首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Periplatform surface sediments were studied for carbonate mineralogy in conjunction with analyses of the water column for carbonate chemistry on the eastern Northern Nicaragua Rise (NNR) in the Caribbean Sea. The results show a strong correspondence between variations and disappearance, with increasing water depth, of metastable carbonate minerals (fine aragonite and magnesian calcite) and their respective saturation levels in the overlying waters. Similar correspondence between variations in sediment proportions of fine aragonite and magnesian calcite and their respective saturation levels has previously been established in the Bahamas. There are, however, significant differences between the two areas. The sharp decrease in aragonite content and the measured aragonite saturation level occur at 4000 m in the Bahamas, compared to 1800 m on the eastern NNR. In both areas, magnesian calcite minima correspond to the in situ PCO2 maxima in the water column. The magnesian calcite minimum, however, is at 950 m in the Bahamas and 750 m on the eastern NNR. Magnesian calcite disappears in the Bahamas at 3800 m and at 2000 m on the eastern NNR. These results demonstrate the importance of the influence of overlying water chemistry on the preservation of metastable carbonate minerals in off-bank periplatform sediments, and they clearly demonstrate the difference in terms of carbonate preservation between the poorly ventilated waters of the Caribbean Sea and the well-oxygenated waters of the adjacent Atlantic Ocean. They also open the possibility of obtaining paleoceanographic information on the depth of the CO2 maximum (O2 minimum) and its separation from the aragonite saturation depth in at least some areas.  相似文献   

2.
Over 300 surface sediment samples from the Central and South Atlantic Ocean and the Caribbean Sea were investigated for the preservation state of the aragonitic test of Limacina inflata. Results are displayed in spatial distribution maps and are plotted against cross-sections of vertical water mass configurations, illustrating the relationship between preservation state, saturation state of the overlying waters, and overall water mass distribution. The microscopic investigation of L. inflata (adults) yielded the Limacina dissolution index (LDX), and revealed three regional dissolution patterns. In the western Atlantic Ocean, sedimentary preservation states correspond to saturation states in the overlying waters. Poor preservation is found within intermediate water masses of southern origin (i.e. Antarctic intermediate water (AAIW), upper circumpolar water (UCDW)), which are distinctly aragonite-corrosive, whereas good preservation is observed within the surface waters above and within the upper North Atlantic deep water (UNADW) beneath the AAIW. In the eastern Atlantic Ocean, in particular along the African continental margin, the LDX fails in most cases (i.e. less than 10 tests of L. inflata per sample were found). This is most probably due to extensive “metabolic” aragonite dissolution at the sediment-water interface combined with a reduced abundance of L. inflata in the surface waters. In the Caribbean Sea, a more complex preservation pattern is observed because of the interaction between different water masses, which invade the Caribbean basins through several channels, and varying input of bank-derived fine aragonite and magnesian calcite material. The solubility of aragonite increases with increasing pressure, but aragonite dissolution in the sediments does not simply increase with water depth. Worse preservation is found in intermediate water depths following an S-shaped curve. As a result, two aragonite lysoclines are observed, one above the other. In four depth transects, we show that the western Atlantic and Caribbean LDX records resemble surficial calcium carbonate data and δ13C and carbonate ion concentration profiles in the water column. Moreover, preservation of L. inflata within AAIW and UCDW improves significantly to the north, whereas carbonate corrosiveness diminishes due to increased mixing of AAIW and UNADW. The close relationship between LDX values and aragonite contents in the sediments shows much promise for the quantification of the aragonite loss under the influence of different water masses. LDX failure and uncertainties may be attributed to (1) aragonite dissolution due to bottom water corrosiveness, (2) aragonite dissolution due to additional CO2 release into the bottom water by the degradation of organic matter based on an enhanced supply of organic matter into the sediment, (3) variations in the distribution of L. inflata and hence a lack of supply into the sediment, (4) dilution of the sediments and hence a lack of tests of L. inflata, or (5) redeposition of sediment particles.  相似文献   

