首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liquefaction can result in the damage or collapse of structures during an earthquake and can therefore be a great threat to life and property. Many site investigations of liquefaction disasters are needed to study the large-scale deformation and flow mechanisms of liquefied soils that can be used for performance assessments and infrastructure improvement. To overcome the disadvantages of traditional flow analysis methods for liquefied soils, a soil–water-coupled smoothed particle hydrodynamics (SPH) modeling method was developed to analyze flow in liquefied soils. In the proposed SPH method, water and soil were simulated as different layers, while permeability, porosity, and interaction forces could be combined to model water-saturated porous media. A simple shear test was simulated using the SPH method with an elastic model to verify its application to solid phase materials. Subsequently, the applicability of the proposed SPH modeling method to the simulation of interaction forces between water and soil was verified by a falling-head permeability test. The coupled SPH method produced good simulations for both the simple shear and falling-head permeability tests. Using a fit-for-purpose experimental apparatus, a physical flow model test of liquefied sand has been designed and conducted. To complement the physical test, a numerical simulation has been undertaken based on the soil–water-coupled SPH method. The numerical results correspond well with the physical model test results in observed configurations and velocity vectors. An embankment failure in northern Sweden was selected so that the application of the soil–water-coupled SPH method could be extended to an actual example of liquefaction. The coupled SPH method simulated the embankment failure with the site investigation well. They have also estimated horizontal displacements and velocities, which can be used to greatly improve the seismic safety of structures.  相似文献   

2.
本构模型是描述泥石流流变特性的关键,也是决定其动力过程数值模拟准确性的核心问题之一。泥石流流体属多相混合物,现有的研究已证实其存在剪切增稠或剪切变稀的现象,传统基于Bingham及Cross线性本构关系的数值模型难以准确描述泥石流流变特性。文中探讨了Bingham模型在低剪应变率下的数值发散问题,在光滑粒子流体动力学(SPH)方法框架上建立了整合Herschel-Bulkley-Papanastasiou(HBP)本构关系的稀性泥石流动力过程三维数值模型。相比传统基于浅水波假设的二维数值模型,所述方法从三维尺度建立SPH形式下的泥石流浆体纳维?斯托克斯方程并进行数值求解,可获取泥石流速度场时空分布及堆积形态,同时采用HBP本构关系描述泥石流流变特性,能在确保数值收敛的前提下反映泥石流流体在塑性屈服过渡段及大变形状态下应力?应变的非线性变化。为验证提出方法的合理性,结合小型模型槽实验观测进行了对比,结果表明数值模拟与实测结果基本吻合。  相似文献   

3.
边坡的渐进破坏特征一直以来是边坡计算仿真中的一个难点。实际边坡的破坏很少是一个整体达到极限状态,突然滑动的过程,往往是逐步发展由局部破坏到最终整体失稳,即临界状态小扰动导致的链式多米洛骨牌式失稳。利用颗粒流软件,设计了0.1 m粒径高10 m土坡的数值模型,粒间黏聚力为36 kPa,摩擦系数为0.36。初始模型在重力作用下不会发生破坏,通过单独折减粒间黏聚力到18 kPa使得边坡破坏,监测竖向颗粒组group的变化获取每20 000个时间步的边坡破坏形态,实现200 000个时间步内边坡的渐进破坏过程。边坡总是从局部开始破坏,坡体物质的运移造成次一级破坏,形成最终的近似弧形的滑动面,说明滑体不是整体下滑,不是刚体,不是整体达到极限状态;坡体内应力的变化也不是单调的,有涨有落,均区别于当前极限平衡法中有限条块的刚体假设;滑动面上同时达到极限状态假设,问题本身是静不定的,通过给出条间力的传递方式使之静定可解;整体分析不能考虑破坏的局部化和渐进特征。这说明边坡计算方法的未来在于能反映动力问题和材料破坏特征的离散元方法。  相似文献   

