首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil detachment by rill flow is a key process of rill erosion, modelling this process can help in understanding rill erosion mechanisms. However, many soil detachment models are established on conceptual assumptions rather than experimental data. The objectives of this study were to establish a model of soil detachment by rill flow based on flume experimental data and to quantitatively verify the model. We simulated the process of soil detachment by rill flow in flume experiments with a soil-feeding hopper using loessial soil on steep slopes. Seven flow discharges, six slopes and five sediment loads were combined. Soil detachment capacity, sediment transport capacity, and soil detachment rate by rill flow under different sediment loads were measured. The process of soil detachment by rill flow can be modelled by a dual power function based on soil detachment capacity and transport capacity deficit as variables. The established model exhibited high credibility (NSE=0.97; R2=0.97). The contributions of soil detachment capacity and transport capacity deficit to soil detachment rate by rill flow reached 60% and 36%, respectively. Soil detachment capacity exerted more influence on soil detachment rate than did transport capacity deficit. The performance of the WEPP rill erosion equation is also favourable (NSE=0.95; R2=0.97). The two power exponents in the model we established strengthen the role of soil detachment capacity in soil detachment rate and weaken that for transport capacity deficit. Soil detachment capacity and transport capacity deficit played important roles in the determination of soil detachment rate by rill flow. The results can be applied to implement the numerical modeling and prediction of rill erosion processes on steep loessial hillslopes. © 2019 John Wiley & Sons, Ltd.  相似文献   

2.
Concentrated flow erosion rates reduced through biological geotextiles   总被引:1,自引:0,他引:1  
Soil erosion by concentrated flow can cause serious environmental damage. Erosion‐control geotextiles have considerable potential for reducing concentrated flow erosion. However, limited data are available on the erosion‐reducing potential of geotextiles. In this study, the effectiveness of three biological geotextiles in reducing soil losses during concentrated flow is investigated. Hereto, runoff was simulated in a concentrated flow flume, filled with an erodible sandy loam on three slope gradients (13·5, 27·0 and 41·5%). Treatments included three biological geotextiles (borassus, buriti and bamboo) and one bare soil surface. Darcy–Weisbach friction coefficients ranged from 0·01 to 2·84. The highest values are observed for borassus covered soil surfaces, followed by buriti, bamboo and bare soil, respectively. The friction coefficients are linearly correlated with geotextile thickness. For the specific experimental conditions of this study, borassus geotextiles reduced soil detachment rate on average to 56%, buriti geotextiles to 59% and bamboo geotextiles to 66% of the soil detachment rate for bare soil surfaces. Total flow shear stress was the hydraulic parameter best predicting soil detachment rate for bare and geotextile covered surfaces (R2 = 0·75–0·84, <0·001, n = 12–15). The highest resistance against soil detachment was observed for the borassus covered soil surfaces, followed by buriti, bamboo and bare soil surfaces, respectively. Overall, biological geotextiles are less effective in controlling concentrated flow erosion compared with interrill erosion. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
In the rill erosion process, run-on water and sediment from upslope areas, and rill flow hydraulic parameters have significant effects on sediment detachment and transport. However, there is a lack of data to quantify the effects of run-on water and sediment and rill flow hydraulic parameters on rill erosion process at steep hillslopes, especially in the Loess Plateau of China. A dual-box system, consisting of a 2-m-long feeder box and a 5-m-long test box with 26.8% slope gradient was used to quantify the effects of upslope runoff and sediment, and of rill flow hydraulic parameters on the rill erosion process. The results showed that detachment-transport was dominated in rill erosion processes; upslope runoff always caused the net rill detachment at the downslope rill flow channel, and the net rill detachment caused by upslope runoff increased with a decrease of runoff sediment concentration from the feeder box or an increase of rainfall intensity. Upslope runoff discharging into the rill flow channel or an increase of rainfall intensity caused the rill flow to shift from a stratum flow into a turbulent flow. Upslope runoff had an important effect on rill flow hydraulic parameters, such as rill flow velocity, hydraulic radius, Reynolds number, Froude number and the Darcy-Weisbach resistance coefficient. The net rill detachment caused by upslope runoff increased as the relative increments of rill flow velocity, Reynolds number and Froude number caused by upslope runoff increased. In contrast, the net rill detachment decreased with an increase of the relative decrement of the Darcy-Weisbach resistance coefficient caused by upslope runoff. These findings will help to improve the understanding of the effects of run-on water and sediment on the erosion process and to find control strategies to minimize the impact of run-on water.  相似文献   

