program called M-UASLOPE has been coded to allow for handling of complex slope geometry, soil profile, and ground water conditions. A design example is presented to illustrate the application of the M-UASLOPE program in the optimized design of multiple rows of drilled shafts for stabilizing the example slope.  相似文献   

13.
The compositions of orthopyroxene, associated with magnetite and quartz in the system FeO-MgO-MnO-SiO2 were determined experimentally at temperatures of 700, 750, 800°C and pressures ranging between 3 and 5 kbar. On the basis of data obtained the value of the Guggenheim parameter of orthopyroxene solid solution was calculated: AFe. Mn = 2400 ±500 cal. For rocks rich in MnO, a modified version of orthopyroxene-magnetite-quartz oxygen barometer is suggested.  相似文献   

14.
预制静压桩静动载现场试验分析   总被引:2,自引:0,他引:2  
原位试验是获取桩基设计参数和了解桩基力学性能的最客观、最可靠方法。基于现有疲劳机和千斤顶等试验设备,研制了桩顶静载和动载组合加载装置,为现场静、动载试验解决了一个技术性难题。利用该装置对某工程混凝土预制静压桩进行了模拟交通荷载的现场静、动载试验。通过单桩竖向抗压静载试验和动载试验,分析了静动载对桩身轴力分布、桩身侧摩阻力和基桩沉降的影响及其变化规律。试验结果表明:在静动载作用下桩身侧摩阻力的分布规律基本一致,并且随着振动次数的增加,桩身上部侧摩阻力减小、下部略有增加,但动载循环超过30万次后,侧摩阻力趋于稳定。  相似文献   

15.
王卫东  吴江斌  王向军 《岩土力学》2015,36(Z2):289-295
现行行业标准《建筑桩基技术规范》(JGJ94-2008)[1]采用嵌岩段侧阻和端阻综合系数?r与基岩单轴抗压强度frk来计算嵌岩桩嵌岩段的总承载力。该方法较简单且工程意义明确,便于工程设计使用。然而规范中综合系数的取值存在一定的局限性。采用ABAQUS通用有限元软件对武汉绿地中心等4个背景工程共20余根现场试桩试验成果进行了数值拟合,取得了较合理的岩(土)参数取值;利用前述参数,建立不同岩性条件下的嵌岩桩数值计算模型,对综合系数进行了计算分析,并建立其与基岩岩性、嵌岩深径比的关系,提出了综合系数建议取值表。相比于规范取值方法,该方法对不同岩石强度分类和嵌岩深径比两个维度上进行了扩充与细化。通过背景工程嵌岩桩试桩承载力的验算表明,采用综合系数比按规范计算的综合系数更接近试桩实测结果。  相似文献   

16.
基于某大面积深厚淤泥软基加固处理工程试验,从淤泥地基承载特征考虑,为定量确定软土之上覆盖层(包括原覆盖层及人工填土层)并反映静动力排水固结法中静力、动力荷载和排水体系的相互适应关系,建立了冲击荷载下淤泥地基上覆土层合理厚度 的定量模型。对该模型参数地基压力扩散角 、地基承载力特征值 、冲击荷载允许应力比R进行分析讨论。模型中变化的允许应力比R直观和定量地反映了冲击荷载大小与软土层排水体系布置方式、软土覆盖层厚度的相互适应关系,也可作为评判软基加固效果的参数。相关试验结果还表明,对于淤泥地基,实际夯击作用下 大于《建筑地基基础设计规范》中的23°~30°。工程应用表明,建立的模型与实际情况有较好的一致性,其定量的表达式也为工程人员设计应用提供了便利,对类似的软土地基处理工程有借鉴或指导意义。  相似文献   

17.
Pile load tests are used to refine designs and for quality assurance. They can also be used to verify the reliability of piles and pile groups. Stochastic methods have previously been developed to verify the reliability of single piles. A general stochastic method to verify the reliability of pile groups is developed in this paper. The method can be used to assess the reliability of groups where pile tests have been conducted to the ultimate capacity, to below the ultimate capacity but exceeding specified capacity, and where pile tests fail to achieve the specified capacity. In the latter case, the method allows decisions to be made as to whether the reliability of the entire pile group is satisfactory or whether additional piles need to be installed.  相似文献   

18.
竺明星  戴国亮  龚维明  万志辉  卢红前 《岩土力学》2019,(7):2593-2607,2662
为探讨摩阻力增强效应影响下的水平受荷桩承载机制,建立了水平荷载作用下考虑增强效应影响的桩侧摩阻力τ-s曲线模型,并在此基础上推导了桩身单位长度侧阻抗力矩数值解。随后开展了桩径、临界位移、极限侧摩阻力等因素影响下Ms,ini/Msu,ini-θ/θref,ini无量纲化曲线规律分析。结合摩阻力增强效应理论进而分别建立了线弹性-塑性、双曲线、API规范砂土与黏土τ-s曲线模型作用下的桩身侧阻抗力矩简化理论解,并基于传递矩阵法原理,解得了考虑桩侧摩阻力作用时基桩水平承载力半解析解。通过多组验证工况和工程实例分析验证了所建立的侧阻抗力矩简化解以及考虑侧阻抗力矩影响的基桩水平承载力方法的正确性,同时也证明了摩阻力增强效应对基桩水平承载力的影响不能忽略,并得出如下结论:无试验数据参考时,砂土、黏土与桩接触面的刚度指数可分别取0.725和0.600;桩身侧阻抗力矩随着桩径、极限摩阻力的增加以及临界位移的减小而增加,其中桩径对侧阻抗力矩影响更为明显。  相似文献   

19.
用大直径分离式霍普金森压杆冲击砂岩的压缩单裂纹圆孔板,成功地监测到Ⅰ型动态断裂的全过程。实验中由裂纹扩展计分别纪录了动态起裂、扩展、止裂、和再起裂时刻,采用分形裂纹扩展模型分析曲折裂纹的扩展速度,最后用实验-数值-解析法确定砂岩的动态起裂韧度、动态扩展韧度、动态止裂韧度以及二次动态起裂韧度。动态断裂全过程的实验结果表明:裂纹扩展路径为不规则曲线,此时裂纹动态扩展速度表征的普适函数值会比假设裂纹路径为直线时小;利用分形模型得到更加接近真实的动态扩展韧度;砂岩的动态起裂韧度大于动态止裂韧度;由于初次动态起裂时的裂纹实为人工切槽,而二次动态起裂时为天然形成的裂纹因而非常尖锐,初次动态起裂韧度略大于二次动态起裂韧度。  相似文献   

20.
The load response of a rock-socketed steel H-pile can be strongly influenced by the nonlinear interfacial behavior between the grout and the steel H-pile, and between the pile and the rock mass. This paper focuses on the load-transfer mechanism of the former interface through experimental push-out tests and numerical simulation of the tests. The study is divided into two parts. In the first part, a series of push-out tests have been carried out on four types of specimens (with studs + confinement (Case I); no stud + confinement (Case II); no stud + no confinement (Case III); and studs + no confinement (Case IV)). The second part is a numerical study based on three-dimensional finite element technique, which takes into account possible damage and cracking in grout, as well as bond-slip along the interface. It is shown that the numerical predictions of the four cases compare favorably with the corresponding test results, including the load–displacement response and the development of cracks. Furthermore, parametric study has been carried out to investigate the influence of various factors, including the studs, the casing confinement, the grout fracture energy, and the dilation property of steel-grout interface. Lastly, some implications, based on the test and numerical results, on the design of socketed steel H-piles are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号