4.
Abundant landslide deposits were triggered by the Wenchuan earthquake, providing a rich source of material for subsequent debris flows or slope failures under rainfall conditions. A good understanding of the physical and mechanical properties of the landslide deposits is very important to the research on slope failure mechanisms and the initiation of debris flow. Laboratory biaxial compression tests are used to study the material compositions and water content impacts on the mechanical properties of landslide deposits, and a discrete element method (a bond-contact model) is used to study the particle stiffness, bond force, friction coefficient and confining stress impact on the mechanical behaviors and the relationships between the numerical and experimental parameters. The experimental results show that the failure stress of landslide deposits is decreased with increasing content of fine particles and also with increased water content, especially at the initial increasing stage. Cohesion of the saturated landslide deposits is increased, but the friction angle is decreased with the increase in the fine particle content. Shear strength parameters (the cohesion and friction angle) are decreased with the increasing water content at the initial increasing stage, and then, they slowly decrease. There is a critical value of the water content at 5%–7% (in weight) for the failure stress and shear strength parameters of the landslide deposits. Quadratic equations are presented to describe the relation between the bond force and cohesion, and the numerical friction coefficient and the experimental friction angle.  相似文献   

5.
泥石流运动规律及其冲击性能对于泥石流灾害的影响范围及严重程度具有重要决定意义。出于泥石流这类多相介质的复杂性,本文采用离散元仿真软件EDEM 2018对碎屑流冲击流槽试验进行了数值模拟研究,考虑流槽坡度、底部拦挡结构角度以及颗粒级配的影响,在已有研究成果的基础上对固体颗粒运动过程及冲击性能展开了系统研究。本文将数值模拟结果与现存试验数据进行了对比分析,验证了数值模拟方法的可靠性,在此基础上得出了以下结论:(1)在拦挡结构角度与颗粒级配相同的情况下,流槽坡度越大,对应的碎屑流运动速度与冲击力的峰值也越大;(2)在流槽坡度与级配相同的情况下,拦挡结构越陡,与其相互作用的固体颗粒数量越多,碎屑流越快达到速度和冲击力峰值,且对应的速度与冲击力峰值也越大;(3)在运动过程中,各颗粒级配的碎屑流均出现反序现象,且细颗粒含量的提升可提高碎屑流运动速度,但同时冲击力降低,而粗颗粒含量的提升可增大碎屑流对拦挡结构的冲击力,对于运动速度的影响较小。  相似文献   

6.
Flowing sediments such as debris and liquefied soils could exert a tremendous amount of force as they impact objects along their paths. The total impact force generally varies with slope angle, velocity at impact, and thickness of the flowing sediment. Estimation of the impact force of flowing sediments against protective measures such as earth retaining structures is an important factor for risk assessment. In this paper, we conduct small-scale laboratory physical modeling of sand flow at different slopes and measure the impact force exerted by this material on a fixed rigid wall. We also conduct numerical simulations in the Eulerian framework using computational fluid dynamics algorithms to analyze and reproduce the laboratory test results. The numerical simulations take into consideration the overtopping of the wall with sand, which influenced the measured impact force–time history responses. In addition, the numerical simulations are shown to capture accurately the change of the impact force with slope angle. Finally, the modeling approach conducted in this study is used to estimate the quasi-static force generated by the sediment as it comes to rest on the wall following impact.  相似文献   

7.
The 12 May 2008 Wenchuan earthquake (Ms 8.0) in China, produced an estimated volume of 28 × 108 m3 loosened material, which led to debris flows after the earthquake. Debris flows are the dominant mountain hazards, and serious threat to lives, properties, buildings, traffic, and post-earthquake reconstruction in the earthquake-hit areas. It is very important to understand the debris flow initiation processes and characteristics, for designing debris flow mitigation. The main objective of this article is to examine the different debris flow initiation processes in order to identify suitable mitigation strategies. Three types of debris flow initiation processes were identified (designated as Types A, B, and C) by field survey and experiments. In “A” type initiation, the debris flow forms as a result of dam failure in the process of rill erosion, slope failure, landslide dam, or dam failure. This type of debris flow occurs at the slope of 10 ± 2°, with a high bulk density, and several surges following dam failure. “B” type initiation is the result of a gradual increase in headward down cutting, bank and lateral erosion, and then large amount of loose material interfusion into water flow, which increases the bulk density, and forms the debris flow. This type of debris flow occurs mainly on slopes of 15 ± 3° without surges. “C” type debris flow results from slope failures by surface flow, infiltration, loose material crack, slope failure, and fluidization. This type of debris flow occurs mainly on slopes of 21 ± 4°, and has several surges of debris flow following slope failure, and a high bulk density. To minimize the hazards from debris flows in areas affected by the Wenchuan earthquake, the erosion control measures, such as the construction of grid dams, slope failure control measures, the construction of storage sediment dams, and the drainage measures, such as construction of drainage ditches are proposed. Based on our results, it is recommend that the control measures should be chosen based on the debris flow initiation type, which affects the peak discharge, bulk density and the discharge process. The mitigation strategies discussed in this paper are based on experimental simulations of the debris flows in the Weijia, Huashiban, and Xijia gullies of old Beichuan city. The results are useful for post-disaster reconstruction and recovery, as well as for preventing similar geohazards in the future.  相似文献   

