首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用新型含磷材料(KMP)及水泥(PC)固化稳定化锌(Zn)、铅(Pb)重金属污染土,研究试验土经冻融循环后的毒性浸出(CLP)、无侧限抗压强度(UCT)、压汞试验(MIP)及化学形态分析(BCR),探究固化污染土的力学特性及耐久特性。试验结果表明,经冻融循环后,未处理污染土Zn、Pb浸出值均超过中国土壤标准;采用KMP和PC固化后,Zn、Pb浸出浓度明显低于未处理污染土;KMP固化污染土比PC固化污染土重金属固化效果更为显著,并能达到中国土壤标准;与常规养护相比,冻融循环之后的固化土体强度明显减小;经过12级冻融循环的KMP固化复合Zn、Pb重金属污染污染土强度高于PC固化试样8.6倍。压汞试验表明,经12级冻融循环后固化污染土孔隙体积增大,化学形态分析结果表明,采用KMP、PC固化重金属污染土中可交换态Zn随着养护龄期的增长而减少,残渣态Zn增加。  相似文献   

2.
工业废渣加固土强度特性   总被引:3,自引:0,他引:3  
章定文  曹智国 《岩土力学》2013,34(Z1):54-59
工业废渣的资源化是解决工业废渣环境污染的有效途径之一。以粉煤灰和高炉矿渣为固化剂,石灰为碱性激发剂,对黏土进行加固。通过室内试验的方法,分析固化剂掺入量、养护龄期等对固化土无侧限抗压强度、pH值和饱和度等发展规律的影响。试验结果表明,固化土的无侧限抗压强度随固化剂掺入量的增加而增大,随养护龄期的增加而增大,提出一个综合反映固化剂掺入量、养护龄期和压实度等因素对固化土强度影响规律的综合影响因子,固化土强度与综合影响因子呈负指数函数关系;粉煤灰+石灰和高炉矿渣+石灰可有效改良土体无侧限抗压强度特性;石灰是一种有效的碱性激发剂,可提供工业废渣发生火山灰反应的高碱性环境。试验成果为工业废渣改良不良土质的设计提供试验依据。  相似文献   

3.
Salt-rich soft soils have not only general characteristics of common soft soils, but also contain high contents of Mg2+, Cl?, and SO42?, which have negative effects on deep mixing method using cement to treat soft soils. Laboratory and field tests were conducted to investigate the effects of changing cement incorporating ratio, water content, cement mixing ratio, and contents of Mg2+, Cl?, and SO42? on the unconfined compressive strength of the salt-rich soil–cement. The microstructure of soil–cement and the mechanism for the strength change of salt-rich soil–cement were investigated using X-ray diffraction, scanning electronic microscopy (SEM), and backscattered diffraction technology. It was found that an increase of cement incorporating ratio enhanced the strength of soil–cement but reduced its strength when water is added. Different amounts of Mg2+, Cl?, and SO42? not only caused the difference in the microstructures of salt-rich soil–cement but also influenced the soil–cement strength.  相似文献   

