首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A chemical model of negative ions in the troposhere (0–15 km) is presented. This model is an extension of the negative ion composition model in the lower stratosphere (Kawamoto and Ogawa, 1984, Planet. Space Sci. 32, 1223) with some modifications. The computed result shows that the predominant ions are NO3HNO3H2O below 10km and NO3(HNO3)2 above 10km, and that the fractional abundance of cluster ions having a HSO4 core increases with height below 12km and decreases with height above it. The ions having CO3 cores are at most 2% in fractional abundance. The other kinds of negative ions are far smaller in fractional abundance than the NO3, HSO4 and CO3 core ions. The result is compared with the two mass spectrometric observed results (Heitmann and Arnold, 1983, Nature, Lond. 306, 747; Perkins and Eisele, 1984, J. geophys. Res. 89, 9649). The problems on the tropospheric negative ions which arose are discussed.  相似文献   

2.
Abstract— Two‐station electro‐optical observations of the 1998 Leonid shower are presented. Precise heights and light curves were obtained for 79 Leonid meteors that ranged in brightness (at maximum luminosity) from +0.3 to +6.1 astronomical magnitude. The mean photometric mass of the data sample was 1.4 × 10?6 kg. The dependence of astronomical magnitude at peak luminosity on photometric mass and zenith angle was consistent with earlier studies of faint sporadic meteors. For example, a Leonid meteoroid with a photometric mass of ~1.0 × 10‐7 kg corresponds to a peak meteor luminosity of about +4.5 astronomical magnitudes. The mean beginning height of the Leonid meteors in this sample was 112.6 km and the mean ending height was 95.3 km. The highest beginning height observed was 144.3 km. There is relatively little dependence of either the first or last heights on mass, which is indicative of meteoroids that have clustered into constituent grains prior to the onset of intensive grain ablation. The height distribution, combined with numerical modelling of the ablation of the meteoroids, suggests that silicate‐like materials are not the principal component of Leonid meteoroids and hints at the presence of a more volatile component. Light curves of many Leonid meteors were examined for evidence of the physical structure of the associated meteoroids: similar to the 1997 Leonid meteors, the narrow, nearly symmetric curves imply that the meteoroids are not solid objects. The light curves are consistent with a dustball structure.  相似文献   

3.
Radio noise observations at frequencies of 0·700 Mc and 2·200 Mc were made at altitudes between 3000 and 11,000 km from a Blue Scout Jr. high-altitude rocket probe on 30 July 1963. A steady background flux of (7·5−3+6) × 10−19 W m−2)(c/s)−1 at 0·700 Mc and (1·8+1.0−0.5 × 10−19 W m−2 (c/s)−1 at 2·200 Mc was observed. Assuming a galactic origin of the observed fluxes at both frequencies, the averaged sky brightnesses are b(0·700 Mc) = (6−3+5) × 10−20 W m−2 (c/s)−1 sr−1b(2·200 Mc) = (1.4+1.0−0.5 × 10−20 W m−2 (c/s)−1 sr−1 The observed brightness at 2·200 Mc is in reasonable agreement with the results of other observers. The apparent brightness at 0·700 Mc is, however, greater than was expected from previous observations. An alternative source of the 0·700 Mc flux in the terrestrial exosphere, as well as characteristics of several noise bursts observed during the flight, is briefly discussed.  相似文献   

4.
Abstract— In this paper, we provide an overview of meteors with high beginning height. During the recent Leonid meteor storms, as well as within the regular double station video observations of other meteor showers, we recorded 164 meteors with a beginning height above 130 km. We found that beginning heights between 130 and 150 km are quite usual, especially for the Leonid meteor shower. Conversely, meteors with beginning heights above 160 km are very rare even among Leonids. From the meteor light curves, we are able to distinguish two different processes that govern radiation of the meteors at different altitudes. Light curves vary greatly above 130 km and exhibit sudden changes in meteor brightness. Sputtering from the meteoroid surface is the dominating process during this phase of the meteor luminous trajectory. Around 130 km, the process switches to ablation and the light curves become similar to the light curves of standard meteors. The sputtering model was successfully applied to explain the difference in the beginning heights of high‐altitude Leonid and Perseid meteors. We show also that this process in connection with high altitude fragmentation could explain the anomalously high beginning heights of several relatively faint meteors.  相似文献   