3.
The concentrations of rare earth elements (REEs), sulphate, hydrogen sulphide, total alkalinity, calcium, magnesium and phosphate were measured in shallow (<12 cm below seafloor) pore waters from cold-seep sediments on the northern and southern summits of Hydrate Ridge, offshore Oregon. Downward-decreasing sulphate and coevally increasing sulphide concentrations reveal sulphate reduction as dominant early diagenetic process from ~2 cm depth downwards. A strong increase of total dissolved REE (∑REE) concentrations is evident immediately below the sediment–water interface, which can be related to early diagenetic release of REEs into pore water resulting from the re-mineralization of particulate organic matter. The highest pore water ∑REE concentrations were measured close to the sediment–water interface at ~2 cm depth. Distinct shale-normalized REE patterns point to particulate organic matter and iron oxides as main REE sources in the upper ~2-cm depth interval. In general, the pore waters have shale-normalized patterns reflecting heavy REE (HREE) enrichment, which suggests preferential complexation of HREEs with carbonate ions. Below ~2 cm depth, a downward decrease in ∑REE correlates with a decrease in pore water calcium concentrations. At this depth, the anaerobic oxidation of methane (AOM) coupled to sulphate reduction increases carbonate alkalinity through the production of bicarbonate, which results in the precipitation of carbonate minerals. It seems therefore likely that the REEs and calcium are consumed during vast AOM-induced precipitation of carbonate in shallow Hydrate Ridge sediments. The analysis of pore waters from Hydrate Ridge shed new light on early diagenetic processes at cold seeps, corroborating the great potential of REEs to identify geochemical processes and to constrain environmental conditions.  相似文献   

4.
A series of sediment cores were obtained from the Whiting Basin southeast of Puerto Rico to investigate the factors affecting the velocity of sound in marine carbonate deposits. The cores indicated that the deposits in the Whiting Basin are similar to abyssal-plain deposits with lenticular turbidite sequences alternating with pelagic sediments. The sediment, comprised of highly porous sands and silts, averaged 80% calcium carbonate consisting of aragonite, low-Mg calcite and high-Mg calcite.Normal methods for predicting sound velocity from the physical properties of the deposits were found to be inaccurate for these samples. The established relationships of grain size and porosity to sound velocity were invalid because the sands found in the cores consisted of hollow-foram tests, causing high porosity independent of grain size. The rigidity of the deposit was the most significant factor determining sediment sound velocity and was itself controlled by the sediment source, transportation effects and the packing of the deposit. Future work is needed to accurately measure the effect of these factors on the rigidity modulus.  相似文献   

5.
《Marine Chemistry》1987,22(1):71-83
Chemical variables were measured in calcium-carbonate-rich sediments inhabited by the dominant tropical seagrass, Thalassia testudinum, and in adjacent seagrass-free sediments at several locations in the Bahamas Islands. Pore-water alkalinity and pCO2 were consistently greater, while pH was consistently lower in sediment-pore waters within seagrass beds. The ammonium and molybdate-reactive phosphate concentrations in sediment-pore water were variable for vegetated, compared with unvegetated, sample locations.Thalassia testudinum can generate very large amounts of organic matter within calcium-carbonate-rich sediments. However, little of the organic matter is retained in the sediment and the effect of that organic matter on pore water chemical factors appears to be surprisingly small. These observations are markedly different from those for seagrass beds in high latitude clastic sediments and in Syringodium filiforme seagrass beds near San Salvador Island, where major influences of the seagrass beds on sediment chemistry have been observed. The generally coarser grain size of the carbonate sediments may be a primary factor contributing to these differences.  相似文献   