4.
In horizontally layered soils of different electrical properties, electrical potential distribution becomes complex and the obtained resistivity data may be limited in reflecting the actual soil profile. Thus the objective of this study was to identify the factors that affect resistivity measurement on the cone penetrometer and further investigate the sensitivity of measured resistivity to different types and concentrations of contaminants at the subsurface level. First, a theoretical resistivity equation was derived to provide a means of computing the geometric factor. The effective volume of measurement on the cone penetrometer was investigated and laboratory soil box tests verified the dominance of partially high resistivity regions within the effective volume of measurement over the apparent resistivity. Such effect was found to lead to possible discrepancies between the recorded resistivity data and the actual depth of measurement. Measurements on contaminated soil layers indicated that resistivity cones are efffective in delineating inorganic contaminants in soils of high water contents, and detecting NAPLs floating above the groundwater table provided that soils adjacent to the plume are not dry of water. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
This study was aimed at evaluating the mechanical and pH-dependent leaching performance of a mixed contaminated soil treated with a mixture of Portland cement (CEMI) and pulverised fuel ash (PFA). It also sought to develop operating envelopes, which define the range(s) of operating variables that result in acceptable performance. A real site soil with low contaminant concentrations, spiked with 3000 mg/kg each of Cd, Cu, Pb, Ni and Zn, and 10,000 mg/kg of diesel, was treated with one part CEMI and four parts PFA (CEMI:PFA = 1:4) using different binder and water contents. The performance was assessed over time using unconfined compressive strength (UCS), hydraulic conductivity, acid neutralisation capacity (ANC) and pH-dependent leachability of contaminants. With binder dosages ranging from 5% to 20% and water contents ranging from 14% to 21% dry weight, the 28-day UCS was up to 500 kPa and hydraulic conductivity was around 10−8 m/s. With leachant pH extremes of 7.2 and 0.85, leachability of the contaminants was in the range: 0.02–3500 mg/kg for Cd, 0.35–1550 mg/kg for Cu, 0.03–92 mg/kg for Pb, 0.01–3300 mg/kg for Ni, 0.02–4010 mg/kg for Zn, and 7–4884 mg/kg for total petroleum hydrocarbons (TPHs), over time. Design charts were produced from the results of the study, which show the water and/or binder proportions that could be used to achieve relevant performance criteria. The charts would be useful for the scale-up and design of stabilisation/solidification (S/S) treatment of similar soil types impacted with the same types of contaminants.  相似文献   

6.
Balram Ambade 《Natural Hazards》2014,70(2):1535-1552
In the present work, chemical characterization and sources of fog water contaminants in the most polluted area of central India, Raipur, and its surroundings are described. The fog water (n = 22) was collected during 2010–2011 from six sites. The physical (i.e., pH, fog amount, electrical conductivity and TDS) and chemical (i.e., F?, Cl?, NO3 ?, SO4 2?, NH4 +, Na+, K+, Mg2+, Ca2+, Al, Mn, Fe, Cu, Zn, Pb and Hg) parameters of the fog water were investigated. The effect of meteorology, i.e., temperature, humidity and wind speed, on the precipitation of the fog water contaminants is discussed. The cluster and factor analysis are used to apportion the sources of the contaminants in the fog water.  相似文献   

7.
8.
The concentration and dynamic of soil trace metals in natural ecosystems, in particularly, is dependent on the lithology of parent rock as well as topography and geopedological processes. To ascertain more knowledge for this dependency, soils on three parent rocks involving peridotite, pegmatite, and dolerite in two contrasting topography aspects were investigated. The total values of Fe, Mn, Zn, Cu, and Ni were determined and compared for different soil pedons. The concentration of Fe, Mn, and Ni were highest in soils developed from peridotite (127, 1.8 g kg?1, and 218 mg kg?1, respectively), intermediate in soils derived from dolerite (81, 1.3 g kg?1, and 166 mg kg?1, respectively), and least in soil developed from pegmatite (50, 0.23 g kg?1, and 20 mg kg?1, respectively). The values of Zn and Cu, originated from different parent rocks, were in order of dolerite (78 mg kg?1) > peridotite (77 mg kg?1) > pegmatite (28 mg kg?1) and pegmatite (121 mg kg?1) > peridotite (111 mg kg?1) > dolerite (28 mg kg?1), respectively. For most of the studied pedons, profile metals distribution differed among the soils: The values of Fe, Cu, and Ni were enriched in the cambic horizons mainly as result of release, mobilization, and redistribution of the studied metals during geopedological processes, whereas those of Zn and Mn were concentrated in the surface horizons. Probably due to greater weathering rate of trace metal-bearing rocks on north-facing slope, the content of the trace metals along with the geoaccumulation index (I geo) and the degree of soil contamination (C d) were higher than on south-facing slope. Based on assessment of soil pollution indices, the soils were categorized as unpolluted [I geo ≤ 0 (class 0)], unpolluted to moderately polluted levels [0 < I geo < 1 (class 1)], and very low [C d < 1.5 (class 0)] to low degree of contamination [1.5 < C d < 2 (class 1)].  相似文献   