4.
Hydrodynamic characteristics of rill flow on steep slopes   总被引:4,自引:0,他引:4       下载免费PDF全文
Rill erosion is a dominant sediment source on sloping lands. However, the amount of soil loss from rills on steep slopes is vastly more than that on gentle slopes because of differences in rill shape and hydraulic patterns. The aims of this paper are to determine the hydrodynamic characteristics of rills and the friction coefficients in steep slope conditions and to propose modifications of some hydraulic parameters used in soil loss prediction models. A series of inflow experiments was conducted on loess slopes. The results show that the geometric and hydraulic properties of rill on the steep loess slopes, which are characterized by the mean width of cross sections, mean velocity and mean depth of flow, are related to discharge and slope gradient in power functions. However, the related exponents to discharge are 0.26, 0.48 and 0.26, respectively, which are different from the exponents derived in previous studies, which were conducted on gentle slopes. The Manning roughness coefficient ranged from 0.035 to 0.071, with an average of 0.0536, and the Darcy–Weisbach friction coefficients varied from 0.4 to 1.9. The roughness coefficients are closely related to the Reynolds numbers and flow volumes; however, the correlations vary with slope gradient. The roughness coefficients are directly proportional to the Reynolds number and the flow volume on steep slopes, in contrast with the roughness coefficients found on gentle slopes, which decrease as the Reynolds number and flow volume increase. This difference is caused by the interactions among the hydraulics of the flow, the shape of the rills and the sediment concentrations on steep slopes. The results indicate that parameters used in models to predict rill erosion have to be modified according to slope gradient. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Although numerous studies have acknowledged that vegetation can reduce erosion, few process-based studies have examined how vegetation cover affect runoff hydraulics and erosion processes. We present field observations of overland flow hydraulics using rainfall simulations in a typical semiarid area in China. Field plots (5 × 2 m2) were constructed on a loess hillslope (25°), including bare soil plot as control and three plots with planted forage species as treatments—Astragalus adsurgens, Medicago sativa and Cosmos bipinnatus. Both simulated rainfall and simulated rainfall + inflow were applied. Forages reduced soil loss by 55–85% and decreased overland flow rate by 12–37%. Forages significantly increased flow hydraulic resistance expressed by Darcy–Weisbach friction factor by 188–202% and expressed by Manning's friction factor by 66–75%; and decreased overland flow velocity by 28–30%. The upslope inflow significantly increased overland flow velocity by 67% and stream power by 449%, resulting in increased sediment yield rate by 108%. Erosion rate exhibited a significant linear relationship with stream power. M. sativa exhibited the best in reducing soil loss which probably resulted from its role in reducing stream power. Forages on the downslope performed better at reducing sediment yield than upslope due to decreased rill formation and stream power. The findings contribute to an improved understanding of using vegetation to control water and soil loss and land degradation in semiarid environments.  相似文献   

6.
A deeper understanding of the sediment characteristics associated with rock fragment content can improve our knowledge of the erosional processes and transport mechanisms of sediments on steep rocky slopes. This research used simulated rainfall experiments lasting for 1 h at a rate of 90 mm h−1 and employed 5 × 1 × 0.4 m parallel troughs filled with purple soils with different rock fragment volumetric contents (0, 5, 10, 20, 30 and 40%) on a 15° slope gradient. For each simulated event, runoff and sediment were sampled at 1- and 3-min intervals, respectively, to study, in detail, the temporal changes in the size distributions of the eroded sediments. The results show that sediment concentrations, soil erosion rates and soil loss ratios significantly decreased as rock fragment content increased for rock fragment contents from 0 to 40% in purple soils. During the transportation process, clay particles often formed aggregates and were then transported as larger particles. Silt particles were more likely to be transported as primary particles with a low degree of sediment aggregation. Sand-sized particles, which constituted a greater proportion of the original soil than the eroded sediments, were formed from other fine particles and transported as aggregates rather than as primary particles. Suspension-saltation, which mainly transports fine particles of 0.02–0.05 mm and coarse particles larger than 0.5 mm in size, was the most important transport mechanism on steep rocky slopes. The results of this study can help to explain the inherent laws of erosional processes on steep rocky slopes and can provide a foundation for improving physical models of soil erosion. © 2019 John Wiley & Sons, Ltd.  相似文献   