6.
Detailed sedimentological, geochemical and isotopic analyses were carried out on sediment samples from ODP Site 720A on the Indus Fan, Arabian Sea. High values of calcium carbonate associated with low values of Al and Ti from 0 to 375 ka, and low values of calcium carbonate along with high values of Al and Ti from 375 to 525 ka represent two distinct sedimentary sequences. The sediments deposited from 525 to 375 ka correspond to a turbidite sequence, characterized by a high terrigenous input of coarse-grained sediments composed mostly of sand and silt. The sediments deposited from 375 ka to the present day comprise a pelagic sequence, consisting of pelagic material and clay. The major turbidity flow between 375 and 525 ka resulted in the greatest development of the Indus Fan during the late Quaternary. Most of the active channels were buried by 375 ka, followed by deposition of mainly pelagic sequences since then. Enrichment of an Indus-derived Himalayan clay mineral assemblage (illite and chlorite) in both the turbiditic and pelagic sequences reveals that the source and supply of clay minerals to the Indus Fan were the same during pre- and post-turbidite deposition. At ODP Site 720A, Al, Ti and terrigenous material do not show any systematic changes with respect to glacial and interglacial periods, suggesting that sea-level changes are not directly responsible for the terrigenous material supply to this site. Rather, a major switch in distributary channels away from the western margin of the Indus Fan is suggested.  相似文献   

7.
An investigation has been made of available data on the saturation state of seawater with respect to calcium carbonate and its possible significance for scale formation on Ocean Thermal Energy Conversion (OTEC) heat exchangers. Pertinent oceanographic data is lacking at or near potential OTEC sites for the calculation of the degree of saturation of seawater with respect to calcium carbonate. Consequently, only “extrapolated” saturation values can be used. These indicate that near surface seawater is probably supersaturated, with respect to the calcium carbonate phases calcite and aragonite, at all potential OTEC sites. The deep seawater that would be brought to the surface at the potential Atlantic Ocean sites is also likely to be supersaturated with respect to calcium carbonate. The deep seawater at the potential Pacific Ocean sites may be slightly undersaturated.The fact that OTEC heat exchangers will be operating in seawater, which is supersaturated with respect to calcium carbonate, means that if nucleation of calcite or aragonite occurs on the heat exchanger surfaces, significant growth rates of calcium carbonate scale may be expected. The potential for calcium carbonate nucleation is highest at cathodic metal surface locations, which are produced as the result of aluminum corrosion in seawater. Consequently, corrosion and scale formation may be closely related. What the possible effects of biofouling may be on this process are not known.  相似文献   

8.
Two authigenic carbonate chimneys were recovered from the Shenhu area in the northern South China Sea at approximately 400 m water depth. The chimneys’ mineralogy, isotopic composition, and lipid biomarkers were studied to examine the biogeochemical process that induced the formation of the chimneys. The two chimneys are composed mostly of dolomite, whereas the internal conduits and semi-consolidated surrounding sediments are dominated by aragonite and calcite. The specific biomarker patterns (distribution of lipids and their depleted δ13C values) indicate the low occurrence of methanotrophic archaea ANME-1 responsible for the chimneys’ formation via anaerobic oxidation of methane. A significant input of bacteria/planktonic algae and cyanobacteria to the carbon pool during the precipitation of the carbonate chimneys is suggested by the high contributions of short-chain n-alkanes (69% of total hydrocarbons) and long-chain n-alcohols (on average 56% of total alcohols). The oxygen isotopic compositions of the carbonate mixtures vary from 3.1‰ to 4.4‰ in the dolomite-rich chimneys, and from 2.1‰ to 2.5‰ in the internal conduits, which indicates that they were precipitated from seawater-derived pore waters during a long period covering the last glacial and interglacial cycles. In addition, the mixture of methane and bottom seawater dissolved inorganic carbon could be the carbon sources of the carbonate chimneys.  相似文献   

