首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High pressure phase relation of the system Fe2SiO4–Fe3O4 was investigated by synthesis experiments using multi-anvil high pressure apparatus. A complete solid solution with spinel structure along Fe2SiO4–Fe3O4 join occurs above 9 GPa at 1200 °C. Lattice constants of the solid solution show almost linear variation with composition. A spinelloid phase is stable for intermediate compositions in the pressure range from 3 to 9 GPa. the synthesized spinelloid phase is successfully indexed assuming nickel aluminosilicate V type structure. Received: October 16, 1995 / Revised, accepted: March 19, 1997  相似文献   

2.
The phase behavior of a gas-condensate mixture in the pool depletion process and the influence of porosity on the amount of extracted concentrate and gas and on the gas phase composition have been studied experimentally. A possible approach to the differential condensation process has been determined. The substantial influence of the zone of condensate micronuclei formation in a porous medium on the parameters of phase condensation and on the technological parameters of condensate pool development have been established for the first time.  相似文献   

3.
Single crystals of α-quartz and α-berlinite AlPO4 have been compressed at high pressure and room temperature in a diamond anvil cell (DAC). The pressure-induced microstructures have been studied on recovered specimens using transmission electron microscopy. As previously reported, quartz is shown to exhibit an amorphous transition at high pressure (≈30 GPa). Under the markedly non-hydrostatic conditions of the present study, a wide mixed-phase regime in which amorphous lamellae form within the crystalline matrix is encountered at lower values of the mean stress. The amorphous lamellae are interpreted as shear lamellae. The formation of these shear lamellae as well as their habit planes are described by the evolution with pressure of shear moduli μ as computed in anisotropic elasticity. Our calculations also show instabilities at higher pressure of the elastic moduli (i.e. of the α-quartz structure) which are related to the amorphous transition. Berlinite exhibits a more ductile behavior with simultaneous dislocation activity and shear on amorphous lamellae which become pervasive at high pressure (≈10 GPa). These amorphous lamellae of berlinite do not revert to crystal when pressure is released.  相似文献   

4.
The structural evolution of two columbites under pressure, one ferrocolumbite from Raode (Africa) and one manganocolumbite from Kragero (Norway), has been determined by single-crystal X-ray diffraction. Structural investigations at high pressure have been carried out on samples which were preliminarily annealed to attain the complete cation-ordered state. For each crystal, five complete datasets have been collected from room pressure up to ca. 7 GPa. Structure refinements converged to final discrepancy factors R ranging between 5.2 and 5.8% for both the crystals. Structure refinements of X-ray diffraction data at different pressures allowed characterisation of the mechanisms by which the columbite structure accommodates variations in pressure. A and B octahedral volumes in both samples decrease linearly as pressure increases, with a larger compression of the larger A site. The difference in polyhedral bulk moduli of the A sites for the two samples does not appear to relate directly to the octahedral sizes, the A site being more compressible in the Fe-rich sample than in the Mn-rich one. By far the most compressible direction in both the analysed samples is along b. The cations are in fact free to move along this direction, thus allowing the octahedral chains to slide over each other; this effect is particularly evident in the manganocolumbite sample which shows a steep shortening of interchain A–B distances along b.  相似文献   

5.
We have investigated the high-pressure behavior of cristobalite in helium by powder X-ray diffraction. Cristobalite transformed to a new phase at about 8 GPa. This phase is supposed to have a molar volume of about 30 % larger than cristobalite, suggesting the dissolution of helium atoms in its interstitial voids. On further compression, the new phase transformed to a different phase which showed an X-ray diffraction pattern similar to cristobalite X-I at about 21 GPa. On the other hand, when the new phase was decompressed, it transformed to another new phase at about 7 GPa, which is also supposed to have a molar volume of about 25 % larger than cristobalite. On further decompression, the second new phase transformed to cristobalite II at about 2 GPa. In contrast to cristobalite, quartz did not show anomalous behavior in helium. The behavior of cristobalite in helium was also consistent with that in other mediums up to about 8 GPa, where the volume of cristobalite became close to that of quartz. These results suggest that dissolution of helium may be controlled not only by the density (amount of voids) but also by the network structure of SiO4 tetrahedra (topology of voids).  相似文献   