7.
Post-fire catchment and water utility managers throughout the world use predictive models to estimate potential erosion risks to aid in evaluating downstream impacts of increased runoff and erosion, and to target critical areas within a fire for applying mitigation practices. Erosion prediction can be complicated by forest road networks. Using novel GIS technology and soil erosion modelling, this study evaluated the effect of roads on surface runoff, erosion and sediment yields following a wildfire and determined that the predictive models were providing reasonable results. The GeoWEPP model was used to simulate onsite erosion and offsite sediment delivery before and after fire disturbance using a 2-m resolution DEM as the terrain layer. Erosion rates in excess of 4 Mg ha−1 year−1 were predicted mainly from steep moderate and high severity burn areas. Roads influenced surface runoff flow path distributions and sub-catchment delineations, affecting the spatial distribution of sediment detachment and transport. Roads tended to reduce estimated erosion on slopes below the roads but increases in erosion rates were estimated for road fillslopes. Estimated deposition amounts on roads and in sediment basins were similar to measured amounts. The results confirm that road prisms, culverts and road ditches influence sedimentation processes after wildfire, and they present opportunities to detain eroded sediments.  相似文献   

8.
Runoff generation and soil loss from slopes have been studied for decades, but the relationships among runoff, soil loss and rill development are still not well understood. In this paper, rainfall simulation experiments were conducted in two neighbouring plots (scale: 1 m by 5 m) with four varying slopes (17.6%, 26.8%, 36.4% and 46.6%) and two rainfall intensities (90 and 120 mm h?1) using two loess soils. Data on rill development were extracted from the digital elevation models by means of photogrammetry. The effects of rainfall intensity and slope gradient on runoff, soil loss and rill development were different for the two soils. The runoff and soil loss from the Anthrosol surface were generally higher than those from the Calcaric Cambisol surface. Higher rainfall intensity produced less runoff and more sediment for almost each treatment. With increasing slope gradient, the values of cumulative runoff and soil loss peaked, except for the treatments with 90 mm h?1 rainfall on the slopes with Anthrosol. With rainfall duration, runoff discharge decreased for Anthrosol and increased for Calcaric Cambisol for almost all the treatments. For both soils, sediment concentration was very high at the onset of rainfall and decreased quickly. Almost all the sediment concentrations increased on the 17.6% and 26.8% slopes and peaked on the 36.4% and 46.6% slopes. Sediment concentrations were higher on the Anthrosol slopes than on the Calcaric Cambisol slopes. At 90 mm h?1 rainfall intensity, increasingly denser rills appeared on the Anthrosol slope as the slope gradient increased, while only steep slopes (36.4% and 46.6%) developed rills for the Calcaric Cambisol soil. The contributions of rill erosion ranged from 36% to 62% of the cumulative soil losses for Anthrosol, while the maximum contribution of rill erosion to the cumulative soil loss was only 37.9% for Calcaric Cambisol. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Using hydraulic parameters is essential for describing soil detachment and developing physically based erosion prediction models. Many hydraulic parameters have been used, but the one that performs the best for describing soil detachment on steep slopes when the lateral expansion (widening) of rills is not limited has not been identified. An indoor concentrated flow scouring experiment was performed on steep loessial slopes to investigate soil detachment rates for different flow rates and slope gradients. The experiments were conducted on a slope‐adjustable plot (5 m length, 1 m width, 0.5 m depth). Sixteen combinations of 4 flow rates (10, 15, 20, and 25 L/min) and 4 slope gradients (17.6%, 26.8%, 36.4%, and 46.6%) were investigated. The individual and combined effects of slope gradient and flow hydraulic parameters on soil detachment rate were analysed. The results indicated that soil detachment rate increased with flow rate and slope gradient. Soil detachment rate varied linearly and exponentially with flow rate and slope gradient, respectively. Multivariate, nonlinear regression analysis indicated that flow depth exerted the greatest influence on the soil detachment rate, followed by unit discharge per unit width, slope gradient, and flow rate in this study. Shear stress and stream power could efficiently describe the soil detachment rate using a power equation. However, the unit stream power and unit energy of the water‐carrying section changed linearly with soil detachment rate. Stream power was an optimal hydraulic parameter for describing soil detachment. These findings improve our understanding of concentrated flow erosion on steep loessial slopes.  相似文献   

