首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One‐dimensional mathematical models for vapor‐phase volatile organic compound (VOC) diffusion through composite cover barriers are presented. An analytical solution to the model was obtained by the method of separation of variables. The results obtained by the proposed solution agree well with those obtained by a numerical analysis. Based on the proposed analytical model, the VOC breakthrough curves of five different composite covers are compared. The effects of degree of saturation of geosynthetic clay liner (GCL) or compacted clay liner (CCL) on VOC migration in the composite covers are then presented. Results show that the composite cover barriers provide much better diffusion barriers for VOC than the single CCL. The top surface steady‐state flux for a composite barrier, consisting of a 1.5 mm geomembrane (GM) and a 20 cm CCL, can be 8.3 times lower than that for a 30 cm CCL. The surface steady‐state flux for the case with (1.5 mm GM + 6 mm GCL) was found to be 2.3 times lower than that for the case with (1.5 mm GM + 20 cm CCL). The degree of saturation Sr of the CCL has a great influence on VOC migration in composite covers when Sr is larger than 0.5. The steady‐state flux at the surface of GM for the case with Sr = 0.7 can be 1.8 times lower than that for the case with Sr = 0.2. The proposed analytical model is relatively simple and can be used for verification of complicated numerical models, analysis of experimental data and performance assessment of composite cover barriers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
A barrier system based on the hydraulic trap design concept for a landfill was proposed. To study the field scenario in which a clay liner is underlain by a granular layer functioning as a secondary leachate drain layer, a laboratory advection–diffusion test was performed to investigate factors controlling the transport of contaminants in a two-layer soil system. The soils used for this study were Ariake clay and, the underlying layer, Shirasu soil from the Kyushu region of Japan. Potassium (K+) was selected as the target chemical species with an initial concentration of 905 mg L−1. The effective diffusion coefficients (D e) of K+ for Ariake clay and Shirasu soil were back-calculated using an available computer program, Pollute V 6.3. Values of D e derived from this experiment are consistent with previously published ones. The Ariake clay has lower D e than the Shirasu soil. The hypothesis that mechanical dispersion can be considered negligible is reasonable based on both the observation that the predicted values well fit the experimental data and the analyses of two dimensionless parameters. Parametric analyses show that transport of K+ through soils is controlled by advection–diffusion rather than diffusion only, whereas at low Darcy velocity (i.e., ≤10−9 m s−1), transport of K+ will be controlled by diffusion. Applications of the test results and parametric analysis results in practical situations were reviewed.  相似文献   

3.
ABSTRACT There is no significant difference in the diffusion profiles across albite-adularia bicrystals that were simultaneously deformed at a strain rate of 10-6S-1 and those from hydrostatic experiments at the same conditions (1500 MPa and 1000°C for 156 h). This indicates that the bulk alkali diffusion rate, which is the sum of lattice diffusion (D, 1) and dislocation pipe diffusion (Dp), is not significantly enhanced by dislocations at these conditions, and that the maximum value for the ratio of Dp/D1 is about 105. This is equal to the value previously reported for‘oxygen’diffusion in albite. If this ratio is independent of temperature, the contribution of either static (pre-deformed) or moving (syn-deformed) dislocations to the bulk diffusion rate of alkalis is probably minor at all metamorphic conditions. For Al and Si diffusion the ratio of Dp/D1 may be larger if D1 is lower. Thus a significant contribution from dislocations to bulk diffusion cannot be ruled out, especially during simultaneous deformation.  相似文献   

4.
Two strong earthquakes occurred in the region of Chlef (north western part of Algeria) during the last century. From the geological context, there were several great masses of sandy soil ejections on to the ground surface level and severe damages to civil and hydraulic structures. These damages were due to the soil liquefaction phenomenon. The objective of this laboratory investigation is to study the effect of low plastic fines and gradation characteristics on the undrained shear strength (liquefaction resistance) response of sand-silt mixture samples. For this purpose, a series of undrained monotonic triaxial tests were carried out on reconstituted saturated silty sand samples with different fines content ranging from 0 to 50?% at two initial relative densities (Dr?=?20 and 91?%). The initial confining pressure was kept at 100?kPa. The evaluation of the data indicates that the undrained shear strength at the peak (qpeak) can be correlated to the undrained residual strength (Sus), the excess pore pressure (Δu), the fines content (Fc) and the intergranular void ratio (es). The test results indicate also that the undrained shear strength at the peak decreases with the increment of the coefficient of uniformity and fines content as well as with the decrement of the mean grain size in the range of 0–50?% fines content for both relative densities (Dr?=?20 and 91?%).  相似文献   