5.
Recent rocket observations of the N2 V-K (Vegard-Kaplan) system in the aurora have been reinterpreted using an atmospheric model based on mass spectrometer measurements in an aurora of similar intensity at the same time of year. In contrast to the original interpretation, we find that population by cascade from the C3Πu and B3Πg states in the A3Σu+v=0,1 levels, as calculated using recently measured electron excitation cross sections, accurately accounts for the observed relative emission rates (IV-K/12PG0.0). In addition there is no need to change the production rate of A 3 Σ u+ molecules relative to that of C3Πuv=0 as a function of altitude in order to fit the profile of the deactivation probability to the atmospheric model. Quenching of A 3 Σ u+ molecules at high altitudes is dominated by atomic oxygen. The rate constants for the v=0 and v=1 levels are 8 × 10−11 cm3 sec−1 and 1.7 × 10−10 cm3 sec−1 respectively, as determined using the model atmosphere mentioned above. Recent observations with a helium cooled mass spectrometer suggest that conventional mass spectrometer measurements tend to underestimate the atomic oxygen relative concentration. The rate coefficients may therefore be too large by as much as a factor of 3. Below 130 Km we find that it is possible to account for the deactivation in bright auroras by invoking large nitric oxide concentrations, similar to those recently observed mass spectrometrically and using a rate constant of 8 × 10−11 cm3 sec−1 for both the v=1 levels. This rate constant is very nearly the same as that measured in the laboratory (7 × 10−11 cm3 sec−1). Molecular oxygen appears not to play a significant role in deactivating the lower A 3 Σ u+ levels.  相似文献   

6.
In this study we numerically modelled the atmospheric ablation and luminosity of cometary structure meteoroids with geocentric velocities from 71 to 200 km/s. We considered meteoroid masses ranging from 10−13 to 10−6 kg. Expected heights of ablation and maximum luminosity absolute magnitudes are determined. Height and trail length values are used to calculate the angle traversed in a single video frame. It is found that for pre-atmospheric meteoroid masses of greater than 10−8 kg, high geocentric velocity meteors should be detectable with current electro-optical technology if properly optimised.  相似文献   

7.
Conventional ablation theory assumes that a meteoroid undergoes intensive heating during atmospheric flight and surface atoms are liberated through thermal processes. Our research has indicated that physical sputtering could play a significant role in meteoroid mass loss. Using a 4th order Runge-Kutta numerical integration technique, we tabulated the mass loss due to the two ablation mechanisms and computed the fraction of total mass lost due to sputtering. We modeled cometary structure meteoroids with masses ranging from 10−13 to 10−3 kg and velocities ranging from 11.2 to 71 km s−1. Our results indicate that a significant fraction of the mass loss for small, fast meteors is due to sputtering, particularly in the early portion of the light curve. In the past 6 years evidence has emerged for meteor luminosity at heights greater than can be explained by conventional ablation theory. We have applied our sputtering model and find excellent agreement with these observations, and therefore suggest that sputtered material accounts for the new type of radiation found at great heights.  相似文献   

8.
The orbit of Intercosmos 13 rocket (1975-22B) has been determined at 103 epochs between 30 April 1975 and 10 April 1980 from almost 7000 observations. One hundred and three values of inclination have been determined and corrections incoporated for the effects due to zonal harmonic, lunisolar and tesseral harmonic perturbations, precession, and solid Earth tides. The modified data have been analysed to yield values of the atmospheric rotation rate, Λ rev day−1, viz. Λ = 0.94 ± 0.10 at an average height of 322 ± 6 km and Λ = 1.27 ± 0.02 at 288 km. Analysis of the inclination near 14th-order resonance has indicated lumped harmonic values 109 1.01.4 = − 76.13 ± 12.47, 109 1,014 = − 29.89 ± 32.64, 109 −1.214 = − 63.11 ± 15.44 109 −1.214 = − 32.52 ± 26.96, for inclination 82.952°.  相似文献   

9.
Charged boson stars and vacuum instabilities   总被引:1,自引:0,他引:1  
We consider charged boson stars and study their effect on the structure of the vacuum. For very compact particle like “stars”, with constituent mass m* close to the Planck mass mPl, i.e. m2* = O(m2Pl), we argue that there is electric charge Zc, which, primarily, is due to the formation of a pion condensate (Zc 0.5−1e, where is the fine structure constant and e is the electric charge of the positron). If the charge of the “star” is larger than Zc we find numerical evidence for a complete screening indicating a limiting charge for a very compact object. There is also a less efficient competing charge screening mechanism due to spontaneous electron-positron pair creation in which case Zc −1e. Astrophysical and cosmological abundances of charged compact boson stars are briefly discussed in terms of dark matter.  相似文献   