10.
Yuhan Huang  Fahu Li  Wei Wang  Juan Li 《水文研究》2020,34(20):3955-3965
Rill erosion processes on saturated soil slopes are important for understanding erosion hydrodynamics and determining the parameters of rill erosion models. Saturated soil slopes were innovatively created to investigate the rill erosion processes. Rill erosion processes on saturated soil slopes were modelled by using the sediment concentrations determined by sediment transport capacities (STCs) measurement and the sediment concentrations at different rill lengths. Laboratory experiments were performed under varying slope gradients (5°, 10°, 15°, and 20°) and unit-width flow rates (0.33, 0.67, and 1.33 × 10−3 m3 s−1 m−1) to measure sediment concentrations at different rill lengths (1, 2, 4, and 8 m) on saturated soil slopes. The measured sediment concentrations along saturated rills ranged from 134.54 to 1,064.47 kg/m3, and also increased exponentially with rill length similar to non-saturated rills. The model of the rill erosion process in non-saturated soil rills was applicable to that in saturated soil rills. However, the sediment concentration of the rill flow increased much faster, with the increase in rill length, to considerably higher levels at STCs. The saturated soil rills produced 120–560% more sediments than the non-saturated ones. Moreover, the former eroded remarkably faster in the beginning section of the rills, as compared with that on the non-saturated soil slopes. This dataset serves as the basis for determining the erosion parameters in the process-based erosion models on saturated soil slopes.  相似文献   

11.
Overland flow, sediments, and nutrients transported in runoff are important processes involved in soil erosion and water pollution. Modelling transport of sediments and chemicals requires accurate estimates of hydraulic resistance, which is one of the key variables characterizing runoff water depth and velocity. In this paper, a new theoretical power–velocity profile, originally deduced neglecting the impact effect of rainfall, was initially modified for taking into account the effect of rainfall intensity. Then a theoretical flow resistance law was obtained by integration of the new flow velocity distribution. This flow resistance law was tested using field measurements by Nearing for the condition of overland flow under simulated rainfall. Measurements of the Darcy–Weisbach friction factor, corresponding to flow Reynolds number ranging from 48 to 194, were obtained for simulated rainfall with two different rainfall intensity values (59 and 178 mm hr−1). The database, including measurements of flow velocity, water depth, cross-sectional area, wetted perimeter, and bed slope, allowed for calibration of the relationship between the velocity profile parameter Γ, the slope steepness s, and the flow Froude number F, taking also into account the influence of rainfall intensity i. Results yielded the following conclusions: (a) The proposed theoretical flow resistance equation accurately estimated the Darcy–Weisbach friction factor for overland flow under simulated rainfall, (b) the flow resistance increased with rainfall intensity for laminar overland flow, and (c) the mean flow velocity was quasi-independent of the slope gradient.  相似文献   