9.
Toxicities of sediments from San Diego and San Francisco Bays were compared in laboratory experiments using sea urchin (Strongylocentrotus purpuratus) embryos exposed to pore water and at the sediment-water interface (SWI). Toxicity was consistently greater to embryos exposed at the SWI to intact (unhomogenized) sediment samples relative to homogenized samples. Measurement of selected trace metals indicated considerably greater fluxes of copper, zinc, and cadmium into overlying waters of intact sediment samples. Inhibition of sea urchin embryo development was generally greater in sediment pore waters relative to SWI exposures. Pore water toxicity may have been due to elevated unionized ammonia concentrations in some samples. The results indicate that invertebrate embryos are amenable to SWI exposures, a more ecologically relevant exposure system, and that sediment homogenization may create artifacts in laboratory toxicity experiments.  相似文献   

10.
 Near-surface sediment geoacoustic and physical properties were measured from a variety of unconsolidated carbonate sediments in the Lower Florida Keys. Surficial values of compressional and shear speed correlate with sediment physical properties and near-surface acoustic reflectivity. Highest speeds (shear 125–150 m s-1; compressional 1670–1725 m s-1) are from sandy sediments near Rebecca Shoal and lowest speeds (shear 40–65 m s-1; compressional 1520–1570 m s-1) are found in soft, silty sediments which collect in sediment ponds in the Southeast Channel of the Dry Tortugas. High compressional wave attenuation is attributed to scattering of acoustic waves from heterogeneity caused by accumulation of abundant shell material and other impedance discontinuities rather than high intrinsic attenuation. Compared to siliciclastic sediments, carbonate sediment shear wave speed is high for comparable values of sediment physical properties. Sediment fabric, rather than changes due to the effects of biogeochemical processes, is responsible for these differences.  相似文献   

11.
The carbonate system in the central South China Sea   总被引:1,自引:0,他引:1  
The Clements of the carbonate system (HCO3- , CO32-, CO2, ·CO2 and Pco2) in the central South China Sea have been calculated by determining the pH values and total alkalinity of the seawater samples collected at 42 stations, combining simultaneously with the data of the temperatures, salinity and depths. The distributions of their characteristics have been briefly described and discussed. The saturation degrees (Ω) of calcite and aragonite in the studied area have also been evaluated. The ΩcaIc- and Ωarag. in the surface waters are about 5.8 and 3.9, respectively. The saturation depth is about 2200m for calcite and 1200m for aragonite. The lysocline in the studied area probably lies between 3000 m and 4000 m where the saturation degree of calcite is approximately 0.78.  相似文献   

12.
Dissolution experiments in batch and flow-through reactors were combined with data on sediment composition and pore water silicic acid profiles to identify processes controlling the solubility of biogenic silica and the build-up of silicic acid in marine sediments. The variability of experimentally determined biogenic silica solubilities is due, in part, to variations in specific surface area and Al content of biosiliceous materials. Preferential dissolution of delicate skeletal structures and frustules with high surface areas leads to a progressive decrease of the specific surface area. This may cause a reduction of the solubility of deposited biosiliceous debris by 10–15%, relative to fresh planktonic assemblages. Dissolution of lithogenic (detrital) minerals in sediments releases dissolved aluminum to the pore waters. This aluminum becomes structurally incorporated into deposited biogenic silica, further decreasing its solubility. Compared to Al-free biogenic silica, the solubility of diatom frustules is lowered by as much as 25% when one out of every 70 Si atoms is substituted by an Al(III) ion.The build-up of silicic acid in pore waters of sediments with variable proportions of detrital matter and biogenic silica was simulated in batch experiments using kaolinite and basalt as model detrital constituents. The steady-state silicic acid concentrations measured in the experiments decreased with increasing detrital-to-opal ratios of the mixtures. This trend is similar to the observed inverse relationship between asymptotic pore water silicic acid concentrations and detrital-to-opal ratios in Southern Ocean sediments. Flow-through reactor experiments further showed that in detrital-rich sediments, precipitation of authigenic alumino-silicates may prevent the pore waters from reaching equilibrium with the dissolving biogenic silica. This agrees with data from Southern Ocean sediments where, at sites containing more than 30 wt.% detrital material, the pore waters remain undersaturated with respect to the experimentally determined in situ solubility of biogenic silica.The results of the study show that interactions between deposited biogenic silica and detrital material cause large variations in the asymptotic silicic acid concentration of marine sediments. The production of Al(III) by the dissolution of detrital minerals affects the build-up of silicic acid by reducing the apparent silica solubility and dissolution kinetics of biosiliceous materials, and by inducing precipitation of authigenic alumino-silicate minerals.  相似文献   