9.
Luna 20 soil is remarkably similar to Apollo 16 soil, in its content of 17 mainly volatile or siderophile elements: Ag, Au, Bi, Br, Cd, Cs, Ge, In, Ir, Rb, Re, Sb, Se, Te, Tl, U, and Zn. Like other highland soils, it seems to contain an ancient meteoritic component of fractionated, volatile-poor composition. The bulk soil has a high TlCs ratio (9.4 × 10?2), similar to that in Apollo 16 soils (5.4 × 10?2), but higher than that in samples from other sites (1.1 × 10?2). It is severely contaminated with Ag, Cd, Re, and Sb, judging from a comparison with a 1.7 mg soil breccia sample from the coarse fraction of the soil.  相似文献   

10.
The combined effects of low rainfall, groundwater withdrawal in excess of 300 GL/year and reduced recharge in areas covered by pine plantations has caused the water table in a sandy unconfined aquifer on the Gnangara Mound in Western Australia to drop by up to 5 m and aquifer storage to decline by about 500 GL over the last 20 years. Groundwater has become acidic in areas of high drawdown, with pH values typically being less than 5.0 at the water table, and elevated concentrations of SO4 2?, Al, Fe, Zn, Cu, Ni and Pb. Trends of increasing acidity and base cation concentrations in deep water supply wells in the Mirrabooka wellfield indicate that about 0.7 keq/ha/year of base cations are being leached from soil within cones of depression of pumping wells. These results indicate that the assessment of the sustainable yields of aquifers under conditions of low rainfall needs to consider geochemical interactions between groundwater, aquifer sediments, soils and vegetation, and not be just based on aquifer hydraulics and water-balance changes.  相似文献   

11.
张亭亭  王平  李江山  万勇  薛强  王士权 《岩土力学》2018,39(6):2115-2123
采用磷酸镁水泥(MPC)对铅污染土进行固化/稳定化处理。基于无侧限抗压强度试验、渗透试验和浸出试验,研究了养护龄期和铅含量对污染土固稳性能的影响规律。试验结果表明:固化土的强度随养护龄期增加而增大,渗透系数和浸出浓度减小,7 d龄期的固化土强度和浸出浓度分别为0.36 MPa、1.75 mg/L,均满足环境安全标准;铅含量对固化土的强度及渗透特性的影响均存在临界值,为500 mg/kg。铅含量低于临界值时,固化土的强度随着铅含量的增加而增加,渗透系数随着铅含量的增加而减小。浸出浓度随铅含量的增加而增加,但浸出浓度均低于浸出安全标准。压汞试验结果表明,随养护龄期的增大,固化土孔隙体积减小,铅含量不超过临界值时,固化土孔隙体积随着铅含量的增大而减小。扫描电镜试验结果表明:随着养护龄期的增加,土颗粒团聚化越明显,胶结程度加强;铅含量不超过临界值时,土颗粒团聚体增多。镁钾磷酸盐晶体(MKP)主要通过减少孔径大于0.1 ?m的孔隙体积来影响固化土的渗透特性。  相似文献   

12.
The Huize Zn-Pb- (Ag-Ge) district is a typical representative of the well-known medium-to large-sized carbonate-hosted Zn-Pb- (Ag-Ge) deposits, occurring in the Sichuan-Yunnan-Guizhou Pb-Zn Ore-forming Zone. Generally, fluid inclusions within calcite, one of the major gangue minerals, are dominated by two kinds of small (1-10 um) inclusions including pure-liquid and liquid. The inclusions exist in concentrated groups along the crystal planes of the calcite. The ore-forming fluids containing Pb and Zn, which belong to the Na+-K+-Ca2+-Cl--F--SO42- type, are characterized by temperatures of 164-221℃, medium salinity in 5-10.8 wt% NaCl, and medium pressure at 410×105 to 661×105 Pa. The contents of Na+-K+ and C1--F-, and ratios of Na+/K+-Cl-/F- in fluid inclusions present good linearity. The ratios of Na+/K+ (4.66-6.71) and Cl-/F- (18.21-31.04) in the fluid inclusions of calcite are relatively high, while those of Na+/K+ (0.29-5.69) and Cl-/F- (5.00-26.0) in the inclusions of sphalerite and pyrite are rela  相似文献   