6.
7.
High-pressure phase transformations were investigated for two silicates, MgSiO3 and ZnSiO3; six germanates, MGeO3 and six titanates, MTiO3 (M=Ni, Mg, Co, Zn, Fe, and Mn) at about 1,000°C and pressures up to ca. 30 GPa. CoGeO3 was found to assume the ilmenite form. The ilmenite phases were confirmed to transform in the following schemes: to perovskite in MgSiO3 and MnGeO3, to corundum in MgGeO3 and ZnGeO3, to rocksalt plus rutile in ZnSiO3 and CoGeO3 and to rocksalt plus TiO2 (possibly of some denser structure) in NiTiO3, MgTiO3, CoTiO3, ZnTiO3 and FeTiO3. In the case of FeTiO3, the corundum form appeared as an intermediate phase. The possibility that the corundum type MnTiO3 might transform to some denser modification could not be excluded. The compound NiGeO3 was nonexistent throughout the pressure range studied. High-pressure phases of ABO3 (A=Ni, Mg, Co, Zn, Fe, and Mn; B=Si, Ge and Ti) are summarized, and those stabilized at pressures higher than 20 GPa are discussed.  相似文献   

8.
High-temperature and high-pressure experiments conducted in a diamond-anvil cell revealed phase transformations in the aragonite-type carbonates of strontianite (SrCO3), cerussite (PbCO3), and witherite (BaCO3) at pressures below 4 GPa and ~1000?°C. The powder X-ray diffraction patterns of these high-pressure phases can be reasonably indexed with the same type of orthorhombic cell having a space group of P2122 (17). By assuming 16 MCO3 (M=Sr, Ba or Pb) molecules in a unit cell, the transition from the aragonite form to a new phase was concomitant with a volume contraction of 4.23, 2.38, and 2.34% for SrCO3, PbCO3, and BaCO3, respectively. If the same phase transition were to occur in CaCO3, it has been estimated that the transition would accompany a 7% volume contraction.  相似文献   

9.
The analysis of available theoretical evaluations and experimental data reveals discrepancies and makes it possible to formulate the goals for the comprehensive study of the behavior of enstatite MgSiO3 in shock isentropic waves of various scale and intensity. The paper presents the layout and results of an explosion experiment on the compression of an enstatite sphere with spherical shock waves and the subsequent recovery of the experimental material and its examination in discrete zones (along the sphere radius) that were produced by shock waves in the material. The latter were examined with the application of scanning electron microscopy, Raman spectroscopy, and X-ray diffraction analysis. The comparison of the systematic variations in the texture, chemistry, and phase composition of enstatite along the sphere radius with calculated pressure P(R, t) and temperature T(R, t) values led us to the following conclusions: enstatite starts melting on an isentrope upon pressure relief after shock wave compression at ?? xx ?? 80 GPa and melts on the front of the spherically converging shock wave at ?? xx ?? 160 GPa and T ?? 6300 K. Our laboratory experiments with shock waves were the world??s first in which enstatite was loaded with spherical converging shock isentropic waves and which provided evidence that shock wave-loaded MgSiO3 shows certain morphological and mineralogical features never before detected in this mineral loaded with plane shock wave of smaller amplitude and duration. Goals are formulated for the further studying of shock wave-loaded materials, and the necessity is discussed for conducting an explosion experiment with a five to seven times greater spherical system in order to increase the duration of the shock wave loading impulse.  相似文献   

10.
玄武岩及其高温高压相—榴辉岩的相组合,经历了长期的地质作用,反映出一定的时空条件。从高温高压实验矿物学,实验岩石学入手,对于以相组合出现的某些化学体系进行平衡条件研究,可揭示此类岩石形成的物理化学环境,并有助于阐明地球内部的物理状态、组成成分以及活动过程。  相似文献   

11.
The effects of pressure on the dehydration of gypsum materials were investigated up to 633 K and 25 GPa by using Raman spectroscopy and synchrotron X-ray diffraction with an externally heated diamond anvil cell. At 2.5 GPa, gypsum starts to dehydrate around 428 K, by forming bassanite, CaSO4 hemihydrate, which completely dehydrates to γ-anhydrite at 488 K. All the sulphate modes decrease linearly between 293 and 427 K with temperature coefficients ranging from −0.119 to −0.021 cm−1 K−1, where an abrupt change in the ν3 mode and in the OH-stretching region indicates the beginning of dehydration. Increasing the temperature to 488 K, the OH-stretching modes completely disappear, marking the complete dehydration and formation of γ-anhydrite. Moreover, the sample changes from transparent to opaque to transparent again during the dehydration sequence gypsum-bassanite-γ-anhydrite, which irreversibly transforms to β-anhydrite form at 593 K. These data compared with the dehydration temperature at room pressure indicate that the dehydration temperature increases with pressure with a ΔPT slope equal to 230 bar/K. Synchrotron X-ray diffraction experiments show similar values of temperature and pressure for the first appearance of bassanite. Evidence of phase transition from β-anhydrite structure to the monazite type was observed at about 2 GPa under cold compression. On the other hand at the same pressure (2 GPa and 633 K), β-anhydrite was found, indicating a positive Clausis-Clayperon slope of the transition. This transformation is completely reversible as showed by the Raman spectra on the sample recovered after phase transition.  相似文献   

