首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
人工制备初始应力各向异性结构性土方法探讨   总被引:1,自引:0,他引:1  
罗开泰  聂青  张树祎  刘恩龙 《岩土力学》2013,34(10):2815-2820
通过对结构性黏土的研究可以掌握天然土受荷过程中的变形破坏过程,从而为考虑土结构性的结构物的设计、地基加固等提供依据。近年来随着高、深和大型建筑的兴建,结构性黏土的研究变得尤为重要。天然土都具有结构性和各向异性。发展了一种能够考虑初始应力各向异性影响的结构性土的人工制样方法。通过对原料粉质黏土中添加水泥形成颗粒之间的胶结作用,添加盐粒并溶解后形成大孔隙组构分布和在水化过程中的侧限应力状态的结构性土样的端部施加竖向荷载,从而人工制备了具有初始应力各向异性的结构性土样。然后对初始均质结构性土样、初始应力各向异性结构性土样和重塑土样进行了三轴固结排水剪切试验,初步分析了初始应力对结构性土样的应力-应变特性的影响和初始应力各向异性结构性土的破损机制。  相似文献   

2.
初始应力各向异性土的弹塑性模型   总被引:9,自引:8,他引:9  
剑桥模型沿球应力轴(p 轴)等向塑性体变硬化; 在日本广泛采用的关口 — 太田模型沿初始固结线( K0 线)不等向塑性体变硬化。三轴试验数据表明: 自 K0 状态向伸长方向剪切时, 前者方法计算的体积应变偏小, 而后者方法计算的体积应变偏大。 作者提出一种介于上述两者之间 、考虑初始应力各向异性(如 K0 固结)的不等向塑性体变硬化弹塑性模型。 为了使模型在三维应力下较好地反映土的强度和变形特性, 模型的剪切屈服准则使用 SMP 准则。模型的土性参数与剑桥模型一样, 其预测值与粘土实测值的比较表明, 提出的模型是简单合理的, 可望在实际工程计算中得到使用。  相似文献   

3.
Loading direction-dependent strength of sand has been traditionally characterized in the principal stress space as a direct extension of the Mohr–Coulomb criterion. A recent study found that it is more appropriate to define anisotropic strength of sand on failure/shear planes, but this proposition has only been demonstrated with discrete element method (DEM) simulations. The present study experimentally investigates anisotropic shear strength of sands in this new framework. Three granular materials with distinct grain characteristics ranging from smooth and rounded particles to flaky and angular particles are tested with the bedding plane inclination angle ψ b varying over the full range of 0°–180°. The main objective is to study how the peak friction angle ? p of sand is affected by the ψ b angle and how the ψ b? p relationship evolves with the change of characteristics of constituent sand particles. We find that the general trend of ψ b? p curves for real sands resembles what was predicted by DEM in a previous study, whereas rich anisotropic strength behavior is revealed by the laboratory data. The effects of normal stress and initial density, as well as shear dilation behavior at different shear directions, are also studied.  相似文献   

4.
刘恩龙  罗开泰  张树祎 《岩土力学》2013,34(11):3103-3109
天然岩土材料具有结构性和各向异性。在岩土破损力学的理论框架下,建立了初始应力各向异性结构性土的二元介质模型。岩土破损力学把结构性岩土材料抽象成由胶结强的胶结块(胶结元)和无胶结的软弱带(摩擦元)组成的二元结构体,变形过程中胶结块逐步破损并向软弱带转化。假定胶结块为横观各向同性的理想弹脆性体,胶结块破损后转化成的软弱带为可用邓肯-张模型描述的非线性弹性体。通过引入考虑各向异性影响的破损率和局部应变系数,建立了初始应力各向异性结构性土的二元介质本构模型,并给出了模型参数的确定方法。最后给出了模型的表现,且通过人工制备初始应力各向异性结构性土的三轴压缩试验结果验证了模型的适用性。计算结果表明,所提出的本构模型可以较好地模拟初始应力各向异性结构性土的应力-应变和体积变形特性。  相似文献   

