首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Wollastonite transforms to a triclinic high-pressure polymorph, wollastonite II, at pressures > 25 kb. The equilibrium boundary [P(bars)=-4.7×T°C+32.810] has a rather flat negative P-T slope. The rapid reactivity of the transition over at least a 1000° C range, its insensitivity to T and its location around 30 kb are indicative of its potential for a pressure calibration curve at high T.  相似文献   

2.
 The crystal structure of MgFe2O4 was investigated by in situ X-ray diffraction at high pressure, using YAG laser annealing in a diamond anvil cell. Magnesioferrite undergoes a phase transformation at about 25 GPa, which leads to a CaMn2O4-type polymorph about 8% denser, as determined using Rietveld analysis. The consequences of the occurrence of this dense MgFe2O4 form on the high-pressure phase transformations in the (MgSi)0.75(FeIII)0.5O3 system were investigated. After laser annealing at about 20 GPa, we observe decomposition to two phases: stishovite and a spinel-derived structure with orthorhombic symmetry and probably intermediate composition between MgFe2O4 and Mg2SiO4. At pressures above 35 GPa, we observe recombination of these products to a single phase with Pbnm perovskite structure. We thus conclude for the formation of Mg3Fe2Si3O12 perovskite. Received: 27 March 2000 / Accepted: 1 October 2000  相似文献   

3.
In-situ X-ray powder diffraction measurements conducted under high pressure confirmed the existence of an unquenchable orthorhombic perovskite in ZnGeO3. ZnGeO3 ilmenite transformed into perovskite at 30.0 GPa and 1300±150 K in a laser-heated diamond anvil cell. After releasing the pressure, the lithium niobate phase was recovered as a quenched product. The perovskite was also obtained by recompression of the lithium niobate phase at room temperature under a lower pressure than the equilibrium phase boundary of the ilmenite–perovskite transition. Bulk moduli of ilmenite, lithium niobate, and perovskite phases were calculated on the basis of the refined X-ray diffraction data. The structural relations among these phases are considered in terms of the rotation of GeO6 octahedra. A slight rotation of the octahedra plays an important role for the transition from lithium niobate to perovskite at ambient temperature. On the other hand, high temperature is needed to rearrange GeO6 octahedra in the ilmenite–perovskite transition. The correlation of quenchability with rotation angle of GeO6 octahedra for other germanate perovskites is also discussed.  相似文献   

4.
For ABO 4 type ternary oxides, high pressure phase transformations known up to the present are reviewed, and an attempt is made to explain and predict crystal structures of their high pressure phases. When ABO 4 type compounds are plotted based on the two variables, k=r A /r B and t=(r A +r B )/2r O, where r A , r B , and r O are the ionic radii of A and B cations and divalent oxygen, they can be classified into the major structure types. It is found empirically that a compound basically transforms to the structure type isostructural with a compound lying in a classified area with the same k and larger t values in the diagram.  相似文献   

5.
The high-pressure response of the cell parameters of calcite, CaCO3, has been investigated by single crystal X-ray diffraction. The unit cell parameters have been refined from 0 to 1.435?GPa, and the linear and volume compressibilities have been measured as β a =2.62(2)?×?10?3?GPa?1,β c =7.94(7)?×?10?3?GPa?1, β v =13.12?×?10?3?GPa?1. The bulk modulus has been obtained from a fit to the Birch-Murnaghan equation of state, giving K 0=73.46?±?0.27?GPa and V 0=367.789 ±?0.004?Å3 with K′=4. Combined with earlier data for magnesite, ankerite and dolomite, these data suggest that K 0 V 0 is a constant for the Ca-Mg rhombohedral carbonates.  相似文献   