12.
Quantifying the relative proportions of soil losses due to interrill and rill erosion processes during erosion events is an important factor in predicting total soil losses and sediment transport and deposition. Beryllium‐7 (7Be) can provide a convenient way to trace sediment movement over short timescales providing information that can potentially be applied to longer‐term, larger‐scale erosion processes. We used simulated rainstorms to generate soil erosion from two experimental plots (5 m × 4 m; 25° slope) containing a bare, hand‐cultivated loessal soil, and measured 7Be activities to identify the erosion processes contributing to eroded material movement and/or deposition in a flat area at the foot of the slope. Based on the mass balance of 7Be detected in the eroded soil source and in the sediments, the proportions of material from interrill and rill erosion processes were estimated in the total soil losses, the deposited sediments in the flat area, and in the suspended sediments discharged from the plots. The proportion of interrill eroded material in the discharged sediment decreased over time as that of rill eroded material increased. The amount of deposited material was greatly affected by overland flow rates. The estimated amounts of rill eroded material calculated using 7Be activities were in good agreement with those based on physical measurements of total plot rill volumes. Although time lags of 45 and 11 minutes existed between detection of sediment being removed by rill erosion, based on 7Be activities, and observed rill initiation times, our results suggest that the use of 7Be tracer has the potential to accurately quantify the processes of erosion from bare, loessal cultivated slopes and of deposition in flatter, downslope areas that occur in single rainfall events. Such measurements could be applied to estimate longer‐term erosion occurring over larger areas possessing similar landforms. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Flow resistance equation for rills   总被引:1,自引:0,他引:1       下载免费PDF全文
In this paper, a new flow resistance equation for rill flow was deduced applying dimensional analysis and self‐similarity theory. At first, the incomplete self‐similarity hypothesis was used for establishing the flow velocity distribution whose integration gives the theoretical expression of the Darcy–Weisbach friction factor. Then the deduced theoretical resistance equation was tested by some measurements of flow velocity, water depth, cross section area, wetted perimeter, and bed slope carried out in 106 reaches of some rills shaped on an experimental plot. A relationship between the velocity profile, the channel slope, and the flow Froude number was also established. The analysis showed that the Darcy–Weisbach friction factor can be accurately estimated by the proposed theoretical approach based on a power–velocity profile.  相似文献   

14.
Plant litter can be incorporated into topsoil by a natural process, affecting the soil erosion process. This is a widespread phenomenon in erosion-prone areas. This study was conducted to investigate the effect of litter incorporation on the process of soil detachment on the Loess Plateau, China. Four common plant litters (Bothriochloa ischaemum L. Keng., Artemisia sacrorum Ledeb., Setaria viridis L. Beauv., and Artemisia capillaris Thunb.) were collected, then incorporated into the silt loam soil at five rates (0.1, 0.4, 0.7, 1.0, and 1.3 kg m−2) on the basis of our field investigation. Twenty litter–soil treatments and one bare soil control were prepared. After 50 days of natural stabilization, 30 soil samples of each treatment were collected. We used a flume test to scour the soil samples under six flow shear stress conditions (5.66, 8.31, 12.21, 15.55, 19.15, and 22.11 Pa). The results showed that the different incorporated litter masses and morphological characteristics, such as litter tissue density (ranging from 0.52 to 0.68 g cm−3), length density (2.34 to 91.00 km m−3), surface area density (LSAD; 27.9 to 674.2 m2 m−3), and volume ratio (0.003 to 0.050 m3 m−3), caused varied soil detachment capacities (0.043 to 4.580 kg·m−2·s−1), rill erodibilities (0.051 to 0.237 s m−1), and critical shear stresses (2.02 to 6.83 Pa). The plant litter incorporated within the soil reduced the soil detachment capacities by 38%–59%, lowered the rill erodibilities by 32%–46%, and increased the critical shear stresses by 98%–193% compared with the bare soil control. The soil containing B. ischaemum (L.) Keng. litter was more resistant to erosion. By comparing different parameters, we found that the contact area between the litter and soil was the main factor affecting the soil detachment process. The soil erosion resistance increased with the increasing contact area between the soil and litter. Furthermore, the litter incorporation effect on rill erodibility can be comprehensively reflected by LSAD (R2 = .93; Nash–Sutcliffe efficiency = 0.79), which could be used to adjust the rill erodibility parameter in physical process-based soil erosion models.  相似文献   

