首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Runoff generation and soil loss from slopes have been studied for decades, but the relationships among runoff, soil loss and rill development are still not well understood. In this paper, rainfall simulation experiments were conducted in two neighbouring plots (scale: 1 m by 5 m) with four varying slopes (17.6%, 26.8%, 36.4% and 46.6%) and two rainfall intensities (90 and 120 mm h?1) using two loess soils. Data on rill development were extracted from the digital elevation models by means of photogrammetry. The effects of rainfall intensity and slope gradient on runoff, soil loss and rill development were different for the two soils. The runoff and soil loss from the Anthrosol surface were generally higher than those from the Calcaric Cambisol surface. Higher rainfall intensity produced less runoff and more sediment for almost each treatment. With increasing slope gradient, the values of cumulative runoff and soil loss peaked, except for the treatments with 90 mm h?1 rainfall on the slopes with Anthrosol. With rainfall duration, runoff discharge decreased for Anthrosol and increased for Calcaric Cambisol for almost all the treatments. For both soils, sediment concentration was very high at the onset of rainfall and decreased quickly. Almost all the sediment concentrations increased on the 17.6% and 26.8% slopes and peaked on the 36.4% and 46.6% slopes. Sediment concentrations were higher on the Anthrosol slopes than on the Calcaric Cambisol slopes. At 90 mm h?1 rainfall intensity, increasingly denser rills appeared on the Anthrosol slope as the slope gradient increased, while only steep slopes (36.4% and 46.6%) developed rills for the Calcaric Cambisol soil. The contributions of rill erosion ranged from 36% to 62% of the cumulative soil losses for Anthrosol, while the maximum contribution of rill erosion to the cumulative soil loss was only 37.9% for Calcaric Cambisol. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Evaluating the benefits of sediment and runoff reduction in different vegetation types is essential for studying the mechanisms of soil and water conservation on the Loess Plateau.The experiment was conducted in shrub-grass plots with nine levels of mixed vegetation coverage from 0%to 70%,three slopes(10,15,and 20)and two rainfall intensities(1.0 and 2.5 mm/min).The results showed that the vegetation coverage and slope gradient significantly affect runoff and sediment yield.Shrub-grass vegetation coverage had a significant effect on the runoff start-time,runoff flow velocity,runoff rate,and soil erosion rate on hillslopes.Mixed vegetation coverage could effectively delay the runoff starttime and decrease the runoff flow velocity.However,the effects of the slope gradient on runoff and sediment yield are opposite to those of vegetation coverage.Shrub-grass vegetation coverage could effectively increase runoff and sediment yield reduction benefits,while their benefits were affected by the rainfall intensity.At the 1.0 mm/min rainfall intensity,the reduction in the sediment production rate was greater than that under the 2.5 mm/min intensity.However,when the shrub-grass vegetation coverage exceeded 42%,the runoff reduction benefit was more obvious at higher rainfall intensities.The cumulative sediment yield increased with increasing cumulative runoff,and the rate of increase in the cumulative runoff was greater than that of the cumulative sediment yield with increasing of shrub-grass vegetation coverage.Moreover,there was a power function relationship between cumulative sediment yield and cumulative runoff yield(P<0.05).Our paper is expected to provide a good reference on the ecological environment and vegetation construction on the Loess Plateau.  相似文献   

3.
Longshan Zhao  Rui Hou  Faqi Wu 《水文研究》2019,33(22):2918-2925
Reservoir tillage (RT) improves the soil rainwater harvesting capacity and reduces soil erosion on cropland, but there is some debate regarding its effectiveness. The objective of this study was to further verify the effect of RT on soil erosion and explore the reasons for this effect by analysing microrelief changes during rainfall. Rainfall intensities of 60, 90, and 120 mm/hr and three slope degrees (5, 15, and 25°, representing gentle, medium, and steep slopes) were considered. A smooth surface (SS) served as the control. The microrelief changes were determined based on digital elevation models, which were measured using a laser scanner with a 2‐cm grid before and after rainfall events. The results showed that compared with the values for the SS, RT reduced both the runoff and sediment by approximately 10‐20% on the gentle slope; on the medium slope, although RT also reduced the runoff in the 90‐ and 120‐mm/hr intensity rainfall events, the sediment increased by 158.90% and 246.08%; on the steep slope, the sediment increased by 92.33 to 296.47%. Overall, when the runoff control benefit of RT was lower than 5%, there was no sediment control benefit. RT was effective at controlling soil loss on the gentle slopes but was not effective on the medium and steep slopes. This is because the surface depressions created by RT were filled in with sediment that eroded from the upslopes, and the surface microrelief became smoother, which then caused greater soil and water loss than that on an SS at the later rainfall stage.  相似文献   

4.