5.
The temperature dependence of diffusion is usually found to follow the Arrhenius law: D = D0e?E/RT Winchell (1969) showed that there is commonly an inter-dependence between D0 and E (for diffusion in silicate glasses), such that diffusion of different species show a positive correlation on a log D0 vs E plot. A similar effect was noted by Hofmann (1980) for cation diffusion in basalt. This implies that diffusion rates of different species tend to converge at a particular temperature; this effect is known as the ‘compensation effect’. I will show that this effect is also present for diffusion in feldspars and olivines. The equations for the compensation lines (with E given in kcal/mol) are: basalt—E = 50 + 7.5 log D0 feldspar—E = 50.7 + 3.4 log D0 olivine—E = 78.0 + 7.5 log D0 The convergence, or crossover, temperatures for diffusion in various materials are: obsidian—3400°C basalt—1370°C olivine—1360°C feldspar—460°C Compensation plots are useful for evaluating and comparing experimental diffusion data (though of limited usefulness in a predictive sense) and for understanding ‘closure temperatures’ for diffusion in petrogenetic processes (since closure temperature, the temperature at which natural diffusion processes are frozen in, is dependent on E, log d0, and cooling rate). I show that most diffusing species in feldspar have a closure-temperature close to the crossover or convergence temperature, implying that all species in feldspars can be expected to ‘freeze-in’ simultaneously at temperatures in the range 400–600°C (for cooling rates in the range 101–105°C/myr). Closure temperatures of various species in olivine, on the other hand, span a much larger range (800°C) for a similar range in cooling rates, implying that different elements in olivine will record different time-temperature stages in petrogenetic processes.  相似文献   

6.
Nitrate contamination of groundwater arises from anthropogenic activities, such as, fertilizer and animal manure applications and infiltration of wastewater/leachates. During migration of wastewater and leachates, the vadose zone (zone residing above the groundwater table), is considered to facilitate microbial denitrification. Particle voids in vadose zone are deficient in dissolved oxygen as the voids are partially filled by water and the remainder by air. Discontinuities in liquid phase would also restrict oxygen diffusion and therefore facilitate denitrification in the vadose/unsaturated soil zone. The degree of saturation of soil specimen (S r) quantifies the relative volume of voids filled with air and water. Unsaturated specimens have S r values ranging between 0 and 100 %. Earlier studies from naturally occurring nitrate losses in groundwater aquifers in Mulbagal town, Kolar District, Karnataka, showed that the sub-surface soils composed of residually derived sandy soil; hence, natural sand was chosen in the laboratory denitrification experiments. With a view to understand the role of vadose zone in denitrification process, experiments are performed with unsaturated sand specimens (S r = 73–90 %) whose pore water was spiked with nitrate and ethanol solutions. Experimental results revealed 73 % S r specimen facilitates nitrate reduction to 45 mg/L in relatively short durations of 5.5–7.5 h using the available natural organic matter (0.41 % on mass basis of sand); consequently, ethanol addition did not impact rate of denitrification. However, at higher S r values of 81 and 90 %, extraneous ethanol addition (C/N = 0.5–3) was needed to accelerate the denitrification rates.  相似文献   

7.
 Cation tracer diffusion coefficients, DMe *, for Me=Fe, Mn, Co and Ti, were measured using radioactive isotopes in the spinel solid solution (Ti x Fe 1−x )3−δO4 as a function of the oxygen activity. Experiments were performed at different cationic compositions (x=0, 0.1, 0.2 and 0.3) at 1100, 1200, 1300 and 1400 °C. The oxygen activity dependence of all data for DMe * at constant temperature and cationic composition can be described by equations of the type DMe *=D Me[V]. CV·a O2 2/3+DMe[I] ·a O2 −2/3·DMe[V] and DMe[I] are constants and CV is a factor of the order of unity which decreases with increasing δ. All log DMe * vs. loga O2 curves obtained for different values of x and for different temperatures go through a minimum due to a change in the type of point defects dominating the cation diffusion with oxygen activity. Cation vacancies prevail for the cation diffusion at high oxygen activities while cation interstitials become dominant at low oxygen activities. At constant values of x, DMe[V] decreases with increasing temperature while DMe[I] increases.  相似文献   

