首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Radon has been used to determine groundwater velocity and groundwater discharge into wetlands at the southern downstream boundary of the Crau aquifer, southeastern France. This aquifer constitutes an important high-quality freshwater resource exploited for agriculture, industry and human consumption. An increase in salinity occurs close to the sea, highlighting the need to investigate the water balance and groundwater behavior. Darcy velocity was estimated using radon activities in well waters according to the Hamada “single-well method” (involving comparison with radon in groundwater in the aquifer itself). Measurements done at three depths (7, 15 and 21 m) provided velocity ranging from a few mm/day to more than 20 cm/day, with highest velocities observed at the 15-m depth. Resulting hydraulic conductivities agree with the known geology. Waters showing high radon activity and high salinity were found near the presumed shoreline at 3,000 years BP, highlighting the presence of ancient saltwater. Radon activity has also been measured in canals, rivers and ponds, to trace groundwater discharges and evaluate water balance. A model of the radon spatial evolution explains the observed radon activities. Groundwater discharge to surface water is low in pond waters (4 % of total inputs) but significant in canals (55 l/m2/day).  相似文献   

2.
The hydrogeochemical characterization of groundwater helps to assess the trend of salinization and freshening of the groundwater. The present study was carried out to understand the lateral and vertical variation of groundwater salinity and the process of salinization and freshening of the groundwater in a coastal aquifer comprising a freshwater lens. The partially isolated unconfined aquifer selected for the present study is lying just south of the Chennai City, one of the densely populated cities on the east coast of South India. Critical problems affecting this aquifer include a thin aquifer which is connected/surrounded by saltwater on all the sides, overexploitation of the groundwater, surface impermeabilization due to increasing residential areas, and destruction of existing dune morphology by conversion of barren land to the residential area which causes a reduction in their barrier effect to seawater intrusion. The process of salinization and freshening of the groundwater was studied and monitored by using electrical resistivity survey and hydrogeochemical analysis. The vertical electrical sounding was carried out at 17 locations, and 400 water samples were collected and analyzed from 50 locations during the period from August 2008 to May 2010 for this study. The apparent resistivity values were analyzed and compared with groundwater quality to demarcate the zone of seawater intrusion. The regional flow direction of the groundwater is westward and eastward with respect to the central stretch and groundwater level ranges from 4.96 m MSL at the dune morphology to 0 m MSL along the boundary on all the sides. Base exchange index indicates that salinization trend in the northern part of the study area is due to the extensive groundwater pumping which increases the possibility of seawater intrusion. The increase of base exchange index towards southern part indicates a better groundwater quality of the aquifer due to proper land use practices. A strong trend of quality alteration is clearly visible from the base exchange index in response to the seasonal change between monsoon and dry season. In the western side, the monsoonal variation in the salinization and freshening of the groundwater was not noticed; however, the salinity is slightly higher than freshwater due to the presence of clay.  相似文献   

3.
Overextraction of groundwater is widely occurring along the coast where good quality groundwater is at risk, due to urbanization, tourist development and intensive agriculture. The Sabratah area at the northern central part of Jifarah Plain, Northwest Libya, is a typical area where the contamination of the aquifer in the form of saltwater intrusion, gypsum/anhydrite dissolution and high nitrate concentrations is very developed. Fifty groundwater samples were collected from the study area and analysed for certain parameters that indicate salinization and pollution of the aquifer. The results demonstrate high values of the parameters electrical conductivity, sodium, potassium, magnesium, chloride and sulphate which can be attributed to seawater intrusion. The intensive extraction of groundwater from the aquifer reduces freshwater outflow to the sea, creates drawdown cones and lowering of the water table to as much as 30 m below mean sea level. Irrigation with nitrogen fertilizers and domestic sewage and movement of contaminants in areas of high hydraulic gradients within the drawdown cones probably are responsible for the high nitrate concentration towards the south of the region. Seawater intrusion and deep salt water upconing result in general high SO4 2? concentrations in groundwater near the shoreline, where localized SO4 2? anomalies are also due to the dissolution of sebkha deposits for few wells in the nearby sebkhas. Upstream, the increase in SO4 2? concentrations in the south is ascribed to the dissolution of gypsum at depth in the upper aquifer.  相似文献   