6.
Binary, ternary, and quaternary rhombohedral ordered titanates, Ni1/2Mn1/2TiO3, Ni1/2Mg1/2TiO3, Ni1/3Zn1/3Mg1/3TiO3, and Ni1/4Zn1/4Mg1/4Mn1/4TiO3, were obtained by solid-state synthesis at 1095°C at ambient pressure in a nitrogen atmosphere. All of the compounds adopt ATiO3 (A = Ni, Mn, Zn, and Mg) stoichiometry. Crystal structures were refined by the Rietveld method from powder X-ray diffraction data. Unit cell parameters and unit cell volumes decrease with decreasing average radius of the vi A 2+ cation. All the synthetic titanates adopt the space group and the ilmenite structure consisting of distorted AO6 and TiO6 octahedra. The divalent cations and Ti4+ are distributed in layers of octahedra alternating along c with no evidence for disorder. In common with pyrophanite, NiTiO3, and ilmenite sensu stricto, the distortion of the AO6 octahedra is less than that of the TiO6 octahedra. The Ti4+ and A-site cations in the titanates are off-centred within the coordination polyhedra. Deviation of the z positional parameters from their theoretical values for the A and Ti atoms indicate that in the titanates with the larger A 2+ cations and Goldschmidt tolerance factors, t ≥ 0.745, the AO6 octahedral layer is more “puckered” above and below planes parallel to (001) than that of the TiO6 octahedra, and vice versa in the titanates with smaller R A 2+ for which t≤0.745. Data are given for the volumes and distortion indices of all the coordination polyhedra. This study confirms the existence and stability of complex solid solutions between ordered rhombohedral titanates of Ni and first-row transition metals at ambient conditions over a range of t from 0.786 to 0.737. These experimental data suggest that the formation of ilmenite-type titanates enriched in Ni is possible in exotic mineral-forming systems at low pressure and/or in extraterrestrial rocks.  相似文献   

7.
Viscosity measurements are reported for amorphous silica and liquids belonging to the systems SiO2-M, SiO2-Al2O3-M, where M is an alkali-earth metal oxide, MnO, or alumina, and the systems SiO2-“FeO”, SiO2-FeO-Fe2O3-CaO, and SiO2-Al2O3-N, where N = Na2O or K2O. The implications of these measurements concerning the coordination of Al and the structure of these liquids are briefly discussed. Stable liquids in the systems SiO2-Al2O2-M show a non-Arrhenian temperature dependence of their viscosity, in general. Results obtained with empirical methods to calculate the viscosity of silicate liquids are compared with our observations.  相似文献   

8.
《International Geology Review》2012,54(10):1510-1522
Quantum-chemical interpretations of differentiation of the “normal” magmatic melt (the “Bowen's fork”) show certain defects in the traditionally crystallochemical interpretations of mineral structures and of the sequence of crystallization of minerals. The “dynamic unit,” in transitions from phase to phase and from lattice to lattice, proves to be the uncharged SiO2 molecule and not the SiO4 tetrahedron, which is but a static architectural detail of crystal structures. Different mechanisms and types of silicification (figs. 3-8), condensation and structures of the chains (figs. 9-14), structures of zeolites and other aluminosilicates (figs. 14, 17, 18), and the quantumchemical representation of corundum, as “molecular” Al2O3, illustrate further reevaluations of traditionalism in mineralogy.  相似文献   

9.
The effect of crystal structure relaxation in oxygen-based Cr3+-containing minerals on the crystal field stabilization energy (CFSE) is considered. It is shown that the dependence of \textCFSE\textCr 3+ {\text{CFSE}}_{{{\text{Cr}}^{ 3+ } }} , which is found from optical absorption spectra, on the average interatomic distances is described by the power function with a negative exponent c \mathord
/ \vphantom c [`(R)]n [`(R)]n {c \mathord{\left/ {\vphantom {c {\bar{R}^{n} }}} \right. \kern-\nulldelimiterspace} {\bar{R}^{n} }} , where n approaches 5, as predicted theoretically, for pure Cr3+ compounds, but decreases to 1.0–1.5 for Cr3+-containing oxide and silicate solid solutions. The deviation of the experimental dependence for solid solutions from the theoretical curve is due to structure relaxation, which tends to bring the local structure of Cr3+ ions closer to the structure in the pure Cr compound, thus producing changes in interatomic distances between the nearest neighbors with respect to those in the average structure determined by X-ray diffraction. As a consequence, the mixing enthalpy of Cr3+-bearing solid solutions can be represented by the sum of contributions from lattice strain and CFSE. The latter contribution is most often negative in sign and, therefore, brings the Al–Cr solid solutions close to an ideal solid solution. It is supposed that the increased Cr content in minerals from deep-seated mantle xenoliths and mineral inclusions in diamonds results from the effect of \textCFSE\textCr 3+ {\text{CFSE}}_{{{\text{Cr}}^{ 3+ } }} enhanced by high pressure.  相似文献   