8.
Wu  Shengshen  Zhou  Annan  Shen  Shui-Long  Kodikara  Jayantha 《Acta Geotechnica》2020,15(12):3415-3431

The hydro-mechanical behaviour of a reconstituted unsaturated soil under different suctions and strain rates was studied through various rate-controlled unsaturated/undrained triaxial tests. The fully saturated reconstituted specimens were desaturated to four different initial suctions (s0?=?0, 100 kPa, 200 kPa and 300 kPa) and then triaxially sheared (conventional triaxial compression) at three different strain rates in undrained conditions (\(\dot{\varepsilon }_{1} = 0.001\) h?1, 0.01 h?1, and 0.1 h?1). The observed hydro-mechanical behaviour during shearing including the volumetric strain, deviatoric stress, degree of saturation and suction is presented and discussed in this paper. The results indicate that when the strain rate rises at the given initial suctions (or pore water pressures), the maximum deviatoric stress (qmax), critical net stress ratio (M) and critical state suction (sc) increase but the degree of saturation (Src) and volumetric strain at the critical state (εcv ) reduce. The critical effective stress ratio (M′) is not dependent on the strain rate for saturated and unsaturated samples. The critical state lines for unsaturated soils with the constant strain rates are parallel with each other in the e???lnp′ space.

  相似文献   

9.
Owing to imperfect boundary conditions in laboratory soil tests and the possibility of water diffusion inside the soil specimen in undrained tests, the assumption of uniform stress/strain over the sample is not valid. This study presents a qualitative assessment of the effects of non‐uniformities in stresses and strains, as well as effects of water diffusion within the soil sample on the global results of undrained cyclic simple shear tests. The possible implications of those phenomena on the results of liquefaction strength assessment are also discussed. A state‐of‐the‐art finite element code for transient analysis of multi‐phase systems is used to compare results of the so‐called ‘element tests’ (numerical constitutive experiments assuming uniform stress/strain/pore pressure distribution throughout the sample) with results of actual simulations of undrained cyclic simple shear tests using a finite element mesh and realistic boundary conditions. The finite element simulations are performed under various conditions, covering the entire range of practical situations: (1) perfectly drained soil specimen with constant volume, (2) perfectly undrained specimen, and (3) undrained test with possibility of water diffusion within the sample. The results presented here are restricted to strain‐driven tests performed for a loose uniform fine sand with relative density Dr=40%. Effects of system compliance in undrained laboratory simple shear tests are not investigated here. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
 Diffusion rates for sulfur in rhyolite melt have been measured at temperatures of 800–1100° C, water contents of 0–7.3 wt%, and oxygen fugacities from the quartz-fayalite-magnetite buffer to air. Experiments involved dissolution of anhydrite or pyrrhotite into rhyolite melt over time scales of hours to days. Electron microprobe analysis was used to measure sulfur concentration profiles in the quenched glasses. Regression of the diffusion data in dry rhyolite melt gives Dsulfur=0.05·exp{−221±80RT}, which is one to two orders of magnitude slower than diffusion of other common magmatic volatiles such as H2O, CO2 and Cl-. Diffusion of sulfur in melt with 7 wt% dissolved water is 1.5 to 2 orders of magnitude faster than diffusion in the anhydrous melt, depending on temperature. Sulfur is known to dissolve in silicate melts as at least two different species, S2− and S6+, the proportions of which vary with oxygen fugacity; despite this, oxygen fugacity does not appear to affect sulfur diffusivity except under extremely oxidizing conditions. This result suggests that diffusion of sulfur is controlled by one species over a large range in oxygen fugacity. The most likely candidate for the diffusing species is the sulfide ion, S2−. Re-equilibration between S2− and S6+ in oxidized melts must generally be slow compared to S2− diffusion in order to explain the observed results. In a silicic melt undergoing degassing, sulfur will tend to be fractionated from other volatile species which diffuse more rapidly. This is consistent with analyses of tephra from the 1991 eruption of Mount Pinatubo, Philippines, and from other high-silica volcanic eruptions. Received: 26 April 1995 / Accepted: 1 November 1995  相似文献   