4.
The sea levels along the semi-arid South Texas coast are noted to have risen by 3–5 mm/year over the last five decades. Data from General Circulation Models (GCMs) indicate that this trend will continue in the 21st century with projected sea level rise in the order of 1.8–5.9 mm/year due to the melting of glaciers and thermal ocean expansion. Furthermore, the temperature in South Texas is projected to increase by as much as 4 °C by the end of the 21st century creating a greater stress on scarce water resources of the region. Increased groundwater use hinterland due to urbanization as well as rising sea levels due to climate change impact the freshwater-saltwater interface in coastal aquifers and threaten the sustainability of coastal communities that primarily rely on groundwater resources. The primary goal of this study was to develop an integrated decision support framework to assist land and water planners in coastal communities to assess the impacts of climate change and urbanization. More specifically, the developed system was used to address whether coastal side (primarily controlled by climate change) or landward side processes (controlled by both climate change and urbanization) had a greater control on the saltwater intrusion phenomenon. The decision support system integrates a sharp-interface model with information from GCMs and observed data and couples them to statistical and information-theoretic uncertainty analysis techniques. The developed decision support system is applied to study saltwater intrusion characteristics at a small coastal community near Corpus Christi, TX. The intrusion characteristics under various plausible climate and urbanization scenarios were evaluated with consideration given to uncertainty and variability of hydrogeologic parameters. The results of the study indicate that low levels of climate change have a greater impact on the freshwater-saltwater interface when the level of urbanization is low. However, the rate of inward intrusion of the saltwater wedge is controlled more so by urbanization effects than climate change. On a local (near coast) scale, the freshwater-saltwater interface was affected by groundwater production locations more so than the volume produced by the community. On a regional-scale, the sea level rise at the coast was noted to have limited impact on saltwater intrusion which was primarily controlled by freshwater influx from the hinterlands towards the coast. These results indicate that coastal communities must work proactively with planners from the up-dip areas to ensure adequate freshwater flows to the coast. Field monitoring of this parameter is clearly warranted. The concordance analysis indicated that input parameter sensitivity did not change across modeled scenarios indicating that future data collection and groundwater monitoring efforts should not be hampered by noted divergences in projected climate and urbanization patterns.  相似文献   

5.
River discharge, tide, wind, topography and other factors all have great impacts on the saltwater intrusion of Modaomen Waterway (MW), a major outlet of the Pearl River Estuary. A coupled 1D–3D numerical model was applied in this study to account for the dynamic characteristics of saltwater intrusion in the MW, and the impacts of tide and river discharge on the length of saltwater intrusion were uncovered. Results are as the followings: (1) River discharge from upstream induces an obvious dilution of salinity along the MW, whereas tide can exert a positive force that pushes salt water landward. The effects of river discharge and tide on the length of saltwater intrusion can be well described by a regression function; (2) the saltwater intrusion along the MW is generally aggravated by increases in tidal range from the South China Sea. The length of saltwater intrusion usually reaches a maximum 2 or 3 days before spring tide, and the hourly length of saltwater intrusion along the MW usually slows the tidal process for approximately 4 h, which can provide important information that the pumping operation along the MW to store freshwater in the backup storages needs to be at least 3 days ahead of the spring tide so as to avoid serious impact from saltwater intrusion; (3) the length of saltwater intrusion generally decreases with increasing river discharge. In 2005, 2009 and 2010, the average river discharge from upstream was 2680, 2630 and 3160 m3/s, respectively, with corresponding average lengths of saltwater intrusion of 32.7, 42.3 and 21.4 km. The inverse correlation between the water flow and the length of saltwater intrusion may provide some guidance for operations to maintain enough upstream flow to dilute the salinity and therefore satisfy the domestic water supply.  相似文献   