10.
In situ high-pressure investigations on norsethite, BaMg(CO3)2, have been performed in sequence of diamond-anvil cell experiments by means of single-crystal X-ray and synchrotron diffraction and Raman spectroscopy. Isothermal hydrostatic compression at room temperature yields a high-pressure phase transition at P c ≈ 2.32 ± 0.04 GPa, which is weakly first order in character and reveals significant elastic softening of the high-pressure form of norsethite. X-ray structure determination reveals C2/c symmetry (Z = 4; a = 8.6522(14) Å, b = 4.9774(13) Å, c = 11.1542(9) Å, β = 104.928(8)°, V = 464.20(12) Å3 at 3.00 GPa), and the structure refinement (R 1 = 0.0763) confirms a distorted, but topologically similar crystal structure of the so-called γ-norsethite, with Ba in 12-fold and Mg in octahedral coordination. The CO3 groups were found to get tilted off the ab-plane direction by ~16.5°. Positional shifts, in particular of the Ba atoms and the three crystallographically independent oxygen sites, give a higher flexibility for atomic displacements, from which both the relatively higher compressibility and the remarkable softening originate. The corresponding bulk moduli are K 0 = 66.2 ± 2.3 GPa and dK/dP = 2.0 ± 1.8 for α-norsethite and K 0 = 41.9 ± 0.4 GPa and dK/dP = 6.1 ± 0.3 for γ-norsethite, displaying a pronounced directional anisotropy (α: β a ?1  = 444(53) GPa, β c ?1  = 76(2) GPa; γ: β a ?1  = 5.1(1.3) × 103 GPa, β b ?1  = 193(6) GPa β c ?1  = 53.4(0.4) GPa). High-pressure Raman spectra show a significant splitting of several modes, which were used to identify the transformation in high-pressure high-temperature experiments in the range up to 4 GPa and 542 K. Based on the experimental series of data points determined by XRD and Raman measurements, the phase boundary of the α-to-γ-transition was determined with a Clausius–Clapeyron slope of 9.8(7) × 10?3 GPa K?1. An in situ measurement of the X-ray intensities was taken at 1.5 GPa and 411 K in order to identify the nature of the structural variation on increased temperatures corresponding to the previously reported transformation from α- to β-norsethite at 343 K and 1 bar. The investigations revealed, in contrast to all X-ray diffraction data recorded at 298 K, the disappearance of the superstructure reflections and the observed reflection conditions confirm the anticipated \(R\bar{3}m\) space-group symmetry. The same superstructure reflections, which disappear as temperature increases, were found to gain in intensity due to the positional shift of the Ba atoms in the γ-phase.  相似文献   

11.
Multicomponent exchange and diffusion in silicates   总被引:1,自引:0,他引:1  
  相似文献   

12.
《Comptes Rendus Geoscience》2019,351(2-3):253-259
We extended the attainable pressure of the Kawai-type multianvil apparatus to 71.3 GPa and 120.3 GPa at room temperature by equipping it with tungsten carbide (WC) and sintered diamond (SD) cubic anvils, respectively. In the experiments with WC anvils, pressure decreased largely, ΔP ∼−20 GPa, on heating from room temperature to 1500 K. In the experiments with SD anvils, pressure also dropped to 105 GPa from 120 GPa at 1673 K. In order to generate higher pressure and temperatures, therefore, innovation of SD material in both quality and size are essential, together with improvements of cell assembly. Besides pressure generation, we conducted in situ energy-dispersive X-ray diffraction observations on CaSnO3 and (Mg,Fe)SiO3 in the experiments with WC and SD anvils, respectively. We observed the growth of new peaks, which can be assigned to the post-perovskite phase, transformed from a starting material of CaSnO3 perovskite at 48.4 GPa and 1500 K, although they are not clearly identified. In contrast, we could not observe the post-perovskite phase of (Mg,Fe)SiO3 in the present P–T conditions generated by experiments with SD anvils.  相似文献   