11.
Su  Yu  Cui  Yu-Jun  Dupla  Jean-Claude  Canou  Jean 《Acta Geotechnica》2022,17(9):3747-3763

Experimental observations have shown that the resilient modulus Mr of fine/coarse soil mixture can be significantly affected by the coarse grain content fv, deviator stress σd and suction \(\psi\). In this study, a constitutive model incorporating the soil–water retention curve (SWRC) was proposed to describe the effects of \(\psi\) and \(\sigma_{{\text{d}}}\) on Mr. This model was then extended to the effect of fv. The proposed model implied the resilient modulus at saturation condition (Mr-sat), the resilient modulus at optimum moisture content (OMC) condition (Mr-opt), the suction at OMC (\(\psi_{{{\text{opt}}}}\)) and the parameters related to SWRC. The model was validated using experimental data from five studies reported in the literature. Comparisons with three representative existing models showed that the proposed model was capable to well describe the suction-dependent effect of deviator stress in the full range of suction, while the existing models gave satisfactory simulation results only in the low suction range. Indeed, experimental studies revealed that there was a threshold suction \(\psi_{{{\text{th}}}}\), and with increasing \(\sigma_{{\text{d}}}\), the Mr decreased when \(\psi < \psi_{{{\text{th}}}}\), but increased when \(\psi > \psi_{{{\text{th}}}}\). When \(\psi < \psi_{{{\text{th}}}}\), all models gave good simulations. On the contrary, when \(\psi > \psi_{{{\text{th}}}}\), only the proposed model gave good simulations, in particular when \(\psi_{{{\text{th}}}} > \psi_{{{\text{opt}}}}\). This showed the performance of the proposed model in describing the variation in resilient modulus of unsaturated fine/coarse soil mixtures with changes in coarse grain content, deviator stress and suction.

  相似文献   

12.
Determination of the in situ engineering properties of foundation materials has always been a challenge for geotechnical engineers and, thus, several methods have been developed so far. Dynamic Cone Penetration (DCP) test is one of the most versatile amongst them. In the present research, a light weight simple DCP device was developed and used for evaluation of the engineering properties of sandy soils in laboratory conditions. The device consisted of an 8-kg hammer that drops over a height of 575 mm, and drives a 60° cone tip with 20 mm base diameter into the ground. To control the validation of the results, laboratory direct shear and plate load tests were used as reference tests. The soil sample was a poorly graded sandy soil (SP) taken from alluvial deposits of the Tehran plain. All DCP tests and PLTs were undertaken on compacted soil in a mould with 700 mm diameter and 700 mm height. Based on the results of the experiments, the relationships between Dynamic Penetration Index (DPI), relative density (Dr), modulus of elasticity (E), shear modulus (G), modulus of subgrade reaction (KS), and the friction angle of the soil were obtained with a high coefficient of determination (> 90%). The repeatability of the test results was also evaluated by calculating the coefficient of variations (Cv), which was less than 30% for all tests.  相似文献   

13.
Diffusion coefficients for oxygen and hydrogen were determined from a series of natural uraninite-H2O experiments between 50 and 700 °C. Under hydrous conditions there are two diffusion mechanisms: (1) an initial extremely fast-path diffusion mechanism that overprinted the oxygen isotopic composition of the entire crystals regardless of temperature and (2) a slower volume-diffusive mechanism dominated by defect clusters that displace or eject nearest neighbor oxygen atoms to form two interstitial sites and two partial vacancies, and by vacancy migration. Using the volume diffusion coefficients in the temperature range of 400-600 °C, diffusion coefficients for oxygen can be represented by D = 1.90e−5 exp (−123,382 J/RT) cm2/s and for temperatures between 100 and 300 °C the diffusion coefficients can be represented by D = 1.95e−10 exp (−62484 J/RT) cm2/s, where the activation energies for uraninite are 123.4 and 62.5 kJ/mol, respectively. Hydrogen diffusion in uraninite appears to be controlled by similar mechanisms as oxygen. Using the volume diffusion coefficients for temperatures between 50 and 700 °C, diffusion coefficients for hydrogen can be represented by D = 9.28e−6 exp (−156,528 J/RT) cm2/s for temperatures between 450 and 700 °C and D = 1.39e−14 exp (−34518 J/RT) cm2/s for temperatures between 50 and 400 °C, where the activation energies for uraninite are 156.5 and 34.5 kJ/mol, respectively.Results from these new experiments have implications for isotopic exchange during natural UO2-water interactions. The exceptionally low δ18O values of natural uraninites (i.e. 32‰ to −19.5‰) from unconformity-type uranium deposits in Saskatchewan, in conjunction with theoretical and experimental uraninite-water and UO3-water fractionation factors, suggest that primary uranium mineralization is not in oxygen isotopic equilibrium with coeval clay and silicate minerals. The low δ18O values have been interpreted as resulting from the low temperature overprinting of primary uranium mineralization in the presence of relatively modern meteoric fluids having δ18O values of ca. −18‰, despite petrographic and U-Pb isotope data that indicate limited alteration. Our data show that the anomalously low oxygen isotopic composition of the uraninite from the Athabasca Basin can be due to meteoric water overprinting under reducing conditions, and meteoric water or groundwater can significantly affect the oxygen isotopic composition of spent nuclear fuel in a geologic repository, with minimal change to the chemical composition or texture. Moreover, the rather fast oxygen and hydrogen diffusion coefficients for uraninite, especially at low temperatures, suggest that oxygen and hydrogen diffusion may impart characteristic isotopic signals that can be used to track the route of fissile material.  相似文献   