5.
魏星  黄茂松 《岩土力学》2004,25(Z2):43-46
自然土体处于初始应力状态,其强度和应力-应变关系都呈现出各向异性,而以往广泛使用的剑桥模型是建立在重塑土试验结果的基础上的,因此,计算实际问题时有一定缺陷.在总结了一些在修正剑桥模型基础上进行扩展而得到的各向异性模型,尤其是S-CLAY1模型.然后,假定了初始屈服面的倾角为K0线,这样使S-CLAY1的计算更加简单.此外,还编制了相关程序,进行了比较计算.结果表明,该模型简单合理,参数正确,可以在实际工程中应用.  相似文献   

6.
Improved, microfabric‐inspired rotational hardening rules for the plastic potential and bounding surfaces associated with the generalized bounding surface model for cohesive soils are presented. These hardening rules include 2 new functions, fη and , that improve the simulation of anisotropically consolidated cohesive soils. Three model parameters are associated with the improved hardening rules. A detailed procedure for obtaining suitable values for these parameters is presented. The first 2 parameters affect the simulation of constant stress ratio loading where, because of the presence of fη, the third parameter is inactive. The second new function, , accelerates the rotation of the plastic potential and bounding surfaces during shearing, which is particularly important for overconsolidated soils tested in extension. This paper also describes the proper manner in which to define the inherent anisotropy. This seemingly straightforward test has rarely been discussed in sufficient detail.  相似文献   

7.
In order to simulate the soil response during principal stress rotation, anisotropic unified hardening (UH) model is developed within the framework of elastoplastic theory. Without introducing any additional mechanism to display the role of stress rotation specifically, this model achieves the simulation by considering the material anisotropy. The effect of inherent anisotropy is reflected using the anisotropic transformed stress method, but a new formula for the stress mapping is adopted to keep the mean stress unchanged. Analysis indicates that from the view of the transformed stress tensor, the anisotropic soil is subjected to loading during pure rotation of principal stress axes, so that plastic strains can be calculated. To represent the induced anisotropy, a fabric evolution law is proposed based on laboratory and numerical test results. At the critical state, the fabric tensor reaches a stable value determined by the stress state, while the critical state line is unique in the plane of void ratio versus mean stress. The anisotropic UH model has concise formulation and explicit elastoplastic flexibility matrix and can provide reasonable predictions for the deformation of anisotropic soils when principal stresses rotate.  相似文献   

8.
Li  Yongqin  Zhang  Wengang  Zhang  Runhong 《Acta Geotechnica》2022,17(2):563-575
Acta Geotechnica - In the complex soil stress state encountered in the braced excavation, different stress states lead to diversion of principal stress directions. The stress-induced anisotropy is...  相似文献   

9.
10.
Consideration of fabric anisotropy is crucial to gaining an improved understanding of the behavior of granular materials. This paper presents a constitutive model to describe the sand behavior associated with fabric anisotropy within a framework of a strain space multiple mechanism model. In the proposed model, a second-order fabric tensor is extended by incorporating a new function that represents the effect of inherent (or initial fabric) anisotropy, along with three additional parameters: two of them, a1 and a2 , control the degree of anisotropy, and the second mode of inherent anisotropy can be expressed by introducing the parameter a2 as well as the first mode by the parameter a1 . The third parameter, θ0 , expresses the principal direction of inherent anisotropy (eg, the normal vector direction of bedding planes relative to horizontal axis). The formulation of the dilative component of dilatancy (ie, positive dilatancy) is also extended to consider the effect of inherent anisotropy based on the interlocking mechanism. Experimental data on the complex anisotropic responses of Fraser River sand and Toyoura sand under monotonic loading is used to validate this model. The proposed model is shown to successfully capture anisotropic responses, which become contractive or dilative depending on different principal-stress directions, with a single set of anisotropy parameters; thus, the model is considered to possess the capability to simulate the anisotropic behaviors of granular materials. In addition to different loadings on the same fabric, the effects of different fabric anisotropies upon the sand behavior under the same loadings are also investigated.  相似文献   