10.
Using the 13.7 m millimeter-wave telescope at the Qinghai Station of Purple Mountain Observatory, we have made observations of 13CO, C18O, HCO+ and N2H+ molecular lines towards IRAS 02232+6138. As the excitation density of the probe molecule increases from 13CO to HCO+, the size of the cloud core associated with IRAS 02232+6138 decreases from 2.40 pc to 0.54 pc, and the virial mass of the cloud core decreases from 2.2 × 103M to 5.1 × 102M. A bipolar molecular outflow is found towards IRAS 02232+6138. Using the power function n(r) ∝ r to fit the spatial density structure of the cloud core, we obtain the power-law index  = 2.3 − 1.2; and we find that, as the probed density increases, the power function becomes more flat. The abundance ratio of 13CO to C18O is 12.4 ± 6.9, comparable with the values 11.8 ± 5.9 for dark clouds and the values 9.0–15.6 for massive cores. The abundance of N2H+ molecules is 3.5 ± 2.5 × 10−10, consistent with the value 1.0 − 5.0 × 10−10 for dark cloud cores and the value 1.2 − 12.8 × 10−10 for massive cores. The abundance of HCO+ molecules is 0.9 ± 0.5 × 10−9, close to the value 1.6 − 2.4 × 10−9 for massive cores. An increase of HCO+ abundance in the outflow region was not found. Combining with the IRAS data, the luminosity-mass ratio of the cloud core is obtained in the range 37–163(L/M). Based on the IRAS luminosity, it is estimated that a main-sequence O7.5 star is probably embedded in the IRAS 02232+6138 cloud core.  相似文献   

11.
It is found that the mass loss rate derived from S25/S12 is generally greater than that from the OH flux. This suggests an increasing loss rate with time. It is found that the gas-to-dust ratio decreases during the evolution Of OH/IR stars. An empirical relation between the gas-to-dust ratio and the dust mass loss rate is derived, leading to a formula for calculating the total mass loss rate directly from the IRAS 60 μm flux. OH/IR stars with silicate emission have a larger range of mass loss ratio, from 10−7 to 10−5 M/yr; those with silicate absorption, a smaller range between 10−5 and 10−4 M/yr. So a large increase in the mass loss rate takes place during the emission phase.  相似文献   

12.
Meteoroids that orbit the Sun encounter the Earth with speeds between 11 and 74 km/sec. However, the distribution of the velocities of meteoroids between these limits is not well known. The uncertainty is caused by the difficulty in measuring the true flux of meteors at the extrema of the velocity distribution. Whilst the most comprehensive measurements of meteor flux are those obtained using radio techniques, meteors with speeds > 50 km/sec occur at heights where the effects of initial radius of the trail and diffusion significantly reduce the radio reflection from the trails; on the other hand the high dependence of the collisional ionization probability on velocity (to the power 3.5) significantly inhibits the detection of meteors with speeds < 20 km/sec. Recent developments in meteor radar systems are now making it possible to measure the velocity of meteors at the extrema of the distribution. For meteoroids ablating at heights between 100 and 120 km the speed of entry can be measured at 2 and 6 MHz using a radar with a 1 km diameter array located near Adelaide; these observations will commence early in 1995. In the meantime a 54 MHz MST radar is being operated at a pulse repetition frequency of 1024 Hz to search for the presence of interstellar (speed > 74 km/sec) meteors. Both these radars exploit the phase information available prior to the closest-approach (to) point.  相似文献   

13.
Numerical solutions of the equations of meteor ablation in the Earth's atmosphere have been obtained using a variable step size Runge-Kutta technique in order to determine the size of the residual mass resulting from atmospheric flight. The equations used include effects of meteoroid heat capacity and thermal radiation, and a realistic atmospheric density profile. Results were obtained for initial masses in the range 10?7–10?2 g, and for initial velocities less than 24 km s?1 (results indicated no appreciable residual mass for meteors with velocities above 24 km s?1 in this mass range). The following function has been obtained to provide the logarithm of the ratio of the residual mass following atmospheric ablation to the original preatmospheric mass
log r = 4.7 ?0.33v ?0.013v2 + 1.2 log m + 0.08 log2 m ?0.083v log mM
The pre-atmospheric mass and velocity are represented by m and v.When the results are expressed in terms of the size of the residual mass following atmospheric ablation as a function of the initial mass and velocity, it is found that the final residual mass is almost independent of the original mass of the meteoroid, but very strongly dependent on the original velocity. For example, the residual mass is very nearly 10?7 g for a meteoroid with velocity 18 kms?1 for initial masses from 10?7 to 10?3 g. On the other hand, a slight change in the initial velocity to 20 km s?1 will shift the residual mass to approx. 10?8 g. This strong velocity dependence coupled with the weak dependence on the original mass has important consequences for the sampling of ablation product micrometeorites.  相似文献   

14.
The diffused gamma halo around our Galaxy recently discovered by EGRET could be produced by annihilations of heavy relic neutrinos N (of fourth generation), whose mass is within a narrow range (MZ/2<mN<MZ). Neutrino annihilation in the halo may lead to either ultrarelativistic electron pairs whose Inverse Compton Scattering on infrared and optical galactic photons could be the source of observed GeV gamma rays, or prompt 100 MeV–1 GeV photons (due to neutral pion secondaries) born by reactions. The consequent gamma flux (10−7–10−6 cm−2 s−1 sr−1) is well comparable to the EGRET observed one, and it is also compatible with the narrow window of neutrino mass 45 GeV <mN<50 GeV, recently required to explain the underground DAMA signals.The presence of heavy neutrinos of fourth generation do not contribute much to solve the dark matter problem of the Universe, but may be easily detectable by outcoming LEP II data.  相似文献   