14.
Chemical diffusion coefficients for oxygen in melts of Columbia River basalt (Ice Harbor Dam flow) and Mt. Hood andesite have been determined at 1 atm. The diffusion model is that of sorption or desorption of oxygen into a sphere of uniform initial concentration from a constant and semi-infinite atmosphere. The experimental design utilizes a thermogravimetric balance to monitor the rate of weight change arising from the response of the sample redox state to an imposed fO2. Oxygen diffusion coefficients are approximately an order-ofmagnitude greater for basaltic melt than for andesitic melt. At 1260° C, the oxygen diffusion coefficients are: D=1.65×10–6cm2/s and D=1.43×10–7cm2/s for the basalt and andesite melts, respectively. The high oxygen diffusivity in basaltic melt correlates with a high ratio of nonbridging oxygen/tetrahedrally coordinated cations, low melt viscosity, and high contents of network-modifying cations. The dependence of the oxygen diffusion coefficient on temperature is: D=36.4exp(–51,600±3200/RT)cm2/s for the basalt and D=52.5exp(–60,060±4900/RT)cm2/s for the andesite (R in cal/deg-mol; T in Kelvin). Diffusion coefficients are independent of the direction of oxygen diffusion (equilibrium can be approached from extremely oxidizing or reducing conditions) and thus, melt redox state. Characteristic diffusion distances for oxygen at 1260° C vary from 10-2 to 102 m over the time interval of 1 to 106 years. A compensation diagram shows two distinct trends for oxygen chemical diffusion and oxygen tracer diffusion. These different linear relationships are interpreted as supporting distinct oxygen transport mechanisms. Because oxygen chemical diffusivities are generally greater than tracer diffusivities and their Arrhenius activation energies are less, transport mechanisms involving either molecular oxygen or vacancy diffusion are favored.  相似文献   