13.
This paper summarizes the recent results of the investigation of bonding in silicates obtained by precision X-ray diffraction. The experimental electron density distribution is compared with theoretical electron density maps calculated for model silicate molecules. The characteristic features of the chemical bonds in ortho-, ring-, chain- and framework silicates are discussed.  相似文献   

14.
Aluminum silicates in the Mount Raleigh pendant, British Columbia   总被引:1,自引:0,他引:1  
In regionally metamorphosed pelites of the Mount Raleigh pendant, the fibrolite isograd occurs 5km downgrade from the sillimanite isograd. Fibrolite formed from the decomposition of biotite, a reaction that probably resulted from the late-stage influx of acidic volatiles. In contrast, sillimanite formed by the direct,'volume-for-volume'replacement of andalusite. Andalusite and sillimanite coexist in a 3 km-wide zone above the sillimanite isograd. Electron probe analyses of these phases reveal low minor element contents and yield K D [= X ] values close to unity; the low Fe2O3 contents are compatible with reducing conditions implied by the ubiquity of graphite. Because K D → 1.0, the zone of coexisting andalusite + sillimanite cannot be attributed to multivariancy resulting from partitioning of minor elements between these phases. Rather, the metastable persistence of andalusite into the sillimanite P-T stability field is suggested. The modal proportions of sillimanite versus andalusite imply that minimal (<5%) and alusitesillimanite reaction occurred in a zone 1.5km above the sillimanite isograd; in contrast, there was a marked increase in reaction progress immediately above this zone. With an estimated thermal gradient (in the plane of exposure) of approximately 20°C/km, the 1.5 km-wide zone of nil reaction suggests that the andalusite-sillimanite equilibrium boundary was overstepped by about 30 °C before significant reaction occurred. Inclusion-rich areas in andalusite provided favourable sites for sillimanite nucleation ; however, the growth of sillimanite may have been impeded by'pinning'of sillimanite grain boundaries by inclusions.  相似文献   

15.
The stability and high-pressure behavior of perovskite structure in MnGeO3 and CdGeO3 were examined on the basis of in situ synchrotron X-ray diffraction measurements at high pressure and temperature in a laser-heated diamond-anvil cell. Results demonstrate that the structural distortion of orthorhombic MnGeO3 perovskite is enhanced with increasing pressure and it undergoes phase transition to a CaIrO3-type post-perovskite structure above 60 GPa at 1,800 K. A molar volume of the post-perovskite phase is smaller by 1.6% than that of perovskite at equivalent pressure. In contrast, the structure of CdGeO3 perovskite becomes less distorted from the ideal cubic perovskite structure with increasing pressure, and it is stable even at 110 GPa and 2,000 K. These results suggest that the phase transition to post-perovskite is induced by a large distortion of perovskite structure with increasing pressure.  相似文献   

16.
17.
Crystals of a high-pressure phase of MnTiO3 have been synthesized at pressures of 60 kbar using the SAM-85 cubic-anvil high pressure apparatus. Although all crystals examined were twinned on (10 \(\bar 1\) \(\bar 2\) ), a set of diffraction intensities that are essentially unaffected by the twinning were obtained. Three possible structure models were considered: (1) the corundum (completely disordered Mn and Ti), (2) the partially-disordered ilmenite, and (3) the LiNbO3 structures. The R factors of the corundum and the disordered ilmenite models were much larger than that of LiNbO3. Using structure factors unaffected by twinning, the final LiNbO3-type refinement gave R w=0.037 and R=0.034. The averaged bond lengths for Mn-O and Ti-O were consistent with ones calculated using Shannon and Prewitt's (1969) radii. The study concludes that MnTiO3 II actually has an ordered LiNbO3-type structure rather than the disordered one as reported previously. From the analysis of the two MnTiO3 structures, the transition can be related to a cation reordering process, in which half of the cations participate, accompanied by the rotation of oxygens to accommodate the cations.  相似文献   

