首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface sediment samples collected off the Huanghe (Yellow) River mouth during the period 2007–2009 were analyzed for major and trace element concentrations. Concentrations of 16 elements were measured using X-ray fluorescence spectrometry. Results demonstrate that sediment grain size is the dominant factor controlling the spatial variations of elemental concentrations. Correlation and cluster analyses allowed classification of the study area into four geochemical regions: Regions I and III are characterized by high concentrations of Al2O3, Fe2O3, MgO, Na2O, K2O, Cr, Cu, Mn, Ni, Pb, V, and Zn, and contain fine-grained sediments with mean grain size (M z)<22 μm; and; Regions II and IV contain mostly coarse-grained sediments, and are characterized by high concentrations of SiO2, Na2O, and Zr. The sediment entering the sea from the Huanghe River and its tributaries is enriched in Ca. Thus, the Ca/Al ratio was used as an indicator of the proportion of sediments in the study area that originated from the Huanghe River. Ca/Al ratios decrease from Regions I and II (located in the nearshore zone of the Huanghe River delta) to Regions III and IV (distributed in the offshore zone of the northern Huanghe River delta, southern and southeastern Laizhou Bay area).  相似文献   

2.
Clay minerals of 34 sediments collected from the northwestern continental shelf of the East China Sea have been determined by X-ray diffraction analysis. The clay mineral distribution is mainly controlled by the sediment source and the dominant circulation pattern. The predominant clay mineral in our study area is illite comprising more than 67% of the whole clay fraction. The highest concentration of illite (>68%) is found in the southeastern offshore parts beyond the reach of terrigenous input from the Jeju Island. It means that these illites are largely transported by the Kuroshio Current from the South China Sea (SCS). Smectite is highly concentrated in the northwest middle part and in the outer-shelf mud patch. It seems to be due to the high supply of smectite transported from China where fine-grained sediments are discharged from modern and ancient Huanghe (Yellow) River. The relatively high abundant kaolinite is likely derived from the Changjiang (Yangtze) River via the Taiwan Warm Current. In contrast, large amounts of chlorite and high chlorite/kaolinite ratios occur in the northwestern area, reflecting the transportation by the Yellow Sea Coastal Current from the southern Yellow Sea. The discrimination diagrams clearly show that the sediments in the northwestern East China Sea are ultimately sourced from Chinese rivers, especially from the Huanghe River, whereas the sediment in the northeast part might come from the Jeju Island. The muddy sediments of the Changjiang River’s submerged delta have much lower 87Sr/86Sr ratios (0.716 2–0.718 0) than those of the Shandong Peninsular mud wedge (0.721 6–0.724 9), which are supposed to be originated from the Huanghe River, suggesting the distribution pattern of 87Sr/86Sr ratios as a new tracer to discriminate the provenance of shelf sediments in the study area. The 87Sr/86Sr ratios of the outer-shelf muddy sediments ranged from 0.7169 to 0.7216 in a wide range and was between those of the Huanghe River and Changjiang River sediments, suggesting multiple sources of the sediment in the area.  相似文献   

3.
Nine Landsat TM tapes and images and MSS images, 10 NOAA tapes and images and 1 SAR image from 1973 to 1997 were used to analyse the diffusion of suspended sediments and the change of tidal radial sand ridges in the northern part of the Changjiang River delta, the South Yellow Sea. The results showed that the diffusion of suspended sediments was controlled by the tide, net current, and submarine topography in this area. The distribution of suspended sediments had close relationship with thesubmarine topography. The old Huanghe River delta and the Changjiang River comprise the main sediment supply for the formation of radial sand ridges, whose evolution can be divided into three stages since the Huangbe River changed its course and flowed northward into the Bohai Sea.  相似文献   