13.
Geotechnical properties of carbonate sediments result from several factors such as the particular constituents comprising the sediment, the mineralogy, fabric, and effective stress. Investigating the effects of increasing effective stress by mechanical consolidation using permeability, porosity, and porometry determinations reveals fabric changes that could not be determined in scanning electron micrographs. Porometry changes, determined using an image analyzer, are a function of matrix composition and grain support. Samples that were predominantly matrix-supported exhibited an increase in pore numbers per unit area and a pore size decrease resulting from consolidation. Samples composed predominantly of aragonite needle matrices displayed opposite behavior.  相似文献   

14.
Framvaren, a super-anoxic fjord in southern Norway, contains 7–8 mmoll−1 of sulphide and a total carbonate concentration of 18.5 mmol kg−1 in the bottom water. The chemistry of calcium has been studied, considering sources, biogenic and chemical processes and sedimentary sinks. Calcium associated with the bacteria biomass at the redox interface (18m depth) appears to be the primary source of dissolved calcium in the deep, anoxic water. Excess calcium and high total carbonate cause supersaturation of calcite, which is precipitated chemogenically. Calcite (and presumably some aragonite) is identified both in sediment trap material and the bottom sediments below the depth of supersaturation.  相似文献   

15.
In this study, we test various parameters in deep-sea sediments (bulk sediment parameters and changes in microfossil abundances and preservation character) which are generally accepted as indicators of calcium carbonate dissolution. We investigate sediment material from station GeoB 1710-3 in the northern Cape Basin (eastern South Atlantic), 280 km away from the Namibian coast, well outside today’s coastal upwelling. As northern Benguela upwelling cells were displaced westward and periodically preceded the core location during the past 245 kyr (Volbers et al., submitted), GeoB 1710-3 sediments reflect these changes in upwelling productivity. Results of the most commonly used calcium carbonate dissolution proxies do not only monitor dissolution within these calcareous sediments but also reflect changes in upwelling intensity. Accordingly, these conventional proxy parameters misrepresent, to some extent, the extent of calcium carbonate dissolution. These results were verified by an independent dissolution proxy, the Globigerina bulloides dissolution index (BDX′) (Volbers and Henrich, submitted). The BDX′ is based on scanning electronic microscope ultrastructural investigation of planktonic foraminiferal tests and indicates persistent good carbonate preservation throughout the past 245 kyr, with the exception of one pronounced dissolution event at early oxygen isotopic stage (OIS) 6.

The early OIS 6 is characterized by calcium carbonate contents, sand contents, and planktonic foraminiferal concentrations all at their lowest levels for the last 245 kyr. At the same time, the ratio of radiolarian to planktonic foraminiferal abundances and the ratio of benthic to planktonic foraminiferal tests are strongly increased, as are the rain ratio, the fragmentation index, and the BDX′. The sedimentary calcite lysocline rose above the core position and GeoB 1710-3 sediments were heavily altered, as attested to by the unusual accumulation of pellets, aggregates, sponge spicules, radiolaria, benthic foraminifera, and planktonic foraminiferal assemblages.