12.
长石在高温高压条件下的物理化学行为   总被引:2,自引:0,他引:2  
刘曦  胡张翼  邓力维 《岩石学报》2010,26(12):3641-3650
长石是地学上非常重要的矿物之一。它有可能随着板块俯冲而进入地球深部,因此它在高温高压条件下的相行为以及物理化学性质对地球深部地球动力学研究非常有意义。本文总结了长石端员组份(钾、钠、钙长石)以及其固溶体系列已知的高温、高压实验数据,并绘制成相图。已有的研究成果显示:这三种端员组份在高压下的相行为有较大差异,并产生了许多只在高温高压条件下稳定的相如K-Holl-I、K-Holl-II、CF、CAS及CaPv等。由这些高压相构成的具有长石成分的不同相组合的密度在约5~23GPa的压力范围内超过地幔岩的密度,因此这些相组合可以主动俯冲到上地幔的深处。另一方面,已有研究表明,这些高压相对碱金属及碱土金属在地幔中的赋存状态有着非常重要的影响。  相似文献   

13.
High pressure phase transformations for all the mineral phases along the joins Mg2SiO4-Ca2-SiO4 and MgO-CaSiO3 in the system MgO-CaO-SiO2 were investigated in the pressure range between 100 and 300 kbar at about 1,000 °C, by means of the technique involving a diamond-anvil press coupled with laser heating. In addition to the four end-members, there are three stable intermediate mineral components in these two joins. Phase behaviour of all the end-member components at high pressure have been reported earlier and are reviewed here. Results of this study reveal that the three intermediate components are all unstable relative to the end-members at pressures greater than 200 kbar. Ultimately, monticellite (CaMgSiO4) decomposes into CaSiO3 (perovskite-type)+MgO; merwinite (Ca3MgSi2O8) decomposes into Ca2SiO4(K2NiF4-type)+CaSiO3 (perovskite-type)+MgO; and akermanite (Ca2MgSi2O7) decomposes into CaSiO3 (perovskite-type)+MgO. Note that the decomposition reactions of all phases studied here result in the formation of MgO. Intermediate Ca-Mg silicates transform to pure Ca-silicates plus MgO, while pure Mg2SiO4 transforms to MgSiO3+MgO.  相似文献   

14.
高温高压岩石流变仪围压标定的主要方法为氯化盐类的部分熔融法和矿物相变法。利用氯化盐类进行压力标定时,不仅可以利用单一盐类,也可以使用多种盐类的混合物;常用的压力标定矿物相变及其适用温压范围如下:石英-柯石英,500~1200℃、2.5~3.2GPa;钠长石-硬玉+石英,600~1200℃、1.6~3.2GPa;铁橄榄石+石英-铁辉石,600~1200℃、1~1.7GPa;磷镁石-Mg3(PO4)2-Ⅱ,565~825℃、0.6~0.9GPa;方解石-文石,600~1200℃、0.5~2.5GPa。不同的标定方法具有不同的特征,文中将进行详细介绍。  相似文献   

15.
Compressibility of ZnCr2S4 single crystals and their structure under pressure have been determined by means of x-ray methods. A pressure region of deterioration of the single crystal was observed around 10 GPa. Moreover, a plastic deformation as a result of a phase transition under pressure, an irreversible structural change, a chemical decomposition of the sample or a hysteresis effect, has been revealed. The crystals that are recovered from the pressure cell show a decrease in unit cell volume of 3% compared to the initial volume. Received: June 19, 1996 / Revised, accepted: February 1, 1997  相似文献   

16.
深部岩石工程具有高地应力和高水头压力的特点。为了研究岩石在高围压和高孔隙水压条件下渗透率演化规律,选取致密砂岩开展不同围压条件下变孔隙水压的渗流试验。研究结果表明:(1)在所研究的围压范围内(0~50 MPa),随孔隙压力增加,渗透率依次呈现3种不同的变化趋势,即快速增长阶段(围压为10~20 MPa)、缓慢增长阶段(围压为30~40 MPa)和保持恒定阶段(围压为50 MPa);在围压卸载时,由于高围压作用使试样内部产生不可逆变形,导致渗透率具有明显的不可恢复现象,且随围压降低,渗透率恢复存在滞后效应。(2)渗流试验过程中,体积应变和渗透率演化具有较好的一致性。(3)在围压加卸载过程中,高孔隙水压力条件下渗透率对应力的敏感程度和恢复程度均大于低孔隙水压力。(4)偏光显微镜图像从微观角度揭示了试样在围压加卸载过程中产生不可逆变形的内在机制:骨架颗粒相互挤压、错动导致原有微裂隙压缩、孔隙减小甚至坍塌,引起渗透率不可恢复。渗流试验后,纵波波速增大,说明岩石致密性提高,与试样内部微观结构变化具有较好的一致性。  相似文献   