4.
There are two different opinions on the formation history of Huanghe (Yellow) River. One postulates that Huanghe River might have come into existence before Tertiary. The other supposes that it joined up into a long river only in the last stage of Late Pleistocene. The appearance of Huanghe River is believed to have close relation to the uplifting of Tibetan Plateau. It is not likely that it could have come into being before its high elevation riverhead was formed. Today Huanghe River occurred probably during the recession of the sea in glacial periods. In the last glacial age, the climate was very harsh in the area north of the modern estuary of Changjiang (Yangtse) River; some areas were permafrost and the others barren deserts. At that time, eolation was the major exogenic force on exposed shelf. Beginning from 12 Ka BP, the global climate warmed up, resulting in gradual disappearance of continental mountain glaciers retreated, and sea level rose. Consequently, Huanghe River was replenished with water to become modern river system. With continued rising of sea level, Huanghe River delta moved continuously eastward.  相似文献   

5.
Based on the data from gauging stations,the changes in water discharge and sediment load of the Huanghe (Yellow)River were analyzed by using the empirical mode decomposition(EMD)method.The results show that the periodic oscillation of water discharge and sediment load of the Huanghe River occurs at the interannual,decadal,and multi-decadal scales,caused by the periodic oscillations of precipitation,and El Nio/Southern Oscillation(ENSO)affects water discharge by influencing precipitation distribution and contributes to periodic varations in precipitation and water discharge at interannual timescale.The water discharge and sediment load of the Huanghe River have decreased since the 1960s under the influence of precipitation and huamn activities,and human activities attribute more than precipitation to the reduction in the water discharge and sediment load,furthermore,water abstraction and water-soil conservation practices are the main causes of the decrease in water discharge and sediment load,respectively.The reduction in sediment load has directly impacted on the lower reaches of the Huanghe River and the river delta, causing considerable erosion of the river channel in the lower reaches since the 1970s along with River Delta changing siltation into erosion around 2000.  相似文献   

6.
Liu  Jie  Feng  Xiuli  Liu  Xiao 《中国海洋湖沼学报》2017,35(3):693-703
One of the most important factors controlling the morphology of the modern Huanghe(Yellow) River delta is consolidation settlement, which is impacted by fast deposition, high water content, and low density of seafloor sediment. Consolidation settlement of the Huanghe River subaqueous delta was studied based on field data, laboratory experiments on 12 drill holes, and the one-dimensional consolidation theory. Results show that vertical sediment characteristics varied greatly in the rapidly forming sedimentary bodies of the modern Huanghe River subaqueous delta. Sediments in the upper parts of drill holes were coarser than those in the deeper parts, and other physical and mechanical properties changed accordingly. On the basis of the one-dimensional consolidation theory and drilling depth, the final consolidation settlement of drill holes was between 0.6 m and 2.8 m, and the mean settlement of unit depth was at 1.5–3.5 cm/m. It takes about 15–20 years for the consolidation degree to reach 90% and the average sedimentation rate within the overlying 50 m strata was at 5 cm/a to 12 cm/a. This study helps to forecast the final consolidation settlement and settlement rate of the modern Huanghe River subaqueous delta, which provides key geotechnical information for marine engineers.  相似文献   

7.
Geochemical characteristics of phosphorus near the Huanghe River estuary   总被引:5,自引:0,他引:5  
INTRODUCTIONPhosphorus (P)isanimportantlimitingelementinglobaloceanicproductivity (Holland ,1 978) ,soknowledgeofPisakeytobetterunderstandingofthecyclingofcarbon ,nitrogen,sulfur,andothernu trientelements.Inasimplemassbalancemodel,thelevelofdissolvedPintheoceanisafunctionoftherateofinputviarivers,andtherateofoutputviadepositioninsediments.Inthepresentstudy,thefocusisontheriverinePinputbytheHuangheRiver (YellowRiver)totheBohaiSea,andespeciallyontheamountofPsolubilizedfromsolidphasesupo…  相似文献   

8.
The Huanghe (Yellow) River, with annual sediment discharge about 11 ×108tons, contributes about 17% of the fluvial sediment discharge of world's 21 major rivers to the ocean because its middle reaches flow across the great Loess Plateau of China. Sediment discharge of the Huanghe River has a widespread and profound effect on sedimentation of the sea. The remarkable shift of its outlet in 1128-1855 A.D. to the South Yellow Sea formed a large subaqueous delta and provided the substrate for an extensive submarine ridge field.The shift of its outlet in the modern delta every 10 years is the main reason why with an extremely heavy sediment input and a micro- tidal environment, the Huanghe River has not succeeded in building a birdfoot delta like the Mississippi. The Huanghe River has consistently brought heavy sediment input to sea at least since 0.7 myr.B.P. Paleochannels, paleosols, cheniers and fossils on the sea bottom indicate that the Yellow Sea was exposed during the late Quaternary glacial low-sea l  相似文献   