Surface roughness and slope gradient are two important factors influencing soil erosion. The objective of this study was to investigate the interaction of surface roughness and slope gradient in controlling soil loss from sloping farmland due to water erosion on the Loess Plateau, China. Following the surface features of sloping farmland in the plateau region, we manually prepared rough surfaces using four tillage practices (contour drilling, artificial digging, manual hoeing, and contour plowing), with a smooth surface as the control measure. Five slope gradients (3°, 5°, 10°, 15°, and 20°) and two rainfall intensities (60 and 90 mm/hr) were considered in the artificial rainfall simulation experiment. The results showed that the runoff volume and sediment yield increased with increasing slope gradient under the same tillage treatment. At gentle slope gradients (e.g., 3° and 5°), the increase in surface roughness prevented the runoff and sediment production, that is, the surface roughness reduced the positive effect of slope gradient on the runoff volume and sediment yield to a certain extent. At steep slope gradients, however, the enhancing effect of slope gradient on soil erosion gradually increased and surpassed the reduction effect of surface roughness. This study reveals the existence of a critical slope gradient that influences the interaction of surface roughness and slope gradient in controlling soil erosion on sloping farmland. If the slope gradient is equal to or less than the critical value, an increase in surface roughness would decrease soil erosion. Otherwise, the increase in surface roughness would be ineffective for preventing soil erosion. The critical slope gradient would be smaller under higher rainfall intensity. These findings are helpful for us to understand the process of soil erosion and relevant for supporting soil and water conservation in the Loess Plateau region of China.  相似文献   

5.
It is important to evaluate the impacts of grasses on soil erosion process so as to use them effectively to control soil and water losses on the Loess Plateau. Laboratory-simulated rainfall experiments were conducted to investigate the runoff and sediment processes on sloped loess surfaces with and without the aboveground parts of grasses and moss (GAM: grass and moss; NGAM: no grass and moss) under slope gradients of 5°, 10°, 15°, 20°, 25° and 30°. The results show that runoff from GAM and NGAM plots increased up to a slope gradient of 10° and decreased thereafter, whereas the runoff coefficients increased with gradient. The average runoff rates and runoff coefficients of NGAM plots were less than those of GAM plots except for the 5° slope. This behaviour may be due to the reduction in water infiltration under moss. The difference between GAM and NGAM plots in average runoff rates varied from 1·4 to 8%. At the same gradients, NGAM plots yielded significantly (α = 0·05) more sediment than GAM plots. Average sediment deliveries for different slopes varied from 0·119 to 3·794 g m−2 min−1 from GAM plots, and from 0·765 to 16·128 g m−2 min−1 from NGAM plots. Sediment yields from GAM plots were reduced by 45 to 85%, compared with those from the NGAM plots. Plots at 30° yielded significantly higher sediments than at the other gradients. Total sediments S increased with slope gradients G in a linear form, i.e. S = 9·25G − 39·6 with R2 = 0·77*, for the GAM plots, and in an exponential model, i.e. S = 40·4 exp(0·1042G) with R2 = 0·93**, for the NGAM plots. In all cases, sediment deliveries decreased with time, and reached a relative steady state at a rainfall duration of 14 min. Compared with NGAM plots, the final percentage reductions in sediment delivery from GAM plots were higher than those at the initial time of rainfall at all slopes. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Soil erosion is a severe problem hindering sustainable agriculture on the Loess Plateau of China. Plot experiments were conducted under the natural rainfall condition during 1995–1997 at Wangdongguo and Aobao catchments in this region to evaluate the effects of various land use, cropping systems, land slopes and rainfall on runoff and sediment losses, as well as the differences in catchment responses. The experiments included various surface conditions ranging from bare soil to vegetated surfaces (maize, wheat residue, Robinia pseudoacacia L., Amorpha fruticosa L., Stipa capillata L., buckwheat and Astragarus adsurgens L.). The measurements were carried out on hill slopes with different gradients (i.e. 0 ° to 36 °). These plots varied from 20 to 60 m in length. Results indicated that runoff and erosion in this region occurred mainly during summer storms. Summer runoff and sediment losses under cropping and other vegetation were significantly less than those from ploughed bare soil (i.e. without crop/plant or crop residue). There were fewer runoff and sediment losses with increasing canopy cover. Land slope had a major effect on runoff and sediment losses and this effect was markedly larger in the tillage plots than that in the natural grass and forest plots, although this effect was very small when the maximum rainfall intensity was larger than 58·8 mm/h or smaller than 2·4 mm/h. Sediment losses per unit area rose with increasing slope length for the same land slope and same land use. The effect of slope length on sediment losses was stronger on a bare soil plot than on a crop/plant plot. The runoff volume and sediment losses were both closely related to rainfall volume and maximum intensity, while runoff coefficient was mainly controlled by maximum rainfall intensity. Hortonian overland flow is the dominant runoff process in the region. The differences in runoff volume, runoff coefficient and sediment losses between the catchments are mainly controlled by the maximum rainfall intensity and infiltration characteristics. The Aobao catchment yielded much larger runoff volume, runoff coefficient and sediment than the Wangdongguo catchment. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
The aim of this study was to identify the mechanisms of runoff generation and routing and their controlling factors at the hillslope scale, on artificial slopes derived from surface coal mining reclamation in a Mediterranean–continental area. Rainfall and runoff at interrill and microcatchment scales were recorded for a year on two slopes with different substrata: topsoil cover and overburden cover. Runoff coefficient and runoff routing from interrill areas to microcatchment outlets were higher in the overburden substratum than in topsoil, and greater in the most developed rill network. Rainfall volume is the major parameter responsible for runoff response on overburden, suggesting that this substratum is very impermeable—at least during the main rainfall periods of the year (late spring and autumn) when the soil surface is sealed. In such conditions, most rainfall input is converted into runoff, regardless of its intensity. Results from artificial rainfall experiments, conducted 3 and 7 years after seeding, confirm the low infiltration capacity of overburden when sealed. The hydrological response shows great seasonal variability on the overburden slope in accordance with soil surface changes over the year. Rainfall volume and intensities (I30, I60) explain runoff at the interrill scale on the topsoil slope, where rainfall experiments demonstrated a typical Hortonian infiltration curve. However, no correlation was found at the microcatchment level, probably because of the loss of functionality of the only rill as ecological succession proceeded. The runoff generation mechanism on the topsoil slope is more homogeneous throughout the year. Runoff connectivity, defined as the ratio between runoff rates recorded at the rill network scale and those recorded at the interrill area scale in every rainfall event, was also greater on the rilled overburden slope, and in the most developed rill network. The dense rill networks of the overburden slope guarantee very effective runoff drainage, regardless of rainfall magnitude. Rills drain overland flow from interrill‐sealed areas, reducing the opportunity of reinfiltration in areas not affected by siltation. Runoff generation and routing on topsoil slopes are controlled by grass cover and soil moisture content, whereas on overburden slopes rill network density and soil moisture content are the main controlling factors. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
The Qinghai–Tibet Plateau has a vast area of approximately 70×104 km2 of alpine meadow under the impacts of soil freezing and thawing, thereby inducing intensive water erosion. Quantifying the rainfall erosion process of partially thawed soil provides the basis for model simulation of soil erosion on cold-region hillslopes. In this study, we conducted a laboratory experiment on rainfall-induced erosion of partially thawed soil slope under four slope gradients (5, 10, 15, and 20°), three rainfall intensities (30, 60, and 90 mm h−1), and three thawed soil depths (1, 2, and 10 cm). The results indicated that shallow thawed soil depth aggravated soil erosion of partially thawed soil slopes under low hydrodynamic conditions (rainfall intensity of 30 mm h−1 and slope gradient ≤ 15°), whereas it inhibited erosion under high hydrodynamic conditions (rainfall intensity ≥ 60 mm h−1 or slope gradient > 15°). Soil erosion was controlled by the thawed soil depth and runoff hydrodynamic conditions. When the sediment supply was sufficient, the shallow thawed soil depth had a higher erosion potential and a larger sediment concentration. On the contrary, when the sediment supply was insufficient, the shallow thawed soil depth resulted in lower sediment erosion and a smaller sediment concentration. The hydrodynamic runoff conditions determined whether the sediment supply was sufficient. We propose a model to predict sediment delivery under different slope gradients, rainfall intensities, and thawed soil depths. The model, with a Nash–Sutcliffe efficiency of 0.95, accurately predicted the sediment delivery under different conditions, which was helpful for quantification of the complex feedback of sediment delivery to the factors influencing rainfall erosion of partially thawed soil. This study provides valuable insights into the rainfall erosion mechanism of partially thawed soil slopes in the Qinghai–Tibet Plateau and provides a basis for further studies on soil erosion under different hydrodynamic conditions.  相似文献   

9.