8.
Dynamic aspects of the long runout Ontake-san debris avalanche are evaluated by a comparison of several models. An unsteady numerical model assumes two-dimensional flow of an incompressible biviscous or Newtonian fluid, represented as a continuum with a free surface. Internal deformation of the flowing mass is considered, as well as boundary resistances. Thus flow thinning and deposit shape as well as flow kinematics may be modeled. Parameters are adjusted to match observed runout, with additional constraints on velocity and emplacement time. With abundant constraints for Ontake-san, from careful field investigations by Japanese research teams, our analysis indicates that a substantial decrease in flow resistance occurred as a function of displacement. Constant-property models that match runout tend to overestimate the peak velocities and to underestimate the emplacement times. A staged increase in mobility in both constant volume and variable volume models leads to results consistent with field data. Runout in a channel overflow area was also modeled. Qualitatively similar results have been obtained by other researchers using simple sliding block models with empirical parameters, a slide block model with rational parameter selection, a modified flood simulation, and a multi-element frictional slide model. The relative merits of these models are compared.

The field mechanisms associated with this mobility increase with displacement are poorly understood, but the question is now identified as a target for future research at debris avalanche sites, and some plausible mechanisms are considered. The main reason probably involves the entrainment of river water and saturated sediment, leading to enhanced efficiency of fluid pressure mechanisms with undrained shear; in addition, progressive shearing reduced the mean particle size and angularity, and the cohesion and friction (and apparent viscosity) of avalanche debris near the wetted perimeter. Hydroplaning — the shearing of water films and slurries — may have occurred locally.  相似文献   


9.
Li  Pu  Wang  Jiading  Hu  Kaiheng  Shen  Fei 《Landslides》2021,18(9):3041-3062

Channel morphology and bed sediment erodibility are two crucial factors that significantly affect debris flow entrainment processes. Current debris flow entrainment models mostly hypothesize the erodible beds are infinite with uniform slopes. In this study, a series of small-scale flume experiments were conducted to investigate the effects of bed longitudinal inflexion and sediment porosity on basal entrainment characteristics. Experimental observations revealed that sediment entrainment is negligible at early stages and accelerates rapidly as several erosion points appear. Continual evolution of flow-bed interfaces changes interactions between debris flows and bed sediments, rendering the interfacial shear action involved into a mixed shear and frontal collisional action. Lower bed sediment porosity will change the spatial arrangement and orientation of particle mixture, strengthen the interlocking and anti-slide forces of adjacent sediment particles, and promote the formation of particle clusters, all of which will increase bed sediment resistance to erosion. By examining the post-experimental bed morphology, the slope-cutting amounts and topographic reliefs are determined to positively correlate with longitudinal transition angles. These high topographic reliefs may indicate the propensity of triangular slab erosion, rather than strip-shaped slab erosion, in non-uniform channels with relatively steep erodible beds. Empirical formulas are obtained that denote the relationships among bed sediment strength, channel curvature radius, and sediment porosity through a multi-parameter regression analysis. This study may aid in clarifying the complex coupling effects of spatial variations in debris flow dynamics as well as sediment erodibility and bed morphology in non-uniform channels with abundant seismic loose material.