9.
Wave-induced seepage and its possible contribution to the formation of pockmarks in the Huanghe (Yellow) River delta were investigated experimentally and numerically. Laboratory experiments were carried out to explore the response of a layered silty seabed with various saturation conditions under cyclic wave loads, in which the pore pressure and seepage-related phenomena were particularly monitored. Numerical models to simulate wave-induced seepage in the seabed were presented and evaluated, then applied to the Huanghe River delta. The experimental results show that the excess pore pressure decreases more rapidly at the surface layer, while the seepage-related phenomena are more pronounced when large cyclic loads are applied and the underlying layer is less saturated. The proposed numerical models were verified by comparing with the experiments. The calculated seepage depth agreed well with the depth of the pockmarks in the Huanghe River delta. The experimental and numerical results and the existing insitu investigations indicate that the wave-induced seepage may be a direct cause of the pockmarks in the Huanghe River delta. Extreme storm waves and the dual-layered structure of hard surface layer and weak underlying layer are essential external and internal factors, respectively. Wave- or current-induced scour and transport are possible contributors to the reformation of pockmarks at a later stage.  相似文献   

10.
This paper presents a paleoflood study to determine the flood frequency of the Changjiang River, based on core cj0702, taken from the Changjiang River subaqueous delta. We identified flood deposits by means of high-resolution grain-size variation, sensitive population, geochemical indexes and magnetic susceptibility. The core covers a time span of 120 years by 210 Pb dating and was sampled at 1–2 cm intervals. Grain size, geochemical elements, and physical parameters were analyzed. The results indicate that the sediment of the core is mainly composed of silt and clay, as well as groups of interbedded silt, clay silt, and clay. Vertically, the grain size pattern was controlled by seasonal variations in water discharge and by the sediment input in winter from the abandoned Huanghe River delta. River flooding caused extreme values in all our measured parameters. We identified more than 20 flood events that occurred since 1887 using the physical parameter analysis method. The environmentally sensitive component of sediment grain size(14.32–96.39 μm) contribution30%, Zr/Rb ratio1.5, and magnetic susceptibility16 were selected as the criteria for flood identification generally. We also found that floods that had taken place in the upstream, midstream, or downstream parts of the river were clearly identified by these indexes while the large-scale floods that covered the whole drainage area did not leave clear indications in the sediment record. This study for identification of flood events is of great significance for understanding hyperpycnal current sedimentation as well as for forecasting of floods.  相似文献   

11.
Twenty-nine samples of surface sediments from tidal flats in the Northern Shandong Province were collected for grain size, heavy metal(Hg, Cu, Pb, Zn, Cd, and Cr), and oil pollution analyses. The geoaccumulation index(Igeo) and factor analysis were introduced to evaluate sediment quality and source of contaminants. The mean concentrations of Hg, Cu, Pb, Zn, Cd, Cr, and oil in the surface sediments in the study area are 0.033, 17.756, 19.121, 55.700, 0.291, 59.563, and 14.213 μg g-1, respectively. The heavy metal contamination in the old delta lobe is slightly higher than that in the abandoned delta lobe; however, the opposite was observed for oil pollution. The Igeo results revealed that the overall quality of the surface sediments in the study area is in good condition. The heavy metal pollution levels show a descending order: Cd Hg Cr Cu Zn Pb, Cd being the main pollutant. The contamination level for in the study area is relatively lower than those for China's other tidal flats. Heavy metals are mainly derived from natural sources of rock weathering and erosion, partly influenced by industrial and agricultural discharge. However, oil pollution is mainly from runoff input, motorized fishing boat sewage, and oil exploitation.  相似文献   