13.
Sewage sludge usually contains significant amount of Zinc (Zn) and is widely used in agricultural lands. A laboratory experiment was performed to determine Zn desorption characteristics in unamended and amended soils with sewage sludge. Ten calcareous soils were amended with 1 % (w/w) sewage sludge. Amended and unamended soils were incubated at field capacity at 25 ± 1 °C for 1 month. After incubation, the kinetics of Zn desorption in amended and unamended soils were determined by successive extraction with DTPA-TEA (diethylenetriaminepentaacetic acid-triethanolamine) in a period of 1–504 h at 25 ± 1 °C. The results of kinetics study showed that extracted Zn and desorption rate constants in the amended soils were significantly (p < 0.01) higher than in the unamended soils. The results showed that Zn desorption increased from 201 to 343 % in amended soil with respect to unamended soils. The amounts of desorbed Zn in the unamended soils ranged from 3.73 to 8.79 mg kg?1, while the amounts of desorbed Zn in amended soils ranged from 11.47 to 17.66 mg kg?1. Desorption kinetics of Zn in two soils conformed fairly well to first-order, parabolic diffusion and power function equations. The results of stepwise regression analysis indicated that calcium carbonate equivalent and clay could be used to estimate Zn desorption characteristics in DTPA-TEA solution in the amended and unamended calcareous soils. It can be concluded that sewage sludge applied to calcareous soils may enhance the source of Zn for the plants.  相似文献   

14.
Soil salinization is an environmental problem having significant impacts on the soil–water–plant system. This problem is more frequent in coastal areas due to seawater intrusion into the land. Assessing the soil salinization is a critical issue for the agricultural areas situated in the Mediterranean basin. This paper examines the deterioration of soil quality in the cultivated land of a Mediterranean site (Agoulinitsa district—West Greece). Soil samples were collected in both pre-irrigation and post-irrigation seasons. Electrical conductivity (EC), pH and the ions Br?, Ca2+, Cl?, F?, K+, Li+, Mg2+, Na+, NH4 +, NO2 ?, NO3 ?, PO4 3? and SO4 2? were determined by the 1:2 (soil/water ratio on weight basis) method. The salts which were present in both seasons in the soils of the area studied are KCl, MgCl2, NaCl, CaSO4 and K2SO4. The wide spatiotemporal variation of EC in the cultivated land in both seasons demonstrates that soil salinity is controlled mainly by seawater intrusion and anthropogenic factors such as the application of salt-rich water which is directly pumped from the drainage ditches. Seawater intrusion provides the affected soil with elevated contents of Ca2+, Cl?, K+, Mg2+, Na+ and SO4 2?. Classification of the soils by using criteria given by the literature is discussed. Practices to prevent, or at least ameliorate, salinization in the cultivated land of Agoulinitsa district are proposed.  相似文献   

15.
Greenhouse tests were conducted to study the effect of chelates on the phytoextraction of cadmium and lead, and the rhizodegradation of used engine oil present as a mixed contaminant in a sandy soil. Indian mustard plants were grown in test pot soil for 30 days and chelates ethylenediamine tetraacetic acid (EDTA) and ethylenediaminedisuccinic acid (EDDS) were individually applied to the test soil. The soil was spiked earlier with 50 mg kg?1 of CdCl2, 500 mg kg?1 of PbCl2 and 500 mg kg?1 of used engine oil to form the mixed soil contaminant. At the same concentration of chelates, EDTA was found to be more effective than EDDS in increasing the concentration of metal contaminants Cd and Pb in the plant. Compared to EDDS, EDTA was also more effective in promoting rhizodegradation of the organic contaminant formed by used engine oil. The study demonstrated that the application of chelates to soils containing mixed contaminants such as heavy metals (Cd and Pb) and organics (used engine oil) can simultaneously assist metal accumulation at higher concentrations in the biomass of Indian mustard plant and also reduce the amount of used engine oil in the soil through rhizodegradation.  相似文献   