18.
Summary The topologic symmetry of a framework silicate is reduced to topochemical symmetry by an ordering inside the tetrahedra; each further reduction of symmetry may be due to one of the following three causes: 1 ordered distribution of extraframework cations, 2 squeezing of the framework, 3 repulsion of extraframework cations.
Topologische Symmetrie und reelle Symmetrie in Gerüstsilikaten
Zusammenfassung Die topologische Symmetrie von einem Gerüstsilikat wird zu topochemischer Symmetrie durch die Ordnungsverteilung in den Tetrahedern reduziert; jede weitere Reduktion der Symmetrie kann mit einer von drei Ursachen in Zusammenhang gebracht werden: 1 geordnete Verteilung der Nichtgerüstkationen, 2 Gerüstdeformation, 3 Abstoßkräfte zwischen Nichtgerüstkationen.
  相似文献   

19.
To determine the removal of regenerated nitrogen by estuarine sediments, we compared sediment N2 fluxes to the stoichiometry of nutrient and O2 fluxes in cores collected in the Childs River, Cape Cod, Massachusetts. The difference between the annual PO4 3− (0.2 mol P m−2 yr−1) and NH4 + (1.6 mol N m−2 yr−1) flux and the Redfield N∶P ratio of 16 suggested an annual deficit of 1.5 mol N m−2 yr−1. Denitrification predicted from O2∶NH4 + flux ratios and measured as N2 flux suggested a nitrogen sink of roughly the same magnitude (1.4 mol N m−2 yr−1). Denitrification accounted for low N∶P ratios of benthic flux and removed 32–37% of nitrogen inputs entering the relatively highly nutrient loaded Childs River, despite a relatively brief residence time for freshwater in this system. Uptake of bottom water nitrate could only supply a fraction of the observed N2 flux. Removal of regenerated nitrogen by denitrification in this system appears to vary seasonally. Denitrification efficiency was inversely correlated with oxygen and ammonium flux and was lowest in summer. We investigated the effect of organic matter on denitrification by simulating phytoplankton deposition to cores incubated in the lab and by deploying chambers on bare and macroaglae covered sediments in the field. Organic matter addition to sediments increased N2 flux and did not alter denitrification efficiency. Increased N2 flux co-varied with O2 and NH4 + fluxes. N2 flux (261±60 μmol m−2 h−1) was lower in chambers deployed on macroalgal beds than deployed on bare sediments (458±70 μmol m−2 h−1), and O2 uptake rate was higher in chambers deployed on macroalgal beds (14.6±2.2 mmol m−2 h−1) than on bare sediments (9.6±1.5 mmol m−2 h−1). Macroalgal cover, which can retain nitrogen in the system, is a link between nutrient loading and denitrification. Decreased denitrification due to increasing macroalgal cover could create a positive feedback because decreasing denitrification would increase nitrogen availability and could increase macroalgae cover.  相似文献   

20.
We give a brief review of ion dynamics studies of liquid and glassy states of SiO2 and silicate colutions which have been carried out in recent years in this laboratory. We summarize studies on SiO2, Na+ migration in Na2SiO2 in the “glassy state”, and ionic coordination in multicomponent framework silicates. We present new results on the coordination of Al3+ in albite as a function of pressure and show that it is consistent with results of laboratory studies on albite glasses formed at high pressure. We compare calculated PVT data for jadeite, albite and diopside and relate the behavior of the low pressure compressibility to the spinodal limit at negative pressures. Some preliminary studies of inert gas solution in jadeite and of CO2 solution in a glass having a composition of approximately Na2O·3SiO2 are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号