  相似文献   

10.
The Canary Debris Flow: source area morphology and failure mechanisms   总被引:6,自引:0,他引:6  
The morphology of the source area of the Canary Debris Flow has been mapped using both GLORIA reconnaissance and TOBI high-resolution sidescan sonar systems. West of ≈19°W, the seafloor is characterized by a strongly lineated downslope-trending fabric. This fabric can be interpreted as being caused by streams of debris separated by longitudinal shears. Multiple flow pulses are indicated by a series of asymmetrical lateral ridges which mark the northern boundary of the flow. East of ≈19°W, GLORIA data show only a weak fabric of irregular patches and alongslope lineaments. The TOBI data show the patches to be coherent sediment blocks up to 10 km across, surrounded by debris flow material. These are interpreted as in situ areas of seafloor sediment which have survived the slope failure and debris flow event rather than transported fragments of a failed sediment slab. TOBI data from the best developed area of alongslope lineaments show a series of small faults downstepping to the west. This area of seafloor is interpreted as one of partial sediment failure, where the failure process became ‘frozen’ before total mobilization of the seafloor sediments could occur. The overall morphology of the failure area indicates removal of a slab-like body of sediment, although we cannot distinguish between retrogressive and slab-slide failure mechanisms. If the latter mechanism is applicable, fragmentation of the failing ‘slab’ must have commenced concurrently with the onset of downslope transport. Immediately upslope from the debris flow source area, a seafloor of characteristic rough blocky texture is interpreted as the surface of a debris avalanche derived from the slopes of the island of El Hierro. The debris flow and avalanche appear to be simultaneous events, with failure of the slope sediments occurring while the avalanche deposits were still mobile enough to fill and disguise the topographic expression of the debris flow headwall. Loading of the slope sediments by the debris avalanche most probably triggered the Canary Debris Flow.  相似文献   

11.
A dry debris avalanche will produce different volumes of colluviums or depositions (loose materials), which can have a significant impact on mountainous rivers or gullies. The loose material supply process caused by a debris avalanche is an important issue for understanding secondary disasters that form via the coupling of water flow and loose materials. Two flumes were designed for laboratory tests of the loose materials supply process to rivers/gullies, and the related impact factors were analyzed. Experimental results show that the supply of loose materials is a continuous process that directly relates to the avalanche’s mass movement processes. The sliding masses with smaller particle sizes are more sensitive to the flume slope and exhibited a longer supply time. The time-consuming for the debris avalanche travel in the flume decreased with the increasing particle size (such as flume B, time-consuming is decreased 0.2 s when the particle size increased from <1.0 to 20–60 mm), landslide volume and flume slope (flume A, consuming 1.6–2.1 s when flume slope is 29° decreased to consuming 1.3–1.5 s when flume slope is 41°), which means the increasing mobility of loose materials. The total supply time increased with the increasing landslide volume or decreasing particle size and flume slope. An empirical model for the process is presented based on numerous laboratory tests and numerical simulations, which can successfully describe the supply process for loose materials to a river/gully. The supply process of loose materials to mountainous gully from a dry debris avalanche is controlled by the material compositions of sliding masses, topographical conditions, landslide volume and bed friction, where large-volume debris avalanches that occur in mountainous river regions are more likely to obstruct the river flow and form a landslide-dammed lake.  相似文献   

12.
Tan  Dao-Yuan  Feng  Wei-Qiang  Yin  Jian-Hua  Zhu  Zhuo-Hui  Qin  Jie-Qiong 《Acta Geotechnica》2021,16(2):433-448

Retention behavior of a flexible barrier in mitigating a granular flow is still an open problem not fully understood, especially due to the complexity of the granular material and the flexible barrier. Understanding the retention mechanism and quantifying the influencing factors of retention efficiency are desirable for optimizing the design and minimizing the maintenance cost of a debris-resisting flexible barrier. In this paper, a numerical model, based on the discrete element method, is presented, calibrated, and validated to analyze the interaction between a granular flow and a flexible net. A full-scale numerical simulation is first performed to compare with a large-scale physical modeling test in the literature and validate the applied parameters in the simulation. The interaction and deposition characteristics of the granular flow interacting with a flexible net are revealed. Afterward, parametric study is performed to investigate the effects of the internal friction angle (φ) of debris material and the relative mesh size of flexible net on the retention efficiency and clogging mechanism of a flexible barrier. The simulation results illustrate that the particle passing ratio (P) increases with increment of the friction angle of particles and enlargement of the mesh size of a flexible net. Both parameters have critical effects on the retention efficiency of a flexible barrier in intercepting a granular flow. Therefore, the friction angle and the particle size distribution characteristics of the debris material are suggested being used for optimization of the mesh size and more efficient design of debris-resisting flexible barriers.