Hortonian runoff was measured from plots with lengths of 1·25 and 12 m, and at watershed level for rainstorms during the 1996 rainy season in cental Côte d'Ivoire, Africa. A clear reduction in runoff coefficients was found with increasing slope lengths, giving order of magnitude differences between runoff measurements at point level (1 m2: 30–50% of total rain) and watershed level (130 ha: 4% of total rain). Runoff reduction from 1·25 and 12 m slopes was reproduced for each major runoff‐producing rainstorm at two different sets of plots, but the reduction was erratic for rainfall events which produced little runoff. In addition, runoff reduction varied wildly from one rainstorm to the next. In the analysis, we show that the spatial variability of runoff parameters causes the erratic behaviour during rainstorms with little runoff. During the more important, larger runoff‐producing events, which give 78% of total runoff, the temporal dynamics of the rainfall–runoff process determine the reduction of runoff coefficients from longer slopes. A simple infiltration/runoff model was used to simulate the field results, thereby confirming the importance of rainfall dynamics as an explanatory factor for measured reduction of runoff coefficients. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
Data concerning runoff and sediment yield in arid zones is of prime importance for hydrologists, geomorphologists, pedologists, ecologists and landscape engineers. For data comparison and extrapolations, runoff and sediment yield are often presented in mass per unit area. Runoff and sediment yield collected on dune slopes over a wide range of plot sizes during 1990–1994 in the Negev Desert, Israel, showed that the contributing area was mainly confined to a narrow belt at the bottom of the slopes. It was therefore hypothesized that the very short rain bursts, capable of runoff generation, may result in a scale effect (SE). Indeed, average duration of duration of consecutive medium and high rain intensities which are potentially above the surface infiltration rate ranged between 2.2 and 3.0 minutes, implying that flow connectivity is largely limited. Based on the intermittent character of the rain spells capable of runoff generation it is argued that SE is an inherent outcome of the rain properties. Yet, it is further argued that the magnitude of the SE is surface‐dependent. As a result, it is argued that the conventional way for runoff and sediment yield presentation as mass per unit area implies theoretical misconceptions and may cause gross overestimation in extrapolation and the presentation of runoff and sediment yield in mass per unit width of the slope is suggested. The accuracy of the two extrapolation methods are compared to the actual runoff and sediment yield collected in the field. The data show that extrapolation based on runoff (or sediment) yield per plot width deviates from the actual amounts collected by a factor of 1·1 to 1·3 only while deviating by a factor of 4·2 to 5·6 and 10·7 to 11·8 if the extrapolation is based on large and small plots, respectively. Theoretical and practical reasons for presentation of runoff and sediment yield as mass per unit width are discussed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
A total of 15 rainfall simulation experiments were conducted in a 1 m by 2 m box varying slope (10, 20, 30%) and rainfall intensity (60, 90, 120 mm h?1). The experiments were performed to study how rill networks initiate and evolve over time under controlled conditions with regard to the treatment variables considered, and to allow for input in a computer simulation model. Runoff and sediment yield samples were collected. Digital elevation models were calculated by means of photogrammetry for several time steps of most experiments. The soil used in the experiments was a basal till derived Cambisol typical for the Swiss Plateau. While significant differences were found for sediment yield, runoff did not vary significantly with treatment combinations. Increasing rainfall intensity had a larger effect on sediment yield than increasing slope. Rill density and energy expenditure decreased with time, suggesting that energy expenditure was a useful parameter to describe the emergence of rill network at the laboratory scale. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
The impacts of climate change on storm runoff and erosion in Mediterranean watersheds are difficult to assess due to the expected increase in storm frequency coupled with a decrease in total rainfall and soil moisture, added to positive or negative changes to different types of vegetation cover. This report, the second part of a two‐part article, addresses this issue by analysing the sensitivity of runoff and erosion to incremental degrees of change (from ? 20 to + 20%) to storm rainfall, pre‐storm soil moisture, and vegetation cover, in two Mediterranean watersheds, using the MEFIDIS model. The main results point to the high sensitivity of storm runoff and peak runoff rates to changes in storm rainfall (2·2% per 1% change) and, to a lesser degree, to soil water content (?1·2% per 1% change). Catchment sediment yield shows a greater sensitivity than within‐watershed erosion rates to both parameters: 7·8 versus 4·0% per 1% change for storm rainfall, and ? 4·9 versus ? 