首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
鸡西盆地煤炭资源丰富,其南部的梨树镇坳陷城子河组厚度大,含煤性好,是煤层气勘探开发的重点区域。为了解该区煤岩物理力学特性,选取城子河组23#煤层岩样进行实验研究。通过测定岩样的泊松比、弹性模量、内聚力以及内摩擦角等力学参数,确定该层煤岩具有低弹性模量、高泊松比和大脆性的特性。分析煤岩物性参数得出:随着应力增加,煤岩渗透率呈指数下降,不利于煤层气的开采,而温度对煤岩渗透率影响较小;煤岩的孔隙度主要集中在3.6%~6.1%,平均约4.98%,程度偏低,中孔和小孔比较发育;低阶煤和中阶煤煤样的排驱压力相差较大,中阶煤煤样压力值较小,渗透性好;结合中值半径和退汞效率的实验数据,显示该区煤储层的渗透性整体较差。  相似文献   

2.
为了研究煤层瓦斯流动过程中温度与渗流场和应力场的耦合作用变化规律,引入煤层瓦斯两能态吸附热理论,重新构建煤层温度场控制方程,推导了温度场控制方程中解吸微分热能项的理论求解方法,改进了煤层瓦斯流动的热-流-固多场耦合数学模型;从理论上阐述了煤层瓦斯流动过程中吸附解吸、应力场、温度场、渗流场相互影响的作用机制;利用该模型研究了煤层瓦斯抽采过程中煤层瓦斯流动时的煤层温度、瓦斯压力、煤层渗透率的变化规律;结合已有试验研究结果,对比验证了模型的精确性和合理性;研究结果表明,在煤层瓦斯抽采过程中,煤层温度下降的快、慢受煤层原始瓦斯含量和压力及煤层渗透率的共同影响,煤层渗透率越大,温度下降越快,煤层瓦斯压力和含量越大,温度下降越快;同时,煤层渗透率随抽采时间的增长而增加,越靠近钻孔壁面煤层渗透率增加幅度越大。  相似文献   

3.
考虑基质收缩效应的煤层气应力场-渗流场耦合作用分析   总被引:2,自引:0,他引:2  
在煤层气的初级生产过程中,为了获取较高的生产率,需要降低储层压力,储层压力下降对于煤层气的渗透率具有两个相反的效应:(1)储层压力下降,有效应力增加,煤层裂隙压缩闭合,渗透率降低;(2)煤层气解吸,煤基质收缩,煤层气流动路径张开,渗透率升高。Shi和Durucan、Palmer-Mansoori以及Gray等都建立了包含了基质收缩效应以及有效应力的影响的渗透率模型,其模型都基于以下两个关键假设:煤岩体处于单轴应变状态以及竖向应力恒定。为了检验上述两个假设的合理性,建立了一个考虑基质收缩效应以及渗流场-应力场耦合作用下的煤层气流动模型,对煤层气初级生产过程中渗透率的变化进行了耦合分析。分析结果表明:单轴应变的假设具有合理性,而竖向应力是随指向生产井的应变梯度的变化而变化的,其对于渗透率的变化具有重要影响,因此,竖向应力恒定的假设可能导致渗透率预测出现误差;上述渗透率模型都可能低估煤层气初级生产过程中渗透率的变化。  相似文献   

4.
为研究沁水盆地东北部煤层气成藏特征与产出控制因素,基于寺家庄区块煤层气勘探和生产资料,从地质构造、煤厚与煤层结构、埋深和水文地质特征等方面研究了煤层含气性影响因素,并结合压裂排采工艺和煤体结构等因素探讨了煤层气井产能控制因素。结果表明:(1) 研究区煤储层含气性受构造影响较大,在褶皱的轴部及旁侧构造挤压带,多呈现出高含气量,尤其是向斜轴部。在陷落柱和水文地质条件叠加作用下,15号煤层含气量整体较8、9号煤层低,且8、9号煤层含气饱和度也整体高于15号煤层。(2) 8、9和15号煤层含气性均表现出随煤层埋深增加而增大的趋势,但随埋深增加,构造应力和地温场的作用逐渐增强,存在含气量随埋深变化的“临界深度”(700 m左右)。煤层含气性也表现出随煤层厚度增加而增大的趋势,煤层结构越简单,煤层含气性越好。(3) 研究区中部的NNE?NE向褶皱与EW向构造叠加地区,因较大的构造曲率和相对松弛的区域地应力,具备较好渗透率条件和含气性,故成为煤层气高产区。(4) 发育多煤层地区采用分压合采技术可以有效增加产气量,多煤层可以提供煤层气井高产能的充足气源,且多个层位的同时排水降压可使不同煤储层气体产出达到产能叠加,实现长期稳产,含气性较好及游离气可能存在的区域可出现长期持续高产井。   相似文献   