15.
There is reported a series of three artificial electron clouds created at Holloman Air Force Base, New Mexico at 69, 82 and 91 km in May 1958 by the day-time thermo-chemical release of cesium. The electron cloud was created by both thermal and photo-ionization. A lower limit for the effective duration of electron clouds for this kind of release was found to be 70 km. The short duration at low altitudes is caused by both the rapid chemical consumption of the cesium atoms thereby preventing photo-ionization and the rapid electron attachment followed by mutual neutralization. The coefficient of mutual neutralization is estimated to be 10−7−10−8 cm3 sec−1. The mathematical model employed appears to be reasonably valid.  相似文献   

16.
A quantitative theoretical analysis of electric field and current distributions in the ionosphere is given assuming certain time variable convection field profiles at an altitude of 1250 km. A number of idealized assumptions regarding the ionospheric characteristics are defined and discussed. A qualitative discussion of a quasi-stationary configuration with an approximately curl free electric field is also given. Geomagnetically field aligned current densities i of the order 10−5−10−4A/m2 are consistent with quite reasonable assumptions about the convection field E. Oscillations in E with periods of the order of 10 sec should readily be generated when σ is large. In the quasi-stationary case there may be a mechanism that strengthens and concentrates i locally under certain conditions. It is found that a number of recent high altitude observations of convection field reversals may be consistent with large potential drops along the magnetic field lines. The solutions obtained as well as some of the basic assumptions are compared with observations.  相似文献   

17.
We derive strong constraints on the Yukawa couplings and the vacuum expectation value in the singlet majoron model. The presence of a small gravitationally induced mass for the majoron can be used to set a constraint on its vacuum expectation value. If the singlet symmetry breaking scale is larger than the electroweak symmetry breaking scale, lepton number violating interactions in equilibrium with electroweak sphaleron interactions would destroy any prior baryon asymmetry. If the baryon asymmetry is not generated at the electroweak scale or later, strong bounds on the Yukawa couplings h 10−7 and VEVs vs < vEW are derived. We also carefully rederive baryogenesis bounds on neutrino masses, finding that in general they apply not to the masses themselves, but only to related parameters, and they are numerically somewhat less stringent than has previously been claimed.  相似文献   

18.
The laboratory values of the Herzberg continuum absorption cross-section of oxygen at room temperature from Cheung et al. (1986, Planet. Space Sci. 34, 1007), Jenouvrier et al. (1986a, Planet. Space Sci. 34, 253) and Jenouvrier et al. (1986, J. quant. Spectrosc. radiat. Transfer 36, 349) have been compared and re-analyzed. There is no discrepancy between the absolute values of these two sets of independent measurements. These values have been combined together in a linear least-squares fit to obtain improved values of the Herzberg continuum cross-section of oxygen at room temperature throughout the wavelength region 205–240 nm. Agreement with in situ and other laboratory measurements is discussed.  相似文献   

19.
Continuous observations of the amplitude and spectrum of naturally occurring radiation in the band 2–40 kc/s have been made during the period June to December 1958 near Sydney, Australia. A large number of isolated noise bursts lasting for some hours were detected. The intensity ranged from 6 × l0−19 to 6×10-17W m−2 (c/s)−1 at 4·6 kc/s. Three main types of bursts were identified and classified on a basis of their spectra which usually extended from 3 to 5 kc/s, 4 to 8 kc/s and 2 to 30 kc/s, respectively. Major bursts, which were always of the latter two types, were clearly associated with strong auroral and magnetic activity and some showed a reproducible sequence of amplitude variation lasting about 36 hours. On three occasions, a detailed correspondence between the intensity of the noise and of simultaneously occurring red oxygen airglow was observed. Theories of the origin of the noise are discussed.  相似文献   

20.
We discuss the possibility of using pure CF4 to fill a 2000 m3 Time Projection Chamber in order to detect the solar neutrinos through the elastic scattering vee → vee, with the threshold of 100 keV on the kinetic energy of the recoiling electron. In a volume of 2000 m3 of CF4 at normal pressure and room temperature, which corresponds to a mass of 7.4 ton, we expect ~ 3300 of such events per year. The detector can give the spectrum of the low energy neutrinos from the Sun and it can identify solar neutrinos of different origin: pp, 7Be, and, eventually, 8B. We find that 14C is a possible severe source of background: it is necessary to have a ratio 14C/12C lower than 10−19 in order to be able to identify the pp neutrinos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号