15.
《国际泥沙研究》2023,38(1):49-65
Severe erosion is caused by intense rainfall in tropical regions. The erodible soil of steep hill slopes, accompanied by destruction of vegetation due to human interventions results in accelerated erosion. A sustainable and cost-effective solution such as vetiver grass (Chrysopogon zizanioides) is, thus, required to control the erosion process. In the current study, 6 small-scale glass models: 1 bare and 5 with vetiver grass, having a slope angle of 37° have been constructed. One year after planting, artificial rainfall of extremely high intensity was applied to all 6 small models and the role of vetiver canopy and roots in erosion and runoff control was observed. To see the effect of soil texture, one among these 5 models was made with silty sand and others contained sandy silt. The results demonstrated that, for sandy silt, the inclusion of vetiver reduced the soil loss by 94%–97%, and soil detachment rates were lowered by 95%. The average runoff also was reduced by 21%. The canopy cover showed a positive impact on reducing both quantities. An increase in average root diameter from 1.6 to 2.5 mm increases the soil loss due to its negative impact on added cohesion. The added cohesion showed a linearly negative correlation with soil loss. A composite system of vetiver and jute geotextile was most effective in erosion reduction among 4 vegetated models with sandy silt. Under same vetiver planting layout, the grass covered model of silty sand yielded 84% lower erosion and 62.5% lower runoff than the grass covered one with sandy silt. Thus, vetiver was more effective in erosion and runoff reduction for soil with a greater percentage of sand, and soil type dominated the erosion process.  相似文献   

16.
This study examines the size characteristics of sediment removed from a semiarid hillslope by interrill overland flow. Rainfall simulation experiments were conducted on a runoff plot 18 m wide and 35 m long established on a piedmont hillslope in southern Arizona. The top of the plot coincided with the hillslope divide, and its outlet was located within a shallow rill. Samples of runoff were obtained from two cross-sections located in the interrill portion of the plot upslope of the rill and from a calibrated flume through which was directed interrill overland flow reaching the bottom of the plot. Analyses of sediment contained in these samples showed that sediment in interrill flow is finer than the matrix soil. The fineness of the interrill sediment compared to the matrix soil appears to be due to the inability of interrill overland flow to transport the coarser fraction of the sediment supplied to it by raindrop detachment. This finding implies that the rate of soil erosion in interrill areas is not. as is commonly supposed, limited by the rate at which raindrops can detach sediment but by the rate at which they detach sediment of a size that the overland flow is competent to transport. The relative fineness of sediment eroded from this hillslope is consistent with other evidence for the recent evolution of shrub-covered hillslopes in southern Arizona.  相似文献   

17.
Soil salinization can occur in many regions of the world. Soil sodicity affects rainfall‐runoff relationships and related erosion processes considerably. We investigated sodicity effects on infiltration, runoff and erosion processes on sodic soil slopes for two soils from China under simulated rainfall. Five sodicity levels were established in a silt loam and a silty clay with clay contents of 8.5% and 46.0%, respectively. The soils, packed in 50 cm × 30 cm × 15 cm flumes at two slope gradients (22° and 35°), were exposed to 60 min of simulated rainfall (deionized water) at a constant intensity of 125 mm h?1. Results showed that, for both soils, increasing soil sodicity had some significant effects on hydrological processes, reducing the infiltration coefficient (pr = ?0.69, P  < 0.01) and the quasi‐steady final infiltration rate (pr = ?0.80, P  < 0.01), and increasing the mean sediment loss (pr = 0.39, P  < 0.05); however, it did not significantly affect the cumulative rainfall to ponding (P  > 0.05). Moreover, increasing sodicity significantly increased the Reynolds number and the stream power (pr = 0.78 and 0.66, P  < 0.01, respectively) of the runoff, decreased Manning roughness and Darcy–Weisbach coefficient (pr = ?0.52 and ?0.52, P  < 0.05, respectively), but did not significantly affect the mean flow velocity, mean flow depth, Froude number and hydraulic shear stress. Stream power was shown to be the most sensitive hydraulic variable affecting sediment loss for both soils. Furthermore, as sodicity increased, the values of critical stream power decreased for both the silt loam (R 2 = 0.29, P  < 0.05) and the silty clay (R 2 = 0.49, P  < 0.05). The findings of this study were applied to a real situation and identified some negative effects that can occur with increasing sodicity levels. This emphasized the importance of addressing the influences of soil sodicity in particularly high risk situations and when predicting soil and water losses.  相似文献   