5.
山西沁水盆地中-南部煤储层渗透率物理模拟与数值模拟   总被引:16,自引:2,他引:14  
通过对山西沁水盆地中南部上主煤层宏观裂隙观测,力学参数测量和应力渗透率实验,分别建立了裂隙面密度、裂隙产状、裂隙宽度与煤储层渗透率之间的预测数学模型;利用FLAC—3D软件,模拟了该区上主煤层内现代地应力状态,结合煤层气试井渗透率资料,构建了应力与渗透率之间关系预测的数学模型,并对该区上主煤层渗透率进行了全面预测。通过吸附膨胀实验,揭示了各煤类煤基质的收缩特征,构建了有效应力、煤基质收缩与渗透率之间的耦合数学模型,并对煤层气开发过程中渗透率动态变化进行了数值模拟。  相似文献   

6.
深部煤储层处于高地应力环境中,其渗透率变化特征与浅部存在较大差异,为研究有效应力对深部煤储层渗透率的差异性影响,以及应力敏感性各向异性特征,以沁水盆地横岭区块15号煤层为研究对象,采样深度1 200~1 700 m,采用覆压孔渗实验,开展平行层理和垂直层理样品在不同有效应力下的渗透率变化规律研究,探究其应力敏感性特征及其对煤层气产能的影响。结果表明:渗透率随有效应力的增加呈幂指函数降低,平行层理面渗透率总体高于垂直层理面,且在2个方向上渗透率变化规律呈正相关性。选取储层孔裂隙压缩系数、渗透率损害率和渗透率曲率3个参数作为煤储层应力敏感性评价指标,其中,孔裂隙压缩系数随有效应力增加,以5 MPa为界限先后呈现正相关性和负相关性,渗透率损害率和渗透率曲率分别与有效应力呈指数上升和下降的规律。基于应力敏感性参数,推导出煤层气井产能模型,模型显示,不考虑应力敏感性的气井产量高于考虑应力敏感性,揭示了应力敏感性对煤层气产量的影响程度,即在5 MPa生产压差下,气井的产量降低幅度随应力敏感性系数的增大整体呈增高趋势。针对应力敏感性的阶段划分,研究区目标煤层在煤层气排采过程中应采用小–中–大的排采方案来控制生产流量。   相似文献   

7.
鸡西含煤沉积盆地特征及早期油气勘探   总被引:10,自引:1,他引:9       下载免费PDF全文
鸡西盆地位于黑龙江省东部,1985年见天然气显示,有效勘探面积只占盆地面积的50%,而且生油坳陷(沉积坳陷)局部遭到破坏,地质条件复杂,勘探风险大。盆地内主要充填了白垩系及第三系,是一个中、新生代盆地,其中下白垩统分为鸡西群和桦山群,鸡西群是主要含煤地层,也是油气勘探的目的层。下白垩统东荣组含有海湾湖相暗色泥岩,而城子河组与穆棱组沼泽相煤和高碳泥岩发育。老第三系永庆组深湖相暗色泥岩丰富,生油岩类型及纵向分布层位差异受沉积充填序列控制。孔隙型储层物性较低,裂隙型储层具有实际意义。生储盖组合匹配,发现的天然气源于下伏的鸡西群,气层之上的盖层是厚层泥岩与4层凝灰岩。研究表明,鸡西盆地含有较丰富的天然气资源,大部分为煤层气,应以天然气勘探为目标。建议在梨树镇坳陷下白垩统找气,在平阳镇坳陷老第三系找油。  相似文献   

8.