16.
Geostatistical analysis of soil moisture and ion accumulation can provide a deep understanding of aspects of a region’s hydrology such as recharge rates and flow paths. By combining this approach with detrended canonical correspondence analysis, the present study investigated the vertical and spatial variation of soil moisture and chloride (Cl?) in vadose profiles of megadunes near lakes in the southeastern Badain Jaran Desert, northwestern China. Soil moisture varied vertically within the dune profiles following exponential, logarithmic, or log-normal distributions at different sites as a result of regulation by different local controls. The main local controls for Cl? concentration were slope and orientation of the dune. Cl? was not affected by local controls at depths >5 m. Sills of spatial variation in soil moisture and Cl? in the variogram analysis were highly sensitive to local controls in the top 4 m of the profiles, and the values were three times those at depths >4 m. The lag for soil moisture was insensitive to local controls, and was 50–60 m in the top 4 m of the profiles and 20 m in deeper layers, whereas the lag for Cl? was about 20 m at all depths. The results demonstrate that understanding recharge rates using factors such as Cl? accumulation requires a careful survey to ensure that the local controls that regulate these factors are adequately accounted for.  相似文献   

17.
Desorption of Zinc (Zn) in the rhizosphere soil is the primary factor that affects bioavailability of Zn. To improve predictions of Zn availability in amended soil, it is important that time-dependent desorption behavior of Zn in the rhizosphere soil should be understood. The greenhouse experiment was performed to determine Zn desorption characteristics in the bulk and the bean rhizosphere soils amended with municipal sewage sludge (1 % w/w) using rhizobox. The kinetics of Zn desorption was determined by successive extraction with 10-mM citric acid in a period of 1–504 h at 25 ± 1 °C in the bulk and the rhizosphere soils. Moreover, Zn was extracted using three extractants (DTPA-TEA, AB-DTPA, and Mehlich 3) in the bulk and the rhizosphere soils. The results showed that Zn extracted and Zn desorption rate in the bean rhizosphere soils were significantly (P < 0.01) lower than in the bulk soils. The mean of Zn desorption in the bulk and the rhizosphere soils were 16.47 and 15.50 mg kg?1, respectively. Desorption kinetics of Zn conformed fairly well to first-order, parabolic diffusion, and power function equations. The results of kinetics study indicated that desorption rate coefficients decreased in the rhizosphere soils compared to the bulk soils. The correlation studies showed that the rate constants in the power function equation were significantly correlated (P < 0.05) with Zn extracted using DTPA-TEA, AB-DTPA and Mehlich 3 in the bean rhizosphere and the bulk soils. The results of this research showed that Zn desorption in citric acid in the bean rhizosphere of amended soils were lower than the bulk of amended soils.  相似文献   