15.
Diffusivities for calcium, iron, magnesium, manganese and aluminum have been measured for St. John's olivine undergoing cation exchange with synthetic basaltic melts. The variety of temperature, pressure and fO2 conditions under which the diffusivities were measured complement the equilibrium-partitioning study of calcium in olivine-bearing basalts by Jurewicz and Watson, 1988. Olivine was found to be anisotropic with respect to the diffusion of calcium, iron, magnesium and manganese. This anisotropy is a weak function of temperature, but strongly dependent upon oxygen fugacity.Because diffusion is independent of olivine composition over the small range of compositions used in this study, it could be shown that the absolute values of the diffusion coefficients were also functions of temperature and fO2. At near-atmospheric total pressure and an oxygen fugacity of 10–8atm, D Fe>D Mn>D Ca and D MgD Mn for a range of geologically reasonable temperatures. These relative diffusivities were shown to change with oxygen fugacity. The power-law dependence of diffusion on oxygen partial-pressure was determined for each cation and the results are consistent with the range of values given by Stocker (1978) and by other workers.For Ca and Fe, the effect of hydrostatic pressure on diffusion appears to be weak, at least for transport parallel to the c crystallographic direction. Unfortunately, no true activation volumes (or other pressure-related parameters) could be computed because the oxygen fugacity was not held constant over changes in pressure, and because accurate post-experiment reconstruction of sample orientation was not possible. Al was found to enter high-pressure olivines at concentrations of up to 0.14 weight percent, thus allowing aluminum diffusion to be characterized. The diffusivity of aluminum is, within error, the same as iron at 20 kb at 1430° C at the ambient fO2 of our piston-cylinder cells. This correspondence suggests that diffusion of Al may depend on transport of either Fe or of Fe +3 defects. While the results of these experiments are generally consistent with results published elsewhere, there are important inconsistencies. Tracer diffusion and interdiffusion in pure, ordered, olivine endmembers (e.g., tephroite and forsterite) showed significantly higher activation energies. This discrepancy could reflect the role of Fe+3 defects in diffusion; however, it may also suggest that order-disorder phenomena may be significant factors influencing diffusion in analog systems.The results of this study are applied to four petrologic problems: (1) calculation of rates of equilibration for olivine xenocrysts; (2) calculation of closure temperatures for the CaO/MgO olivine/basalt geothermometer (Jurewicz and Watson 1988); (3) delineation of an intrinsic-/O2 geobarometer; and (4) investigation of the dependence of olivine dissolution upon crystallographic orientation. In addition, it is demonstrated that diffusion-exchange experiments are useful for studying the dominant point-defect mechanisms for cation diffusion.Currently, a visiting scientist with Air Force Wright Aeronautical Laboratories Materials Laboratory (MLLM), Wright-Patterson AFB, OH 45433  相似文献   

16.
This study quantifies the influence of various intrinsic soil properties including particle roundness, R, sphericity, S, 50% size by weight, D 50, coefficient of uniformity, C u, and the state property of relative density, D r, on the compression and recompression indices, C c and C r, of sands of various geologic origins at pre-crushing stress levels. Twenty-four sands exhibiting a wide range of particle shapes, gradations, and geologic origins were collected for the study. The particle shapes were determined using a computational geometry algorithm which allows characterization of a statistically large number of particles in specimens. One dimensional oedometer tests were performed on the soils. The new data was augmented with many previously published results. Through statistical analyses, simple functional relationships are developed for C c and C r. In both cases, the models utilized only R and D r since other intrinsic properties proved to have lesser direct influence on the compression indices. However, previous studies showed that the contributions of S and C u are felt through their effects on index packing void ratios and thus on D r. The accuracy of the models was confirmed by comparison of predicted and observed C c and C r values.  相似文献   

17.
Probability integral method is an official prediction method for mining subsidence in China. However, how to obtain the probability integral method parameters based on the measured data is the premise of realizing the accurate prediction of the probability integral method. Simulated annealing (SA) is an effective nonlinear optimization algorithm that has recently been introduced into the mining subsidence field to obtain the parameters of the probability integration method. To solve the problems of slow convergence speed and easily falling into the local optimal solution in the method of parameters inversion in probability integral method based on SA (MPIPIMSA), the method of parameters inversion in probability integral method based on quantum annealing (MPIPIMQA) is proposed by combining the quantum fluctuation mechanism and simulated annealing theory. The simulation experimental results show that MPIPIMQA is superior to MPIPIMSA in the accuracy and stability of parameters, and MPIPIMQA has a stronger anti-interference ability for local losing observation points, random errors and gross errors in observation data. Finally, the parameters of probability integral method for the 1414(1) working face of the Guqiao Coal Mine in Huainan mining area were obtained by using MPIPIMQA, namely, q?=?0.9916, tanβ?=?1.9277, b?=?0.4190, θ?=?84.3381, Su = ??7.3715, Sd = ??14.7126, Sl = 59.0695, and Sr = 32.6381, and the fitting error is 106.8863 mm. The research results have important reference values for accurate inversion of probability integral parameters.  相似文献   

18.
Zhou  Haizuo  Zheng  Gang  Liu  Jifu  Yu  Xiaoxuan  Yang  Xinyu  Zhang  Tianqi 《Acta Geotechnica》2019,14(5):1571-1584

Rigid columns penetrating a firm underlying stratum have often been used to enhance the stability and improve the settlement of embankments over soft ground. Furthermore, an inclined underlying stratum is commonly encountered in engineering practice. This investigation experimentally and numerically studies the performance of embankments over soft ground reinforced by rigid columns with various embedment depths. In centrifuge tests, a tilting failure occurs for columns with an embedment depth Le of 2D (D is the diameter of columns), whereas the embankments remain stable for Le of 7D. This result indicates that the inclined underlying stratum weakens the restraint effect at the column base and that a greater embedment depth is required to ensure the stability of embankments. Parametric studies numerically reveal that there exists a critical embedment depth, which represents a shift in the failure mechanism. The optimum column layout is determined based on the contributions of columns in different locations beneath an embankment. Finally, the influence of the embedment depth on the distribution of the bending moment of the columns and the soil reaction are discussed.