  相似文献   

13.
For seepage failures of dike due to water level-up and rainfall, surface infiltration and strength change induced by suction reduction are important factors; thus, numerical analysis should consider the coupling of water and soil, as well as the effect of saturation to obtain more precise failure mechanism. Based on the advanced smoothed particle hydrodynamics (SPH) method, this work proposed a two-phase-coupled SPH model in coordination with a novel constitutive model for unsaturated soils. Then, a triaxial compression test is simulated to check the applicability of the SPH method on the soil phase. After that, the failure test of a dike due to water level-up is discretized and simulated, from which the seepage process, the distribution of maximum shear strain, the slip surface, and pore water pressure are obtained. The two-phase-coupled SPH model is also applied to a slope failure test of heavy rainfall, and the results are compared to the model test. Finally, a dike failure test due to rainfall is analyzed using the proposed SPH model to reproduce the surface infiltration and suction reduction. The proposed SPH model provides several insights of seepage failures and can be a helpful tool for the analysis of dike failures induced by water level-up and rainfall.  相似文献   

14.
The use of super-elevations that a forced vortex flow leaves on the valley walls of a curved flume is a plausible approach toward estimating debris flow velocities in earthquake-induced geo-hazard studies. The centrifugal force of a speeding flow is responsible for a higher flow depth on the outer bend. However, in reality, a flow is not steady, and only the highest flow-marks are left at the outer and inner bends of the flow, which can lead to an inaccurate estimation of the actual velocity. Seeing the real scenario of the field, a series of numerical flume tests using smoothed particle hydrodynamics (SPH) is conducted to validate the estimation of debris flow velocities from flow-marks. Velocities estimated from flow-marks are lower than real velocities near the source region, but they converge to real velocities as the distance to the source increases. Based on several simulations, a best-fit line is proposed for adjusting debris flow velocity from mud-marks, and it is used to estimate flow velocities of the well-documented debris event called “Shiraito river debris flow,” which happened near the rim of the Hakone Crater, Kanagawa Prefecture, Japan, ensuing from the 1923 Great Kanto earthquake.  相似文献   

15.
This paper presents the development, calibration, and validation of a smoothed particle hydrodynamics (SPH) model for the simulation of seismically induced slope deformation under undrained condition. A constitutive model that combines the isotropic strain softening viscoplasticity and the modified Kondner and Zelasko rule is developed and implemented into SPH formulations. The developed SPH model accounts for the effects of wave propagation in the sliding mass, cyclic nonlinear behavior of soil, and progressive reduction in shear strength during sliding, which are not explicitly considered in various Newmark‐type analyses widely used in the current research and practice in geotechnical earthquake engineering. Soil parameters needed for the developed model can be calibrated using typical laboratory shear strength tests, and experimental or empirical shear modulus reduction curve and damping curve. The strain‐rate effects on soil strength are considered. The developed SPH model is validated against a readily available and well‐documented model slope test on a shaking table. The model simulated slope failure mode, acceleration response spectra, and slope deformations are in excellent agreement with the experimental data. It is thus suggested that the developed SPH model may be utilized to reliably simulate earthquake‐induced slope deformations. This paper also indicates that if implemented with appropriate constitutive models, SPH method can be used to model large‐deformation problems with high fidelity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
A Lagrangian particle‐based method, smooth particle hydrodynamics (SPH), is used in this paper to model the flow of self‐compacting concretes (SCC) with or without short steel fibres. An incompressible SPH method is presented to simulate the flow of such non‐Newtonian fluids whose behaviour is described by a Bingham‐type model, in which the kink in the shear stress vs shear strain rate diagram is first appropriately smoothed out. The viscosity of the SCC is predicted from the measured viscosity of the paste using micromechanical models in which the second phase aggregates are treated as rigid spheres and the short steel fibres as slender rigid bodies. The basic equations solved in the SPH are the incompressible mass conservation and Navier–Stokes equations. The solution procedure uses prediction–correction fractional steps with the temporal velocity field integrated forward in time without enforcing incompressibility in the prediction step. The resulting temporal velocity field is then implicitly projected on to a divergence‐free space to satisfy incompressibility through a pressure Poisson equation derived from an approximate pressure projection. The results of the numerical simulation are benchmarked against actual slump tests carried out in the laboratory. The numerical results are in excellent agreement with test results, thus demonstrating the capability of SPH and a proper rheological model to predict SCC flow and mould‐filling behaviour. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
滑坡碎屑流对拦挡结构的直接冲击常产生较高的峰值冲击力和冲击能量,导致结构发生破坏而失效;而导引结构通过改变碎屑流的运动路径,可减缓其冲击效应,提高结构抗冲击能力。文章运用三维离散元模拟软件,结合室内休止角试验的结果,校准数值模拟参数,以三种不同导引结构(凹型圆弧、直线型、凸型圆弧)为变量进行数值模拟分析。研究结果表明:凹型圆弧结构B1可以有效地将碎屑流颗粒的冲击力进行转化,结构所受的法向力最小,切向力最大,对颗粒的导引作用最大。经过三种不同导引结构后,颗粒与滑槽之间的碰撞和摩擦是导致颗粒动能减小的主要原因;而三种不同导引结构对颗粒动能的耗散效果无显著差异。导引结构的作用对于颗粒堆积体积分布有显著的影响,主要影响区是靠近坡脚处,对导引结构之后的堆积区域的颗粒体积分布影响不显著。通过对冲击效应和堆积特性的研究,得到凹型圆弧结构形式最优,可以为碎屑流的防护工程抗冲击设计提供参考。  相似文献   