17.
穆朝民  王海露 《岩土力学》2013,34(5):1515-1520
为研究高压水射流破煤的力学机制,煤体采用J-H-C含损伤本构模型,水射流采用Bridgman状态方程,用固-流耦合算法对高压水射流冲击煤体的损伤机制进行有限元数值计算,得出了煤体在不同冲击压力水射流作用下的损伤形式,模拟与现场试验结果基本一致。研究结果表明,不同水压的水射流冲击煤体形成的损伤机制存在差别,煤体在高压水射流作用下的损伤是阶梯式,煤体在高压水射流冲击下形成压缩波和拉伸波的复合作用是形成煤体损伤的主要原因,随着破煤过程的进行,压缩区和拉伸区有进一步减小的趋势;对于不同强度煤体存在临界破煤压力和最佳破煤压力。  相似文献   

18.
高压下多硅白云母的拉曼光谱学研究   总被引:1,自引:0,他引:1  
在金刚石压腔中,通过原位拉曼光谱研究了多硅白云母在常温高压下的稳定性。实验获得了多硅白云母从常压到20GPa的拉曼光谱数据,研究了多硅白云母的266、708和3618cm^-1叫谱峰与压力的相关性。研究发现,多硅白云母的708cm^-1叫谱峰随压力增加有规律地向高频方向偏移,与压力的增加呈明显的正相关性,即y(拉曼位移,cm^-1)=0.5238x(压力,GPa)+712.31,相关系数R^2=0.9656,并且该谱峰在压力4.7GPa时消失,这可能与多硅白云母中的Si、Al替代有关。羟基3618cm^-1谱峰则随压力增加向低频方向移动,谱峰的降低与压力的增加呈明显的线性关系变化(y=-0.3402X+3617.8,R^2=0.9662),并且强度随着压力的增加也在逐渐减弱,在压力达18GPa时开始消失,推测该压力可能为多硅白云母在常温下脱羟基的极限压力。  相似文献   

19.
The unique cation-disordered crystal structures of two samples of phase E, a non-stoichiometric, hydrous silicate synthesized in a uniaxial, split-sphere, multi-anvil apparatus at conditions above 13 GPa and 1000° C, have been solved and refined in space group $\bar 3$ . The compositions and unit cells for the two materials, assuming six oxygens per cell, are Mg2.08Si1.16H3.20O6, a=2.9701(1) Å, c=13.882(1) Å V = 106.05(4) Å3 for sample 1, and Mg2.17Si1.01H3.62O6, a=2.9853(6) Å, c=13.9482(7) Å, V= 107.65(4) Å3 for sample 2. The structure contains layers with many features of brucite-type units, with the layers stacked in a rhombohedral arrangement. The layers are cross linked by silicon in tetrahedral coordination and magnesium in octahedral coordination, as well as hydrogen bonds. Interlay er octahedra share edges with intralayer octahedra. Interlayer tetrahedra would share faces with intralayer octahedra. To avoid this situation, there are vacancies within the layers. There is, however, no long-range order in the occupation of these sites, as indicated by the lack of a superstructure. Selected-area electron diffraction patterns show walls of diffuse intensity similar in geometry and magnitude to those observed in short-range-ordered alloys and Hågg phases. Phase E thus appears to represent a new class of disordered silicates, which may be thermodynamically metastable.  相似文献   

20.
An outline of recent developments in Raman spectroscopy at high pressure, high temperature and combined high pressure and high temperature is presented. The instrumental and technical aspects of Raman spectroscopy, and coupling of diamond anvil cells and miniature furnaces to Raman microspectrometers are discussed. Some potential pitfalls, such as the thermal pressure in laser heated diamond anvil cells or the thermal radiation during high-temperature measurements, are presented. Special emphasis is given on processing of high-temperature Raman data. New recently discovered phase transformations in the SiO2 system (quartz→ quartz II, pressure-induced amorphization of quartz) and structural changes in SiO2 glass and melt are used to infer the capability of in-situ Raman spectroscopy for determining the microscopic behaviour of minerals, melts and glasses under extreme pressure and temperature conditions. Finally, it is shown how vibrational mode anharmonicity can be obtained from the pressure- and temperature-induced shifts of Raman modes. This anharmonicity can be introduced into the vibrational modeling of the thermodynamic properties (entropy and equation of state) of minerals. The example of calcite is briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号