  相似文献   

19.
The effects of pressure and oxygen fugacity (fO2) on trace element partitioning between pargasitic amphibole and alkali-basaltic melts have been determined at pressures from 1.5 to 2.5 GPa and oxygen fugacities at 2 log units above and below the nickel–nickel oxide buffer. Amphibole crystallization experiments were performed in a piston cylinder apparatus and partition coefficients between amphibole and quenched melt of large-ion-lithophile elements (LILE: Rb, Sr, Ba), high-field-strength elements (HFSE: Zr, Nb, Ta, Hf, U, Th) and rare-earth elements (REE: La to Lu; +Y) were measured with a LASER ablation inductively coupled plasma – mass spectrometer. Increasing pressure from 1.5 to 2.5 GPa at similar temperatures and approximately constant fO2 increases D Rb but decreases D Zr and D Hf and D REE (D La, D Ce, D Pr). An empirical relationship was observed between D Zr and (Ti/Al)M2 in the amphibole, which can be described by:
Increasing the fO2 by ∼4 log units (∼NNO–2.0 to ∼NNO+2.2) at similar temperatures and constant pressure increases D Ba and D Nd but decreases D Ti. An increase in pressure or fO2 decreases the maximum partition coefficient (D o ), the Young's modulus (E) and the optimum ionic radius (r o ) of the A-, M2- and M4-lattice sites. The calculated r o values from the monovalent cations (Na, K, Rb) in the A site and the quadrivalent cations (Ti, Hf, Zr) in the M2 lattice sites suggests that amphiboles crystallized from alkaline basalt material have smaller 〈A-O〉 and 〈M2-O〉, mean bond-lengths than those formed from pargasitic materials at identical pressures and fO2's. The measured partition coefficients were used to calculate trace element concentrations in melts formed by partial melting of amphibole-bearing peridotite. This modeling demonstrates those changes in either the pressure or fO2 of melting can exert a significant effect on Rb/HFSE ratios in the melts and thus help explain the wide variations of these ratios sometimes observed in basaltic rock suites. Received: 7 August 1998 / Accepted: 7 June 2000  相似文献   

20.
In the high-permeability, semiarid carbonate aquifer in the Sierra de Gádor Mountains (southeastern Spain), some local springs draining shallow perched aquifers were of assistance in assessing applicability of the atmospheric chloride mass balance (CMB) for quantifying total yearly recharge (R T) by rainfall. Two contrasting hydrological years (October through September) were selected to evaluate the influence of climate on recharge: the average rainfall year 2003–2004, and the unusually dry 2004–2005. Results at small catchment scale were calibrated with estimated daily stand-scale R T obtained by means of a soil water balance (SWB) of rainfall, using the actual evapotranspiration measured by the eddy covariance (EC) technique. R T ranged from 0.35 to 0.40 of rainfall in the year, with less than a 5% difference between the CMB and SWB methods in 2003–2004. R T varied from less than 0.05 of rainfall at mid-elevation to 0.20 at high elevation in 2004–2005, with a similar difference between the methods. Diffuse recharge (R D) by rainfall was quantified from daily soil water content field data to split R T into R D and the expected concentrated recharge (R C) at catchment scale in both hydrological years. R D was 0.16 of rainfall in 2003–2004 and 0.01 in 2004–2005. Under common 1- to 3-day rainfall events, the hydraulic effect of R D is delayed from 1 day to 1 week, while R C is not delayed. This study shows that the CMB method is a suitable tool for yearly values complementing and extending the more widely used SWB in ungauged mountain carbonate aquifers with negligible runoff. The slight difference between R T rates at small catchment and stand scales enables results to be validated and provides new estimates to parameterize R T with rainfall depth after checking the weight of diffuse and concentrated mechanisms on R T during moderate rainfall periods and episodes of marked climatic aridity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号