6.
Anthropogenic pressure influences the two-way interactions between shallow aquifers and coastal lagoons. Aquifer overexploitation may lead to seawater intrusion, and aquifer recharge from rainfall plus irrigation may, in turn, increase the groundwater discharge into the lagoon. We analyse the evolution, since the 1950s up to the present, of the interactions between the Campo de Cartagena Quaternary aquifer and the Mar Menor coastal lagoon (SE Spain). This is a very heterogeneous and anisotropic detrital aquifer, where aquifer–lagoon interface has a very irregular geometry. Using electrical resistivity tomography, we clearly identified the freshwater–saltwater transition zone and detected areas affected by seawater intrusion. Severity of the intrusion was spatially variable and significantly related to the density of irrigation wells in 1950s–1960s, suggesting the role of groundwater overexploitation. We distinguish two different mechanisms by which water from the sea invades the land: (a) horizontal advance of the interface due to a wide exploitation area and (b) vertical rise (upconing) caused by local intensive pumping. In general, shallow parts of the geophysical profiles show higher electrical resistivity associated with freshwater mainly coming from irrigation return flows, with water resources mostly from deep confined aquifers and imported from Tagus river, 400 km north. This indicates a likely reversal of the former seawater intrusion process.  相似文献   

7.
准确确定咸淡水界面位置是评价咸水入侵范围的前提。对于咸淡水界面位置的确定,传统研究以水化学法和物探法为主。为克服单一使用传统方法造成的人力、物力和财力的大量浪费,以莱州湾西南岸广饶县小清河以南咸水入侵区为研究对象,在综合分析研究区地下水开采现状、水化学监测结果的基础上,选择3个典型断面,采用水化学法中的野外现场电导率法,快速判断咸淡水界面大致位置(某两眼监测井之间);再在一咸一淡的两眼监测井之间,采用高密度电阻率法快速、准确地确定咸淡水界面的空间分布。结果表明:该地区的地下水电导率若大于1.61 mS/cm,即可认为此处受到咸水入侵;咸淡水界面位置的视电阻率特征值为11~13 Ω·m,咸淡水界面附近咸水体呈舌状入侵并主要发生在地表以下13 m内的浅层地下水中。  相似文献   

8.
Sustainable management of groundwater resources is critical for viable development of semi-arid regions. Refugio County, TX, is predominantly a rural community that is in close proximity to two large urban areas of Corpus Christi and San Antonio. Large-scale water supply projects are being planned to export surplus water available in Refugio County to nearby growing cities. Being a coastal county with several sensitive bays and estuaries, these projects have caused concerns with regard to decreases in freshwater inflows to coastal bodies and raised the possibility of saltwater intrusion. A simulation model characterizing groundwater flow in the shallower unconfined and the deeper semi-confined formations of the Gulf coast aquifer was calibrated and evaluated. The model results were used in conjunction with a mathematical programming scheme to estimate maximum available groundwater in the county. Stakeholder concerns were incorporated as constraints, which included prevention of saltwater intrusion in the aquifer, limiting the amount of allowable drawdown in shallow aquifers, as well as maintaining current flow gradients especially near baseflow-dependent streams and rivers. For the conditions assumed in this study, the model results indicate that roughly 4.93 × 107 m3 of water can be extracted in a typical year. The management model was noted to be very sensitive to the imposed saltwater intrusion constraint.  相似文献   

9.
A density-dependent numerical groundwater model was applied to study the climate change impact in a shallow aquifer in the Mediterranean coast of Morocco, the Saïdia aquifer. The stresses imposed to the model were derived from the IPCC emission scenarios and included recharge variation and sea level rise. The main effect of the climate change in the Saïdia aquifer will be a decrease in renewable resources, which in the worst-case scenario may decrease to 50–60% of present-day values, due to the decline in recharge and to a reduced inflow from the adjacent Triffa aquifer. The water quality will be affected mostly in the area immediately adjacent to the seashore, where salinity may increase up to 30 g/l. Localised areas may see a decrease in salinity due to the induced freshwater recharge from Oued Moulouya River and diminished inflow from high-salinity springs.  相似文献   