18.
An extended probabilistic model that is a modification of the Chen et al. (2007,) model for evaluating the failure probability of an inclined soil layer with an infinite length was developed in the present paper, and then applied to evaluate the occurrence probability of landslide-related debris flow in Tungmen gully located in the eastern Taiwan, which occurred a devastating debris flow in 1990. The statistical properties of hydrogeological parameters were collected and summarized, and then used to evaluate the landslide-related debris-flow probabilities at various relative water depths for Tungmen gully by using the probabilistic model. Under the assumption that the soil is saturated, the soil’s cohesion is negligible and the specific gravity of the solid particles of soils is a constant, a simplified probabilistic critical slope equation for the stability of an infinite slope of soils was also developed, and used to estimate the occurrence probability of debris flow. The result shows that probabilistic landslide analysis for an infinite slope could provide a suitable approximation for the risk analysis of debris flow mobilization at a given gully.  相似文献   

19.

Debris flow has caused severe human casualties and economic losses in landslide-prone areas around the globe. A comprehensive understanding of the morphology and deposition mechanisms of debris flows is crucial to delineate the extent of a debris flow hazard. However, due to inherent complex field topography and varying compositions of the flowing debris, coupled with a lack of fundamental understanding about the factors controlling the geomaterial flow, interparticle interactions and its final settlement resulted in a limited understanding of the flow behaviour of the landslide debris. In this study, a physical model was set up in the laboratory to simulate and calibrate the debris flow using PFC, a distinct element modelling-based software. After calibration, a case study of the Varunavat landslide was taken to validate the developed numerical model. Following validation with an acceptable level of confidence, several models were generated to evaluate the effect of slope height, slope angle, slope profile, and grain size distribution of the dislodged geomaterial in the rheological properties of debris flow. Both qualitative and quantitative analysis of the landslide debris flow was performed. Finally, the utility of retaining wall and their effect on debris flow is also studied with different retaining wall positions along the slope surface.

  相似文献   

20.
黄勋  唐川  周伟 《工程地质学报》2014,22(6):1271-1278
在缺失可靠降雨数据的地区,为解决泥石流暴发频率这一现实问题,从泥石流形成机理出发,由泥石流堆积特征反演形成条件,构建了基于数值模拟的泥石流暴发频率计算模型。该模型利用泥石流固体物质量估算模型和流域洪水流量推算模型,确定固体物质量、洪水流量、泥沙体积浓度后,通过FLO-2D流体模型计算得到与实际情况最符合的模拟情景,即可反推出已发泥石流事件的暴发频率。并以7 4石棉县马颈子沟和熊家沟泥石流为例,计算出两处泥石流的暴发频率皆为100年一遇,案例研究表明,该模型具备定量确定泥石流暴发频率的能力,对于泥石流预警预报和防灾减灾具有较强的理论和实践意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号