11.
Liu  Xinyu  Zhang  Xianwei  Kong  Lingwei  An  Ran  Xu  Guofang 《Acta Geotechnica》2021,16(12):3793-3812

It is universally known that residual soils behave very differently from sedimentary soils. While the latter is widely known as cross-anisotropic, little is known regarding the strength anisotropy of residual soils. This study presents how the inherent anisotropy affects the strength of natural granite residual soils under generalized conditions, where intact specimens were carefully prepared and sheared under triaxial compression, extension, simple shear, and hollow cylinder torsional shear tests. The strength of natural residual soil, in terms of ultimate stress ratio M and undrained shear strength Su, is found to be significantly anisotropic in a different way from normally consolidated clays with the maximum strength obtained under triaxial compression and the minimum under simple shear or at intermediate principal stress direction. As a result, the existing method failed to measure the anisotropy degree of the studied soil. Two parameters were proposed accordingly to quantify the anisotropic strength under general conditions, taking the special strength anisotropy pattern and cohesive-frictional nature of GRS into account. The proposed parameters enable the direct comparison of strength anisotropy among soils. This study serves as a data set to better understand residual soils regarding their anisotropic behaviors under generalized conditions. Although specific to granite residual soils in China, this study is expected to be more widely applicable to other weathered geomaterials.

  相似文献   

12.
Gudehus  Gerd 《Acta Geotechnica》2020,15(5):1173-1187
Acta Geotechnica - The dynamics of grain fabrics is captured by means of a hidden state variable , named eutaraxy, which quantifies the propensity for a heat-like micro-seismicity due to disturbing...  相似文献   

13.
Granular contact dynamics with elastic bond model   总被引:2,自引:2,他引:0  
This paper proposes an elastic bond model in the framework of contact dynamics based on mathematic programming. The bond model developed in this paper can be used to model cemented materials. The formulation can be reduced to model pure static problems without introducing any artificial damping. In addition, omitting the elastic terms in the objective function turns the formulation into rigid bond model, which can be used for the modeling of rigid or stiffly bonded materials. The developed bond model has the advantage over the explicit DEM that large time step or displacement increment can be used. The tensile and shear strength criteria of the bond model are formulated based on the modified Mohr–Coulomb failure criterion. The torque transmission of bonds is introduced based on rolling resistance model. The loss of shear or tensile strength, or torque transmission will lead to the breakage of bonds, and turn the bond into purely frictional contact. Three simple examples are first used to validate the bond model. Numerical examples of uniaxial and biaxial compression tests are used to show its potential in modeling cemented geomaterials. Numerical results show that elastic bonds are indeed necessary for the modeling of cemented granular material under static conditions.  相似文献   

14.
Gu  Xiaoqiang  Li  Youhong  Hu  Jing  Shi  Zhenhao  Liang  Fayun  Huang  Maosong 《Acta Geotechnica》2022,17(8):3229-3243

Natural clays usually show anisotropic stiffness due to their deposition process and anisotropic in situ stress state. The stiffness anisotropy depends on both of the stress anisotropy and fabric anisotropy, while the latter can be quantified by the stiffness anisotropy at isotropic stress states. This paper measures the K0 value (i.e., stress anisotropy) and elastic shear stiffness anisotropy of natural Shanghai clay in a triaxial apparatus with horizontal and vertical bender elements. The results show that the K0 value of Shanghai clay lies in the range of 0.40–0.66, and an empirical equation is proposed to estimate the K0 value based on the plasticity index and initial void ratio. The fabric anisotropy of natural Shanghai clay lies in the range of 1.2–1.4 with a stronger fabric in the horizontal plane. Moreover, the experimental data of the stiffness anisotropy and fabric anisotropy of different clays in the literature are reviewed and analyzed. It reveals that the stiffness anisotropy generally increases, while the fabric anisotropy remains nearly the same during K0 consolidation. For normally consolidated clay, the fabric anisotropy generally lies in the range of 1.1–1.7. For overconsolidated clays, the fabric anisotropy generally increases as the overconsolidation ratio increases. Empirical equations are proposed to approximately estimate the fabric anisotropy of clays based on its stress normalized elastic shear stiffness.