18.
《Applied Geochemistry》2004,19(10):1553-1565
Recent research has shown that phytoextraction approaches often require soil amendments, such as the application of EDTA, to increase the bioavailability of heavy metals in soils. However, EDTA and EDTA–heavy metal complexes can be toxic to plants and soil microorganisms and may leach into groundwater, causing further environmental pollution. In the present study, vetiver grass (Vetiveria zizanioides) was studied for its potential use in the phytoremediation of soils contaminated with heavy metals. In the pot experiment, the uptake and transport of Pb by vetiver from Pb-contaminated soils under EDTA application was investigated. The results showed that vetiver had the capacity to tolerate high Pb concentrations in soils. With the application of EDTA, the translocation ratio of Pb from vetiver roots to shoots was significantly increased. On the 14th day after 5.0 mmol EDTA kg−1 of soil application, the shoot Pb concentration reached 42, 160, 243 mg kg−1 DW and the root Pb concentrations were 266, 951, and 2280 mg kg−1 DW in the 500, 2500 and 5000 mg Pb kg−1 soils, respectively. In the short soil leaching column (9.0-cm diameter, 20-cm height) experiment, about 3.7%, 15.6%, 14.3% and 22.2% of the soil Pb, Cu, Zn and Cd were leached from the artificially contaminated soil profile after 5.0 mmol EDTA kg−1 of soil application and nearly 126 mm of rainfall irrigation. In the long soil leaching experiment, soil columns (9.0-cm diameter, 60-cm height) were packed with uncontaminated soils (mimicking the subsoil under contaminated upper layers) and planted with vetiver. Heavy metal leachate from the short column experiment was applied to the surface of the long soil column, the artificial rainwater was percolated, and the final leachate was collected at the bottom of the soil columns. The results showed that soil matrix with planted vetiver, could re-adsorb 98%, 54%, 41%, and 88% of the initially applied Pb, Cu, Zn, and Cd, respectively, which may reduce the risk of heavy metals flowing downwards and entering the groundwater.  相似文献   

19.
In the current research, solidification/stabilization (S/S) treatment of the contaminated soil using hydraulic binders and additives was used to (1) reduce the mobility of organic and inorganic contaminants and (2) compare the ability of various binders in fixing contaminants. The samples were collected from Franco-Tunisian Petroleum Company, located in Sidi Litayem, Sfax (Southern Tunisia). Leaching tests were performed on contaminated soil, containing metallic elements, and hydrocarbons. Calcium aluminate cement (CAC), ordinary Portland cement (OPC), and ground-granulated blast-furnace slag (GGBFS), additives especially the bentonite and water, were used for S/S treatment. The obtained standard specimens were subjected for treating after treatment the leachability of pollutants, compressive strength (CS), and XRD analysis. The results of analysis conducted on contaminated soils showed that concentrations of metallic elements were in the range of 9.08–427 mg/kg and 15,520 mg/kg of organic compound. Next, 10% of the used binder improved the immobilization of pollutants and gave a satisfactory CS exceeding 1 MPa. Thus, the CAC is more effective in reducing the leachability of metal contaminants than OPC + GGBFS and produces much higher strength, which was of the order of 2.41 MPa. The mechanical characterization was confirmed by XRD analysis. The lowest values of organic compounds are presented in mixtures treated by 10% of used binder, indicating the effectiveness of those with the presence of 10% of bentonite. This work shows that 10% (OPC + GGBFS) +?10% bentonite improved the immobilization of metallic elements and hydrocarbons, thus proving its efficiency due to its low cost.  相似文献   

20.
Pollution by heavy metals presents an environmental concern, and their toxicity threats soil, water, animals and human health. Phytoremediation can be used as a solution to remediate contaminated soils. The aim of this study was to identify native plants collected from tailings: material of Pb–Zn mine sites of Fedj Lahdoum and Jebel Ressas (two abandoned mines located, respectively, in the northwest of Tunisia and in the south of Tunis City). The tolerance of plant to heavy metals (lead, zinc and cadmium) is evaluated. Soil samples were collected and analyzed for Pb, Zn and Cd concentration. The total soil Pb, Zn and Cd are, respectively, reached 6132 mg kg?1, 11,052 mg kg?1 and it doesn’t exceed 479 mg kg?1 for Cd. The highest content of Zn in plants was detected in shoots of Rumex bucephalophorus (1048 mg kg?1), and the highest Pb concentration was detected in roots of Chrysopogon zizanioides (381 mg kg?1), while for Cd Silene colorata it accumulated the highest content in roots (51 mg kg?1). From all plants, only 12 have a translocation factor for Pb which is higher than one. Among all plants, only 17 have a translocation factor that is higher than one for Zn, while for Cd only 13 plants indicate TF > 1. As for the biological absorption coefficient, all samples indicate a rate which is lower than one. These plants can be primarily hyper accumulators and useful in remediation of lead- and zinc-contaminated soils after further biochemistry researches in mechanism of accumulation and translocation of heavy metals in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号