为满足煤矿安全生产的需求,针对煤层顶板高地应力区域易诱发煤矿冲击地压等动力灾害问题,利用微震台站实时传输数据,采用快速三维层析反演算法对煤岩层波速进行反演,从而实现对高地应力区域的实时监测和快速预警。层析反演结果的精度直接决定了高地应力区域的判断,因此,通过建立三维地质模型,分析微震事件空间分布的不同以及高地应力区域与煤层顶板的间距对层析反演结果的影响,并将该方法在某矿区进行了试验。试验结果表明:(1) 由于地震波在煤层和围岩中的传播规律不同,微震事件在煤岩层空间分布不同会降低探测高地应力区域的精确度;(2) 煤层顶板与高地应力区域间距过小时,高波速区域附近所产生的波速梯度会影响低速区域,导致反演结果中煤层位置不清晰;(3) 通过筛选微震事件使其均匀分布以及合理的布置微震地面观测系统可以有效的提高数据完整度和反演精度。研究结果为基于微震的快速三维层析反演技术探测煤层顶板高地应力区域提供理论依据。

  相似文献   

9.
渗透率是表征瓦斯流动的重要参数,为保证煤矿瓦斯安全高效抽采,有必要探究距抽采井筒不同位置处煤层瓦斯渗流演化特征。然而,瓦斯抽采过程中伴随有效应力、煤基质对瓦斯的吸附/解吸能力以及煤储层温度的不断变化,甚至出现抽采损伤,使得煤层瓦斯运移行为异常复杂。为探究抽采过程的煤层瓦斯渗流特性,在圆柱坐标系下,考虑压力场与温度场变化对煤储层渗透率的影响,构建温度影响的孔隙压力时空演化函数,据此建立应力与温度作用下的煤储层渗透率模型。结果表明:建立的模型能合理描述沿抽采井筒孔隙压力的演化规律以及瓦斯的运移特性,即在恒定外应力的条件下,随抽采时间增加,不同位置处孔隙压力先降低后变化平缓,煤储层渗透率先降低后升高;此外,同一煤储层位置处,考虑温度比不考虑温度的渗透率计算值更低;通过讨论发现,随抽采时间增加,根据裂隙压缩与基质收缩对渗透率演化的不同效应,设置合理的负压抽采方式可提高瓦斯抽采量。   相似文献   

10.
影响煤层渗透率测试的若干因素   总被引:2,自引:0,他引:2  
通过对中国8个矿区10口煤层气评价井的试井工作,讨论了影响煤层渗透率测试的若干因素,认为钻井作业对煤层的伤害、煤体结构及较高的有效地应力是主要影响因素;而煤的变质程度虽然对煤的割理发育起控制作用,但不是煤层渗透率测试的主要影响因素。  相似文献   

11.
含水煤层水害形成机理及防治技术   总被引:1,自引:0,他引:1  
在煤炭开采过程中,煤层常被视作隔水或弱透水地层。然而,孟加拉国巴拉普库利亚煤矿(简称孟巴煤矿)主采的Ⅵ号煤层平均厚度为33 m,富水性较强,开采过程中多次突水,表现出煤层成为含水层的特殊水文地质现象,与我国东北、西北侏罗纪煤田局部地区出现的煤层含水现象类似。综合分析了煤层空隙特征、储水结构及地下水补给条件这3项含水层形成的必备要素,揭示了孟巴煤矿特厚煤体含水层的形成机制。从煤体的微观结构、物理力学性质及区域构造发育特征着手,对煤体是否具有储存地下水的空间进行了研究;结合室内岩石渗透性测试及现场大型抽水试验,分析了煤层顶、底板岩层的透水/阻水特性,对煤层是否具备含水层的储水结构进行了研究;采用水力连通试验等手段,查明了特厚煤体含水的主要补给水源。研究表明,有机质的煤化作用和后期地层应力作用,使得煤体自身结构存在大量的含、导水裂隙,在具备较好的补给条件并满足含水层储水结构的情况下,煤体可成为含水地层。针对煤体含水层的水害特点,提出特厚含水煤层\  相似文献   