2·3% per 1% change for soil water content, indicating an increase in sensitivity with spatial scale due to changes to sediment connectivity within the catchment. Runoff and erosion showed a relatively low sensitivity to changes in vegetation cover. Finally, the shallow soils in one of the catchments led to a greater sensitivity to changes in storm rainfall and soil moisture. Overall, the results indicate that decreasing soil moisture levels caused by climate change could be sufficient to offset the impact of greater storm intensity in Mediterranean watersheds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Land degradation due to soil erosion is a global problem, especially on cultivated hill slopes. Economically important aromatic grasses can protect degraded hill slopes more effectively than field crops, but little information is available on their performance. This study quantifies runoff, sediment yield,enrichment ratios of soil and nutrients, and sediment-associated organic carbon and nutrients losses under three aromatic grass species: citronella(Cymbopogon nardus), lemon(Cymbopogon flexuosus), and palmarosa(Cymbopogon martini), compared with a traditional field crop, finger millet(Eleusine coracana)grown at three land slopes(4%, 8%, and 12%). It was observed that the degree of slope and type of grass both significantly influenced runoff generation. Runoff and sediment yield(SY) were significantly higher at 12% slope than at 8% and 4% slopes. Relation between rainfall and runoff were significant for all the grass species(p 0.05). Palmarosa, lemon, and citronella grass reduced the SY by 10, 54, and 60%,respectively, over finger millet. SY was also significantly related to rainfall for all the treatments(p 0.05). The threshold runoff values to produce SY were higher for aromatic grasses compared to finger millet. Enrichment of clay, silt, sand, soil organic carbon(SOC), available nitrogen(N), phosphorus(P) and potassium(K) in the sediment were not significantly different between slopes but differed significantly between aromatic grasses and finger millet. Sediment associated nutrient load varied inversely with SY mainly because of the nutrient dissolution effect of high runoff volume. Annual loss of SOC and nutrients varied from 84.7-156.8 kg ha~(-1) y~(-1) for SOC, 4.38-9.18 kg ha~(-1) y~(-1) for available N, 0.35-0.75 kg ha~(-1) y~(-1) for available P, and 2.22-5.22 kg ha~(-1) y~(-1) for available K, with the lowest values for citronella and highest for finger millet. The study found that the aromatic grasses have greater environmental conservation values than finger millet on steep degraded land.  相似文献   

14.
The response of runoff and erosion to soil crusts has been extensively investigated in recent decades. However, there have been few attempts to look at the effects of spatial configuration of different soil crusts on erosion processes. Here we investigated the effects of different spatial distributions of physical soil crusts on runoff and erosion in the semi‐arid Loess Plateau region. Soil boxes (1.5 m long × 0.2 m wide) were set to a slope of 17.6% (10°) and simulated rainfall of 120 mm h?1 (60 minutes). The runoff generation and erosion rates were determined for three crust area ratios (depositional crust for 20%, 33%, and 50% of the total slope) and five spatial distribution patterns (depositional crust on the lower, lower‐middle, middle, mid‐upper, and upper slope) of soil crusts. The reduction in sediment loss (‘sediment reduction’) was calculated to evaluate the effects of different spatial distributions of soil crusts on erosion. Sediment yield was influenced by the area ratio and spatial position of different soil crusts. The runoff rate reached a steady state after an initial trend of unsteadily increasing with increasing rainfall duration. Sediment yield was controlled by detachment limitation and then transport limitation under rainfall. The shifting time of erosion from a transport to detachment‐limiting regime decreased with increasing area of depositional crust. No significant differences were observed in the total runoff among treatments, while the total sediment yield varied under different spatial distributions. At the same area ratio, total sediment yield was the largest when the depositional crust was on the upper slope, and it was smallest when the crust was deposited on the lower slope. The sediment reduction of structural crust (42.5–66.5%) was greater than that of depositional crust (16.7–34.3%). These results provide a mechanistic understanding of how different spatial distributions of soil crusts affect runoff and sediment production. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
The slope effects on sediment trapping process in vegetative filter strips (VFS) are usually neglected in current modelling practices for VFS operation, which hamper the VFS design and performance evaluation, especially on steep slopes. To fill the knowledge gap, 12 laboratory experiments of sediment trapping in VFS were conducted with three different inflow discharge (80, 100, and 120 ml s−1) and four slope angles (5,10, 15, and 20°). The experimental results show that, on steep slopes (10, 15, and 20°), a part of trapped sediment particles in VFS can be eroded again and then dragged to the downstream as bed load, whilst they do not move on gentle slope (5°). To describe the complex processes, a simple and effective modelling framework was developed for sloped VFS by coupling the slope infiltration, runoff, and modified sediment transport model. The model was tested against the experimental results and good agreements between the modelled and observed results were found in both runoff and sediment transport processes for all cases. On steep slopes, the sediment trapping performance of VFS decreases significantly because the erosion of deposited sediment particles can account for more than 60% of the sediment load in the outflow. The slope effect on sediment trapping efficiency of VFS varies greatly with soil, VFS, and slope properties. The model was compared with previous sediment transport equation and found that both methods can satisfactorily predict the sediment trapping of VFS on gentle slopes, but previous sediment transport equation is likely to overestimate the sediment trapping efficiency in VFS on steep slopes. This model is expected to provide a more realistic and accurate method for predicting runoff and sediment reduction in VFS on sloping surfaces.  相似文献   