10.
Groundwater plays a key role in arid regions as the majority of water is supplied by it. Groundwater pollution is a major issue, because it is susceptible to contamination from land use and other anthropogenic impacts. A study was carried out to build a vulnerability map for the Ordos Plateau using the DRASTIC model in a GIS environment. The map was designed to show the areas of the highest potential for groundwater pollution based on hydrogeological conditions. Seven environmental parameters, such as depth to water table, net recharge, aquifer media, soil media, topography, impact of the vadose zone media, and hydraulic conductivity of the aquifer, were incorporated into the DRASTIC model and GIS was used to create a groundwater vulnerability map by overlaying the available data. The results of this study show that 24.8 % of the study area has high pollution potential, 24.2 % has moderate pollution potential, 19.7 % has low pollution potential, and the remaining 31.3 % of the area has no risk of groundwater pollution. The regional distribution of nitrate is well correlated with the DRASTIC vulnerability index. In contrast to this, although the DRASTIC model indicated that the western part had no risk, nitrate concentrations were higher in some of these areas. In particular, higher nitrate concentrations were recorded along river valleys and around lakes, such as the Mulin River valley. This is mainly caused by the intensive agricultural development and favorable conditions for recharge along river valleys.  相似文献   

11.
Response of the coastal regions of eastern Arabian Sea (AS) and Kavaratti Island lagoon in the AS to the tropical cyclonic storm `Phyan??, which developed in winter in the south-eastern AS and swept northward along the eastern AS during 9?C12 November 2009 until its landfall at the northwest coast of India, is examined based on in situ and satellite-derived measurements. Wind was predominantly south/south-westerly and the maximum wind speed (U10) of ~16 m/s occurred at Kavaratti Island region followed by ~8 m/s at Dwarka (Gujarat) and ~7 m/s at Diu (located south of Dwarka) as well as two southwest Indian coastal locations (Mangalore and Malpe). All other west Indian coastal sites recorded maximum wind speed of ~5?C6 m/s. Gust factor (i.e., gust-to-speed ratio) during peak storm event was highly variable with respect to topography, with steep hilly stations (Karwar and Ratnagiri) and proximate thick and tall vegetation-rich site (Kochi) exhibiting large values (~6), whereas Island station (Kavaratti) exhibiting ~1 (indicating consistently steady wind). Rainfall in association with Phyan was temporally scattered, with the highest 24-h accumulated precipitation (~60 mm) at Karwar and ~45 mm at several other west Indian coastal sites. Impact of Phyan on the west Indian coastal regions was manifested in terms of intensified significant waves (~2.2 m at Karwar and Panaji), sea surface cooling (~5°C at Calicut), and moderate surge (~50 cm at Verem, Goa). The surface waves were south-westerly and the peak wave period (T p) shortened from ~10?C17 s to ~5?C10 s during Phyan, indicating their transition from the long-period `swell?? to the short-period `sea??. Reduction in the spread of the mean wave period (T z) from ~5?C10 s to a steady period of ~6 s was another manifestation of the influence of the cyclone on the surface wave field. Several factors such as (1) water piling-up at the coast supported by south/south-westerly wind and seaward flow of the excess water in the rivers due to heavy rains, (2) reduction of piling-up at the coast, supported by the upstream penetration of seawater into the rivers, and (3) possible interaction of upstream flow with river run-off, together resulted in the observed moderate surge at the west Indian coast. Despite the intense wind forcing, Kavaratti Island lagoon experienced insignificantly weak surge (~7 cm) because of lack of river influx and absence of a sufficiently large land boundary required for the generation and sustenance of wave/wind-driven water mass piling-up at the land?Csea interface.  相似文献   

12.
This paper focuses on a small back-barrier sand-island on the southeast coast of Queensland. The freshwater lens in the study area exhibits anomalously high short-range salinity gradients at shallow depths, which cannot be explained using a standard seawater intrusion model. The island groundwater system consists of two aquifers: a semiconfined aquifer hosting saline to hypersaline groundwater and an overlying unconfined freshwater aquifer. The deeper aquifer is semiconfined within an incised paleovalley, and groundwater flow is restricted to an east – west direction. Tidal response observations show that the tidal signal propagates far more rapidly and is of much higher magnitude in the semiconfined aquifer than the unconfined aquifer. The tidal wave-pulse amplitude is also subject to greater attenuation in the unconfined aquifer. A conceptual hydrogeological model illustrates how upwelling of hypersaline groundwater, induced by density-dependent flow and tidal pumping, has contaminated the shallow groundwater resource. Salinisation at shallow depths is restricted to an area proximal to the paleovalley aquifer. The spatial distribution of lithological heterogeneity is an initial limiting control on the movement of the upwelling saline plume. The extent of shallow groundwater contamination is also limited by the presence of a baroclinic field, resulting from lateral variations in fluid density. Hydrochemical signatures have been used to support the model hypothesis and link the salinisation of fresh groundwater with the semiconfined aquifer as opposed to the surrounding estuarine surface water. The geometry and thickness of the freshwater lens are further controlled by the presence of the largely impermeable bedrock paleosurface between 9 and 12 m depth. The combination of hypersaline groundwater and hydraulically restrictive lithology at shallow depths has produced excessive thinning of the freshwater lens, demonstrating that the application of a model such as the Dupuit – Ghyben – Herzberg relationship would grossly overestimate the available groundwater resource.  相似文献   