12.
13.
近期勘探实践显示,六盘水煤田土城向斜内煤层气资源丰富,如何实现高效开发是关键,而现今地应力在煤层气开发过程中具有重要作用。本次研究基于研究区注入/压降地应力实测数据,分析土城向斜煤储层现今地应力分布特征及其效应,结果表明:煤储层现今地应力随埋藏深度的增加而逐渐增大,呈明显的线性关系。水平最大主应力和最小主应力均随着煤储层压力的增大而增大,表明现今地应力对于煤储层能量有所贡献,影响独立叠置含煤层气系统的形成。现今地应力影响煤层渗透性,进而控制煤层气开发。土城向斜内煤储层渗透率随有效地应力增大呈指数减小。本次研究成果期望可以在六盘水煤田土城向斜煤层气开发中提供新的地质参考与科学依据。  相似文献   

14.
焦作煤田煤层气储气层特征及含气性   总被引:1,自引:0,他引:1  
焦作煤田的二1煤层厚度稳定,结构简单,且煤层气资源丰富。煤层的孔裂隙、吸附性、含气性、渗透性、储层压力、含气饱和度、储层温度等煤储层特征是煤层气选区评价和勘探开发决策的重要依据之一。通过对煤储层特征和分布规律深入的分析和研究认为:①焦作煤田二1煤层的纳米级孔隙发育,煤层吸附能力较强,且随着埋深的增加,吸附能力增大;②该煤层多数处于低压状态,但随着埋深的增加,储层压力和压力梯度有增大的趋势。③煤层气含量和含气饱和度随埋深的变化呈现相近的变化规律,含气量越大,甲烷(CH4)含量越大,甲烷(CH4)含量由浅至深有增大的趋势。④根据我国渗透率划分标准,该煤层原始煤储层的渗透率多数属于中高渗透率煤层,局部地段属于低渗透煤层。  相似文献   

15.
为了确定顺煤层剪切带的煤与瓦斯突出机理,在对顺煤层剪切带的受力状态进行分析的基础上,应用Mohr-Coulomb理论研究了顺煤层剪切带的形成机制,并探讨了顺煤层剪切带内的煤层变化特征、瓦斯含量和瓦斯压力特征及地应力对煤与瓦斯突出的影响。结果表明:当煤层倾角接近剪切滑动的临界角时,易产生薄煤区,而远离临界角时,煤层厚度增加,煤层厚度剧烈变化部位为应力集中区并具有较高的应力梯度;顺煤层剪切带内的压应力、煤层的面理化结构和煤层厚度的剧烈变化使其在宏观上形成了高瓦斯含量和高瓦斯压力特征,微观上糜棱煤细颈瓶型的孔隙形态为发生煤与瓦斯突出提供了必要的介质条件;在紧闭褶皱区,煤与瓦斯突出类型以突出为主,在宽缓褶皱区和伸展型顺煤层剪切带内,煤与瓦斯突出类型以压出和倾出为主。顺煤层剪切带内的高地应力、高瓦斯压力和发育的构造煤等3个因素是煤与瓦斯突出发生的主要原因。  相似文献   

16.
为解决塔山煤矿高强度开采条件下瓦斯低含量、高涌出的问题,同时为了弥补大型物理实验和现场试验成本高、操作难的缺点,根据该矿8101工作面所属区域煤层的地质和瓦斯赋存条件,确定了数值试验方案,对地面垂直钻孔预抽特厚煤层瓦斯的效果进行优化分析。基于煤岩(体)的孔隙特征,构建了含瓦斯煤岩(体)破裂过程气-固耦合和渗透率-损伤耦合数学本构模型。采用RFPA2D瓦斯分析版软件建立地面钻孔抽放瓦斯的数值计算模型,设置有关简化条件、边界条件和物性参数,通过数值试验得出:地面垂直钻孔的终孔位置布置在煤层底部比较合理;在综合考虑地面垂直钻孔投入成本和瓦斯抽采效果的基础上,确定地面垂直钻孔间距为50~60 m比较合理。同时,由8101工作面地面垂直钻孔抽采煤层瓦斯的实际应用效果分析可知,当地面垂直钻孔的终孔位置布置在煤层底部,且钻孔间距布置为50 m时,能够实现良好的瓦斯抽放效果,这也从一定程度上进一步验证了数值试验的合理性和可行性。  相似文献   