18.
Soil erosion and nutrient losses with surface runoff in the loess plateau in China cause severe soil quality degradation and water pollution. It is driven by both rainfall impact and runoff flow that usually take place simultaneously during a rainfall event. However, the interactive effect of these two processes on soil erosion has received limited attention. The objectives of this study were to better understand the mechanism of soil erosion, solute transport in runoff, and hydraulic characteristics of flow under the simultaneous influence of rainfall and shallow clear‐water flow scouring. Laboratory flume experiments with three rainfall intensities (0, 60, and 120 mm h−1) and four scouring inflow rates (10, 20, 30, and 40 l min−1) were conducted to evaluate their interactive effect on runoff. Results indicate that both rainfall intensity and scouring inflow rate play important roles on runoff formation, soil erosion, and solute transport in the surface runoff. A rainfall splash and water scouring interactive effect on the transport of sediment and solute in runoff were observed at the rainfall intensity of 60 mm h−1 and scouring inflow rates of 20 l min−1. Cumulative sediment mass loss (Ms) was found to be a linear function of cumulative runoff volume (Wr) for each treatment. Solute transport was also affected by both rainfall intensity and scouring inflow rate, and the decrease in bromide concentration in the runoff with time fitted to a power function well. Reynolds number (Re) was a key hydraulic parameter to determine erodability on loess slopes. The Darcy–Weisbach friction coefficients (f) decreased with the Reynolds numbers (Re), and the average soil and water loss rate (Ml) increased with the Reynolds numbers (Re) on loess slope for both scenarios with or without rainfall impact. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper we quantitatively test the hypothesis that soil freeze–thaw (FT) processes significantly increase the potential for upland hillslope erosion during run‐off events that follow thaw. We selected a highly frost‐susceptible silt to obtain an upper bound on FT effects, and completed three series of six experiments each to quantify differences in soil erosion and rill development in a bare soil following a single FT cycle. Each series represented a specific soil moisture range: 16–18 per cent, 27–30 per cent and 37–40 per cent by volume, with nominal flow rates of 0·4, 1·2 and 2·4 L/min and slopes of 8° and 15°. Each experiment used two identical soil bins: one a control (C) that remained unfrozen, and another that was frozen and thawed once. Standard soil characterization tests did not detect significant differences between the FT and C bins. We measured cross‐sectional geometry of an imposed straight rectangular rill before each experiment, sediment load during and rill cross‐sections after. Changes in cross section provided detailed measures of erosion at specific locations, while sediment load from time series run‐off samples integrated the rill erosion. Several parameters, including average maximum rill width, average maximum rill depth, rill cross‐section depth measures and sediment load, all followed similar trends. Each was greater in the FT than in the C, with values that generally increased with slope and flow. However, soil moisture was the only parameter that affected the FT/C ratios. Average sediment load grouped by soil moisture provided FT/C ratios of 2·4, 3·0 and 5·0 for low, mid and high moisture, respectively. In contrast, a ‘dry’ experiment at 4–5 per cent soil moisture had FT/C of 1·02 for sediment load. These results show a dramatic increase with soil moisture in the rate and quantity of bare soil eroded due to the FT cycle. As both FT and C results were highly sensitive to initial conditions, minimum differences in soil weight, bulk density and soil moisture through each series of experiments were required to achieve consistent results, indicating that rill erosion may be chaotic. Published in 2005 by John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, a recently deduced flow resistance equation for open channel flow was tested under equilibrium bed‐load transport conditions in a rill. First, the flow resistance equation was deduced applying dimensional analysis and the incomplete self‐similarity condition for the flow velocity distribution. Then, the following steps were carried out for developing the analysis: (a) a relationship (Equation  13 ) between the Γ function of the velocity profile, the rill slope, and the Froude number was calibrated by the available measurements by Jiang et al.; (b) a relationship (Equation  17 ) between the Γ function, the rill slope, the Shields number, and the Froude number was calibrated by the same measurements; and (c) the Darcy–Weisbach friction factor values measured by Jiang et al. were compared with those calculated by the rill flow resistance equation with Γ estimated by Equations  13 and 17 . This last comparison demonstrated that the rill flow resistance equation, in which slope and Shields number, representative of sediment transport effects, are introduced, is characterized by the lowest values of the estimate errors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号