16.
Ten representative research sites were selected in eastern Spain to assess soil erosion rates and processes in new citrus orchards on sloping soils. The experimental plots were located at representatives sites on limestone, in areas with 498 to 715 mm year?1 mean annual rainfall, north‐facing slopes, herbicide treated, and new (less than 3 years old) plantations. Ten rainfall simulation experiments (1 h at 55 mm h?1 on 0·25 m2 plots) were carried out at each of the 10 selected study sites to determine the interill soil erosion and runoff rates. The 100 rainfall simulation tests (10 × 10 m) showed that ponding and runoff occurred in all the plots, and quickly: 121 and 195 s, respectively, following rainfall initiation. Runoff discharge was one third of the rainfall, and sediment concentration reached 10·4 g L?1. The soil erosion rates were 2·4 Mg ha?1 h?1 under 5‐year return period rainfall thunderstorms. These are among the highest soil erosion rates measured in the western Mediterranean basin, similar to badland, mine spoil and road embankment land surfaces. The positive relationship between runoff discharge and sediment concentration (r2 = 0·83) shows that the sediment availability is very high. Soil erosion rates on new citrus orchards growing on sloped soils are neither tolerable nor sustainable. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Despite widespread bench‐terracing, stream sediment yields from agricultural hillsides in upland West Java remain high. We studied the causes of this lack of effect by combining measurements at different spatial scales using an erosion process model. Event runoff and sediment yield from two 4‐ha terraced hillside subcatchments were measured and field surveys of land use, bench‐terrace geometry and storage of sediment in the drainage network were conducted for two consecutive years. Runoff was 3·0–3·9% of rainfall and sediment yield was 11–30 t ha−1 yr−1 for different years, subcatchments and calculation techniques. Sediment storage changes in the subcatchment drainage network were less than 2 t ha−1, whereas an additional 0·3–1·5 t ha−1 was stored in the gully between the subcatchment flumes and the main stream. This suggests mean annual sediment delivery ratios of 86–125%, or 80–104% if this additional storage is included. The Terrace Erosion and Sediment Transport (TEST) model developed and validated for the studied environment was parameterized using erosion plot studies, land use surveys and digital terrain analysis to simulate runoff and sediment generation on the terraced hillsides. This resulted in over‐estimates of runoff and under‐estimates of runoff sediment concentration. Relatively poor model performance was attributed to sample bias in the six erosion plots used for model calibration and unaccounted covariance between important terrain attributes such as slope, infiltration capacity, soil conservation works and vegetation cover. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
A deeper understanding of the sediment characteristics associated with rock fragment content can improve our knowledge of the erosional processes and transport mechanisms of sediments on steep rocky slopes. This research used simulated rainfall experiments lasting for 1 h at a rate of 90 mm h−1 and employed 5 × 1 × 0.4 m parallel troughs filled with purple soils with different rock fragment volumetric contents (0, 5, 10, 20, 30 and 40%) on a 15° slope gradient. For each simulated event, runoff and sediment were sampled at 1- and 3-min intervals, respectively, to study, in detail, the temporal changes in the size distributions of the eroded sediments. The results show that sediment concentrations, soil erosion rates and soil loss ratios significantly decreased as rock fragment content increased for rock fragment contents from 0 to 40% in purple soils. During the transportation process, clay particles often formed aggregates and were then transported as larger particles. Silt particles were more likely to be transported as primary particles with a low degree of sediment aggregation. Sand-sized particles, which constituted a greater proportion of the original soil than the eroded sediments, were formed from other fine particles and transported as aggregates rather than as primary particles. Suspension-saltation, which mainly transports fine particles of 0.02–0.05 mm and coarse particles larger than 0.5 mm in size, was the most important transport mechanism on steep rocky slopes. The results of this study can help to explain the inherent laws of erosional processes on steep rocky slopes and can provide a foundation for improving physical models of soil erosion. © 2019 John Wiley & Sons, Ltd.  相似文献   

19.