Solely the early OIS 6 dissolution event altered the coarse fraction intensely, and is therefore reflected by all conventional calcium carbonate preservation proxies and the BDX′. We attribute the more than 1000 m rise of the sedimentary calcite lysocline to the combination of two processes: (a) a prominent change in the deep-water mass distribution within the South Atlantic and (b) intense degradation of organic material within the sediment (preserved as maximum total organic carbon content) creating microenvironments favorable for calcium carbonate dissolution.  相似文献   


16.
In the eastern equatorial Atlantic Ocean, changes in the concentration of carbonate in Late Quaternary sediments resulted from reduced production of carbonate in surface waters and increased dilution with non-carbonate sediments during glacial maxima. During glacial stages, production of carbonate in surface water (measured as its accumulation rate in shallow, undissolved cores) decreased by one half. The glacial accumulation rate of non-carbonate components increased 1.5 to 4 times over Holocene values; the greatest increases occurred in the deepest cores.

Carbonate dissolution during stages 2, 3 and 4 increased the proportion of foraminiferal fragments and decreased the accumulation rate of susceptible species in the deep sites. In shallow sites, slightly increased dissolution can be detected during stage 3 while greatly increased dissolution occurred during stage 4. Bathymetric profiles of foraminiferal fragmentation and accumulation document a shoaling of the foraminiferal lysocline by 1000 m during glacial isotopic stages. We present a mass balance model of sediment accumulation for carbonate and insoluble components and from this model we estimate the rate of downslope transport and dissolution of carbonate at the Sierra Leone Rise. Our results show that during stage 4 the rate of carbonate loss to dissolution was greater than the rate observed today or during other interglacial stages. The calculated rates of dissolution for stages 2 and 3 are not significantly different from those calculated for stage 1.  相似文献   


17.
Spatial and seasonal variations of sulphate, dissolved organic carbon (DOC), nutrients and metabolic products were determined down to 5 m sediment depth in pore waters of intertidal flats located in NW Germany. The impact of sediment permeability, pore water flow, and organic matter supply on deep pore water biogeochemistry was evaluated. Low sediment permeability leads to an enrichment of remineralisation products in pore waters of clay-rich sediments. In permeable sandy sediments pore water biogeochemistry differs depending on whether tidal flat margins or central parts of the tidal flat are studied. Pore water flow in tidal flat margins increases organic matter input. Substrate availability and enhanced temperatures in summer stimulate sulphate reducers down to 3.5 m sediment depth. Sulphate, DOC, and nutrient concentrations exhibit seasonal variations in deep permeable sediments of the tidal flat margin. In contrast, seasonal variations are small in deep pore waters of central parts of the sand flat. This study shows for the first time that seasonal variations in pore water chemistry are not limited to surface sediments, but may be observed down to some metres depth in permeable tidal flat margin sediments. In such systems more organic matter seems to be remineralised than deduced from surface sediment studies.  相似文献   

18.
Whitings (patches of suspended fine-grained calcium carbonate) on the Great Bahama Bank (GBB) have been studied since the 1940s. The source and cause of these whitings have been hotly debated for a number of years. Recent studies have shown that resuspension of underlying sediments act as seed crystals for the slow precipitation of CaCO3. Similar studies have not been conducted on the nearby more northerly Little Bahama Bank (LBB) where satellite photographs indicate the presence of extensive whitings north of the Grand Bahama Island. Research cruises were made to the LBB in July 2003 and May 2005. On board measurements were used to examine the distribution of the components of the carbonic acid system in LBB waters. The distribution of suspended calcium carbonate was also determined and samples of the suspended material and underlying sediments were collected for analyses, including 14C age determinations.The maximum residence time for waters on the LBB is a little over half (~ 144 d) that on the GBB. A ~ 20% decrease was found in the salinity-normalized titration alkalinity for inner bank waters. This yields a carbonate precipitation rate similar to waters on the GBB. However, unlike the waters in the whitings on the GBB where no changes in carbonic acid system parameters have been detected, large changes in the carbonic acid system parameters were found in the whiting waters of the LBB. These results clearly indicate that active precipitation was occurring in these waters. These observations are interpreted as indicating that there is a much slower mixing of waters associated with whitings and surrounding bank waters on the LBB than on the GBB. The more closed nature of whitings on the LBB makes them better targets for study of the processes taking place in whitings.Suspended carbonate mineralogy and geochemistry closely matched those of the fine-grained portion of the underlying sediments. These results support a close relationship between carbonates found in whitings and those in underlying sediments. This is further evidenced by a similar age for whiting carbonates (~ 700 y) and easily resuspended sediment carbonates (~ 1000 y) and is what was previously observed on the GBB.These observations indicate that the processes leading to whiting formation and associated calcium carbonate precipitation along with changes in water chemistry are quite similar in these two shallow carbonate bank environments in the Bahamas.  相似文献   