  相似文献   

15.
This paper presents a new viscohypoplastic model for soft clays accounting for their typical features—strength anisotropy and rate dependency. The model is based on the hypoplastic model for clays enhanced by the anisotropic shape of the asymptotic state boundary surface. It has been shown that if the surface is skewed, the model predicts different ultimate strength in compression and in extension. Additional enhancement makes the tensor L bilinear in the strain rate, which more realistically predicts the stress paths of K0 consolidated samples. The new model has been evaluated by simulating laboratory experiments on soft marine clays (Singapore and Bangkok clays). The model can be easily calibrated using only undrained triaxial and odometer tests. The model is subsequently enhanced by the rate effects. The resulting viscohypoplastic model has been evaluated using experiments of remolded kaolin clay and St. Herblain clay. It is shown that the enhanced model can predict important features of soil viscous behavior, such as rate dependency of strength and preconsolidation pressure, relaxation, and creep.  相似文献   

16.
Acta Geotechnica - Fabric anisotropy and fines content (fc) in sands modify significantly their mechanical behaviour, particularly as related to static liquefaction under undrained conditions. The...  相似文献   

17.
Reinforced soil with geosynthetics as a composite material represents significant orthogonally anisotropic properties. However, current analytical methods usually treat the soil and reinforcement separately, which is not true of practical situations. Therefore, it is difficult to use these methods to study the real effects of the reinforcement. This paper presents an analytical model based on the theory of elasticity for orthogonally anisotropic materials that can be used in analyzing reinforced soil structures with geosynthetics. The stresses and deformations at any point within the reinforced soil structure can be determined by the proposed model. The capabilities of the model have been illustrated by application to an example problem involving a physical model test of a geosynthetic reinforced soil structure. The results of the model prediction are compared with those obtained from the model tests as well as finite element analysis. It is shown that the results of the analytical solution are in good agreement with those of the physical model tests and the finite element analysis.  相似文献   

18.
《International Geology Review》2012,54(11):1320-1328
Conditions of rock formation most favorable for the emergence of high anisotropy are present within the zones of folding, considerable compression, deep-seated and contact metamorphism, and marginal zones of the intrusions; to a smaller extent they exist in tuffs and ignimbrites.--IGR Staff  相似文献   

19.
ABSTRACT

The main sources of uncertainty in the soil specification and mechanical behaviour consist of the lithological and heterogeneous randomness of soil deposits. It is quite obvious that the cone penetration testing (CPT) data and the variation of soil characteristics are not stationary. Hence, this paper investigates a new approach to realise a CPT data, taking both sources of uncertainty into consideration. In this regard, the first part of this study illustrates a simple approach to stratify the CPT data, using the Eslami–Fellenius chart of classification. In the second part, the non-stationary algorithm of generating random field is introduced to generate a multi-layer random field. This algorithm takes account of each layer’s statistical properties (i.e. standard deviation, mean, and the trend value), separately. To validate the proposed approach, 41 case histories from different worldwide sites, have been regenerated by considering both the stationary and non-stationary algorithms. The correlation coefficient between real and realised CPT data has been employed to show that the proposed non-stationary algorithm can simulate the CPT data more accurately in comparison with the stationary algorithm.  相似文献   

20.
It is difficult to construct a conventional shallow foundation in alluvial lowlands because of soft soils and high ground water table. A rigid short caisson foundation with granular core is being proposed for alluvial lowlands. The proposed foundation is analyzed using non-linear hyperbolic stress–displacement responses of homogeneous alluvial deposits. Extensive parametric studies are carried out to study the effects of length ratio (L/d0), diameter ratio (d/d0) of granular core with respect to casing, relative stiffness of shaft (ατ), relative casing base stiffness (αb), and friction angle of granular material (ϕgp) on the load sharing and the settlement of the proposed foundation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号