17.
基于云驾岭煤矿瓦斯涌出量异常变化的现象,收集地质勘查及煤矿生产期间揭露的地质构造及瓦斯信息,运用瓦斯地质理论,从煤层瓦斯生成、运移、储存的角度,研究岩浆岩侵入、煤层埋深和断层等地质因素对2号煤层煤质、生烃能力、煤层渗透性、瓦斯含量等参数以及煤层瓦斯赋存的影响。研究结果表明岩浆侵入提高了2号煤层的变质程度、瓦斯储集能力和渗透性,促进了煤层二次生烃,同时岩浆热液产生的高温高压作用使煤层瓦斯大量逸散;岩浆侵入对煤层瓦斯的生成、运移和储存均产生了影响,是煤层瓦斯赋存的主要控制因素,断层特征及分布影响了瓦斯的储存和运移,煤层埋深影响了瓦斯的储存,断层和煤层埋深是煤层瓦斯赋存的一般影响因素。  相似文献   

18.
针对低渗透性煤层瓦斯抽采难度大、抽采效率低等问题,基于CO2-CH4多组分气体竞争吸附作用,开展了注CO2提高煤层瓦斯抽采率数值模拟与试验研究。首先,建立了考虑气-水两相流与Klinkenberg效应的煤层注CO2促抽瓦斯流-固耦合模型,利用COMSOL软件进行了煤层注CO2后煤层瓦斯压力、瓦斯含量和瓦斯抽采率等参数变化规律,并应用于工程试验。结果表明:构建的气-水两相流瓦斯抽采流-固耦合数学模型可靠、合理;注入CO2抽采煤层气瓦斯压力、瓦斯含量均比未注入CO2抽采下降速率快;现场试验后,注气抽采条件下瓦斯抽采浓度平均值是未注气条件下的2.02倍,瓦斯抽采纯量是后者的3倍。煤层注入CO2气体后,瓦斯抽采量增加,显著促进了煤层瓦斯抽采。  相似文献   

19.
地应力是煤与瓦斯突出的重要动力,区域应力场是不同期次构造运动在该区域综合作用的具体体现。结合区域应力场和区域构造断块划分,研究了祁东井田应力场及其对煤与瓦斯突出的影响。结果表明:祁东井田最大、中间、最小主应力与煤层埋深呈正相关关系,且其最大主应力明显比位于华北地区的焦作中马村矿,平顶山一矿、六矿、八矿,以及华东地区的淮南潘一矿、谢一矿都大得多;祁东井田处在高应力区,地应力是9号煤层25次煤与瓦斯突出的主导因素;该井田东部地应力较集中,瓦斯含量大,煤与瓦斯突出危险性较大。  相似文献   

20.
以韩城煤层气区块3号、5号和11号煤层为例,进行不同围压条件下的煤心孔渗实验,探讨了该区煤储层物性与应力之间的耦合关系,建立了相应的数学模型。结果表明,煤心孔渗随围压的增加而不断下降,渗透率应力伤害远强于孔隙度应力伤害,但各煤层的应力敏感性各不相同:在实验围压从4.14 MPa(600 psi)增加到12.42 MPa(1 800 psi)条件下,11号煤层孔渗应力敏感性最强,孔隙度应力伤害达76.5%,渗透率应力伤害达93.3%;3号煤层孔渗应力敏感性最弱,孔隙度应力伤害38.5%,渗透率应力伤害77.9%;5号煤层孔渗应力敏感性较强,孔隙度应力伤害约45%,渗透率应力伤害达83.9%。分析认为,裂隙发育状况是造成各煤层间孔渗应力敏感差异的主要原因。从实验数据的拟合情况看,幂函数模式比指数函数模式更能准确地获取测试围压范围内的孔渗内插值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号