19.
New light-stable carbonate-carbon isotope and lattice-bound CO2 data from Quaternary Peru-Chile margin phosphatic nodules, crusts and pelletal grains, and from associated dolomicritic concretions, are presented, which provide constraints on the timing and mechanisms of growth of these phases in organic carbon-rich sediments. Comparison of δ13C values from carbonate fluorapatite (CFA) nodules and pelletal grains (−4.8 to 0.0‰ and −2.9 to +1.0‰ PDB, respectively) with pore-water total dissolved δ13C values from these sediments suggests early authigenic CFA precipitation from pore waters within a few centimeters of the sediment-water interface in association with suboxic to perhaps anoxic microbial degradation of organic matter. In contrast, the dolomicritic cores of nodules recovered from about 12°S display both strongly negative to positive δ13C values (−10.8 to +6.1‰) characteristic of formation deeper in the sediments in association with methanogenic and perhaps sulfate reduction microbial processes.

The amount of structural carbonate in CFA suggests that carbonate substitution generally increases as δ13C in CFA decreases, a probable consequence of increasing carbonate and accompanying charge-balancing substitutions in the CFA lattice in response to increasing pore-water carbonate ion concentrations with depth below the sediment-water interface. In one buried upward-growing nodule, decreasing CFA δ13C and increasing structural CO2 also correspond to decreasing CFA growth rates. These data suggest that in addition to other constraints such as pore-water phosphorus and fluoride availability, the lower limit of CFA precipitation in suboxic to anoxic sediments may be controlled by lattice poisoning due to excessive dissolved carbonate ion concentrations. In organic-rich Peru-Chile margin sediments this depth threshold appears to be at approximately 5–10 cm below the sediment-water interface where maximum CFA CO2 contents of about 6 Wt.% occur; in less organic-rich settings, greater depths of precipitation of CFA may be anticipated. Below this relatively shallow depth of CFA precipitation on the Peru shelf, high pore-water alkalinity and associated elevated total dissolved carbon and carbonate ion concentration apparently favor the precipitation of authigenic carbonates.  相似文献   


20.
We studied diatom assemblages and CaCO3 contents of methane-derived authigenic carbonates from the eastern margin of the Sea of Japan and assessed the formation time of these samples. Radioactive 14C date was determined in selected samples to obtain the maximum age of the time. The results of our study suggest mass formation of carbonate nodules in a glacial period within ∼40 ky, consistent with a published U/Th dating result of carbonate nodules in the study area. Diatom assemblages and contents in the carbonate nodules (abundance of ∼106/g, dominance of neritic-littoral species, warm/cold water species ratio lower than ∼25) differ from the near-seafloor sediments in the study area, which have characteristics of Holocene sediments in the Sea of Japan, and suggest cementation of glacial sediments. Laminated sediments in some nodule samples are glacial sediments because laminations are records of a low sea level period in the semi-enclosed ocean. Similarity of diatom assemblages and contents in all carbonate samples is another evidence of glacial sediments in nodules. Glacial sediments with oceanic cold water species as low as Holocene sediments restricts the sediment age to before 20 cal. ky BP. Carbonate contents higher than 78 wt% suggest the cementation of poorly compacted sediments near the seafloor, and the date of carbonate cementation is, therefore, close to that of the cemented sediments. Most carbonate nodule samples in this study were formed in a glacial period and detection of 14C restricts this period to within ∼40 ky.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号