12.
The sedimentary history of a Huanghe(Yellow)River delta lobe can be divided into four stages.In the first stage,the crevasse splays and short-lived distributary channel deposits in the subaerial deltaand sheet silt in the subaqueous delta were well developed.In the second stage,further differentiationof sedimentary environments occurred in the subaerial delta lobe(distributary channel,natural levee,flood plain,central lower delta plain and lateral lower delta plain)and the subaqueous delta lobe(prodelta,delta front and delta lateral).In the third stage,crevasse splay and short-lived distributarychannel deposits mostly occurred in the lower or lower-middle part of the subaerial delta lobe,andsheet silt accumulated off the river mouth.In the fourth stage,the abandoned lobe was reworked.The common vertical sequence of the modern Huanghe River delta showed alternating clayey silt andsilt layers.A complete sequence from prodelta to upper delta plain was commonly composed of twoor more delta lobes.  相似文献   

13.
To understand the factors causing frequent outbreaks of harmful algae blooms in the Taihu Lake, China, we studied water quality and nutrient budget in Chinese mitten crab (Eriocheir sinensis) farm ponds in the eastern part of the lake from November 2007 to December 2009. We estimated the nitrogen (N), phosphorus (P), and chemical oxygen demand (COD) loads. Materials input and output ponds, water exchange, and applied management practices of 838.5-hm2 crab ponds were surveyed using questionnaires. Water quality of 12 ponds, which were located no more than 2 km from East Taihu Lake, were monitored. The results show that water quality in the crab ponds was better than reference data. Feeds, including corn seed, commercial feed, trash fish, and gastropod, were the major sources of N and P input in the crab ponds, contributing 88.7% and 94.9%, respectively. In total, 60.5% of N and 37.3% of P were sequestered by macrophytes, and only 15.7% and 8.5% of them were discharged as effluent. The net loads of N and P in effluent were 16.43 kg/hm2/cycle and 2.16 kg/hm2/cycle, respectively, while the COD load was -17.88 kg/hm2/cycle. This indicated that crab farming caused minor negative impact on the trophic status of the lake area, which was attenuated by macrophytes. However, wastewater purification is still necessary in crab faming.  相似文献   

14.
Newly acquired high-resolution seismic profiles reveal a nearshore and an of fshore mud depocenter of f the southern Shandong Peninsula in the Yellow Sea.The nearshore depocenter is distributed in bands along the south coast of Shandong Peninsula.The of fshore depocenter is part of the distal subaqueous deltaic lobe,which deposited around the southeastern tip of the Shandong Peninsula.Between the two depocenters is a linear depression.The mud deposits directly overlie the postglacial transgressive surface and can be divided into lower and upper units by the Holocene maximum flooding surface.The nearshore and off shore units display different seismic structures.The lower unit of the nearshore deposit exhibits basal onlap,whereas the upper unit is characterized by progradation.The lower and upper units of the off shore deposit display distinct acoustic features.The lower unit has low-angle aggradation with internal reflectors generally dipping seaward and truncated by the Holocene maximum flooding surface,whereas the upper unit is characterized by aggradation and progradation landward rather than seaward.Results of geochemistry analysis of QDZ03 sediments and mineral analysis of WHZK01 sediments suggest that the nearshore deposit and the lower unit of the of fshore deposit are derived from the proximal coastal sediments of the Shandong Peninsula and the Huanghe(Yellow) River sediments.The upper unit of the of fshore deposit is mainly Huanghe River-derived.The lower unit of the mud deposit represents a post-glacial transgressive system tract according to dates of core QDZ03,and the upper unit represents a highstand system tract from middle Holocene to the present.These results will be of great significance to further understanding of the transportation of the Huanghe River sediments into the Yellow Sea and the spatial distribution of the subaqueous delta.  相似文献   

15.
In recent years,wetland ecological water requirements (EWRs) have been estimated by using hydrological and functional approaches,but those approaches have not yet been integrated for a whole ecosystem.This paper presents a new method for calculating wetland EWRs,which is based on the response of habitats to water level,and determines water level threshold through the functional integrity of habitats.Results show that in the Huanghe (Yellow) River Delta water levels between 5.0 m and 5.5 m are required to maintain the functional integrity of the wetland at a value higher than 0.7.One of the dominant plants in the delta,Phragmites australis,tolerates water level fluctuation of about ± 0.25 m without the change in wetland functional integrity.The minimum,optimum and maximum EWRs for the Huanghe River Delta are 9.42×106 m3,15.56×106 m3 and 24.12×106 m3 with water levels of 5.0 m,5.2 m and 5.5 m,corresponding to functional integrity indices of 0.70,0.84 and 0.72,respectively.A wetland restoration program has been performed,which aims to meet these EWRs in attempt to recover from losses of up to 98% in the delta's former wetland area.  相似文献   