An experimental study of water fluxes from roofs in a residential area has quantified water fluxes from different types of roof and identified the major controls on the process. Roofs with pitches of 0°, 22° and 50° and orientations of 15° (from true north) (NNE) and 103° (ESE) were selected. A novel automatic system for monitoring has been developed. Noticeable differences in rainfall, runoff and evaporation were found for different roof slopes, aspects and heights. Depending on height, flat roofs collected 90 to 99% of rainfall recorded at ground level. Roofs with a 22° slope; facing south‐south‐west (i.e. facing the prevailing wind) captured most rain, whereas east‐south‐east facing roofs with slopes of 50° received the least. Depending on the roof slope, the average rainfall captured ranged from 62 to 93% of that at ground level. For the same slope, the results indicated that from roofs orientated normal to the prevailing wind; (i) captured rainfall was higher, (ii) evaporation was higher and (iii) runoff was less than that from roofs having other aspects. Monthly variations in the runoff–rainfall ratio followed the rainfall distribution, being lowest in summer and highest in winter. The highest mean ratio (0·91) was associated with the steeper roof slope; the lowest ratio (0·61) was for roofs facing the prevailing wind direction. For the same amount of rainfall, the runoff generated from a steeper roof was significantly higher than that generated by a moderate roof slope, but the lowest runoff was from roofs facing the prevailing wind. The results have also shown that the amount of runoff collected (under UK climatic condition) was sufficient to supply an average household in the studied area with the major part of its annual water requirements. The use of this water not only represents a financial gain for house owners but also will help protect the environment by reducing demand on water resources through the reduction of groundwater abstraction, construction of new reservoirs, and a reduction of the flood risk as its in situ use is considered a preventive measure known as a source control. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
Little information is available concerning the performance of grass strips for erosion control from steep cropland. An experiment was conducted on 5‐m‐long grass strips with slopes of 3°~15° that were subjected to silt laden runoff and simulated rainfall, to investigate the sediment trapping processes. The grass strips had three treatments including intact grass control (C), no litter (dead grass material covering the soil surface was removed) (NL), and no litter or leaves (only 2~3 cm grass stems and roots were reserved) (NLL). Generally the grass strips had a high effectiveness in trapping sediment from steep cropland runoff. Sediment trapping efficiency (STE) decreased with increasing slope gradient, and even for a 15° slope, STE was still more than 40%. Most sediment deposited in the backwater region before each grass strips. The removal of grass litter or/and leaves had no significant influence on STE. The sediment median size (D50) in inflow was greater than that in outflow, and the difference (ΔD50) decreased with increasing slope. A positive power relationship between STE and ΔD50 can be obtained. Grass strips were more effective in trapping sediments coarser than 10 or 25 µm, but sediments finer than 1 µm were more readily removed from runoff than particles in the range of 2 to approximately 10 µm. Grass litter had less influence on flow velocity than leaves because the deposited sediment partially covered the litter layer. Mean flow velocity and its standard deviation were negatively correlated with STE, and they can help make good estimation of STE. Results from this study should be useful in planting and managing forage grass to effectively conserve soil loss by runoff from steep slopes on the Loess Plateau of China. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号