16.
The investigation shows that the concentrations of nutrients are high in estuarine and coastal waters and low in offshore waters. The concentration of nitrate in estuaries is controlled through a physical mixing process and is also affected by biotic activity. The annual transport of total inorganic nitrogen and dissolved phosphate-phosphorus from the Huanghe River water to the sea is about 8.45 ×104 and 1.45×103 tons respectively. The distributions of inorganic nitrogen and silicate in interstitial water of surface sediments are similar to those in surface and bottom seawater. Their contents in interstitial water are 227–552 μmol/l (average375) for ammonia, 0.31–9.0 μmol/l (average 1.6) for nitrite, 0–41 μmol/l (average6.0) for nitrate, and 41–139 μmol/l (average 77) for silicate. The average concentrations of phosphate in the surveyed area are 0.64 μmol/l for seawater and 1.2 μmol/l for interstitial water. A cycle of phosphate in the estuary is also suggested in this paper. Contribution No. 1434 from Institute of Oceanology, Academia Sinica.  相似文献   

17.
Survey on PCDDs and PCDFs in sediments and soils in Ya-Er Lake area, China   总被引:1,自引:0,他引:1  
INTRODUCTIONOverthepastseveralycars,considerableinteffethasbocenteIdontheenvir0nmentalbehaviouroftoxicandpersistritcomP0undssuchashalogenatalaromat-ies,inparticularthepolychiorinataldibopdioxins(PCDDe)andpolydil0rinateddi~fUtansrpCDFs).ManyofthesecomPounds,espedllythosewithahighdegere0fchiorinesubstitution,arehighlylipophiliccontawhnantSwithlowWhtersolubility,highre-sistancet0chdricaltransformationsandlowwhcrobiologhaldegradatfonpeatnnann,l988,Bromanetal.,l989,Hites,l990)whichexplain…  相似文献   

18.
INTRODUCTIONTidalchannelsareimportantgeomorphologicunitsalongsiltcoasts.Theyhaveanevidentfunc tionfortidalflatbecausetheyareassociatedwithitsrapidbayheadwarderosionandlateralswing ing.Thetidalchannelsdevelopalongthecoastandplayanimportantroleinseaandlandinterac tion .Manyscientistsresearchedthetidalchannels (Bayliss Smith ,1 978;Shao ,1 988;Zhang ,1 995) .TheScientificandTechnicalCommitteeofShandongProvince (1 991 )investigatedthecoastoftheHuanghe (Yellow)RiverDeltaandresearchedtheti…  相似文献   

19.
For some hundred surface sediment samples from five cores taken in two cruises near the Huanghe River Estuary, total phosphorus (TP (.inorganic phosphorus (IP (and organic phosphorus (OP)were determined.On the average, 527×10-6, 455×10~6 and 72×10-6 were found for TP,IP and OP for the surface sediments taken in the two cruises. The distribution of OP and IP was controlled by the sample particle size: OP content increased with the decreasing of the sample particle size, while the maximal value of IP was found in the silt fraction due to the existence of apatite in our samples. Vertical distributions reflected well the channel change of the Huanghe River. Results from the multiple regressions between the three forms of phosphorus and the percentages of different particle size agreed well with the analytical data.  相似文献   

20.
1INTRODUCTION Physiognomycharacteristicofawatershedisasymbolof ground erosion and incision, and it has been one of the most important factors influencing soil erosion and sedi- ment in the drainage area. Therefore physiognomy char- acteristic of the watershed and its influences on hydro- logical bed load have been one important focus in the watershed research both domestic and abroad (SCHUMM, 1977; QIAN et al., 1987) since the classical study by Horton in 1942 (HORTON, 1954). In rec…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号