13.
It is important to understand how phosphate sorption dynamics of coastal carbonate aquifers are affected by seawater intrusion, because many coastal aquifers are composed of carbonate rocks and subject to an increase in saltwater intrusion during relative sea-level rise. Twelve carbonate rock and unconsolidated sediment specimens were acquired from a test corehole spanning the full thickness of the Biscayne aquifer in southeastern Florida. All 12 samples exhibit low phosphorus content but variable contents of iron. Column leaching experiments were conducted with two carbonate aquifer samples, alternating between freshwater and saltwater flow. With the first influx of saltwater, phosphate concentration in leachate increased rapidly from a freshwater value of approximately 0.2 μM to peaks of between 0.8 and 1.6 μM. The phosphate concentration began to diminish as saltwater continued to flow, but sustained desorption continued for over 2 h. Overall, seawater drove sorption behavior much more than chemical composition for the aquifer rocks and sediment from the seven rock samples for which we did isotherm sorption experiments. Our results indicate that an immediate and intense pulse of phosphate desorption from carbonate rock and sediment with low phosphorus content occurs in response to an influx of seawater and that the duration of desorption will vary by layer within a single aquifer.  相似文献   

14.
The study area is a part of central Ganga Plain which lies within the interfluve of Hindon and Yamuna rivers and covers an area of approximately 1,345 km2. Hydrogeologically, Quaternary alluvium hosts the major aquifers. A fence diagram reveals the occurrence of a single aquifer to a depth of 126 m below ground level which is intercalated by sub-regional clay beds. The depth to water level ranges from 9.55 to 28.96 m below ground level. The general groundwater flow direction is northwest to southeast. Groundwater is the major source of water supply for agricultural, domestic, and industrial uses. The overuse of groundwater has resulted in the depletion of water and also quality deterioration in certain parts of the area. This has become the basis for the preparation of a groundwater vulnerability map in relation to contamination. The vulnerability of groundwater to contamination was assessed using the modified DRASTIC-LU model. The parameters like depth to water, net recharge, aquifer media, soil media, topography, impact of vadose zone, hydraulic conductivity of the aquifer, and land use pattern were considered for the preparation of a groundwater vulnerability map. The DRASTIC-LU index is computed as the sum of the products of weights and rating assigned to each of the inputs considered. The DRASTIC-LU index ranges from 158 to 190, and is classified into four categories, i.e., <160, 160–170, 170–180, and >180, corresponding to low, medium, high, and very high vulnerability zones, respectively. Using this classification, a groundwater vulnerability potential map was generated which shows that 2 % of the area falls in the low vulnerable zone, 38 % falls in the medium vulnerable zone, and 49 % of the area falls in the high vulnerable zone. About 11 % of the study area falls in the very high vulnerability zone. The groundwater vulnerability map can be used as an effective preliminary tool for the planning, policy, and operational levels of the decision-making process concerning groundwater management and protection.  相似文献   

15.
This study was conducted to identify the availability of coastal groundwater discharge (CGD), subsurface fluids flowing from inland through the coastal area to sea, as an alternative water resource for a large-scale reclaimed land. The behaviors of stable isotopes indicated that groundwater originated from inland precipitation and traveled as CGD along the coast line. Most of the groundwater samples collected from domestic wells installed along the old coast line were considered to be relatively fresh from the correlation analysis among chemical constituents. The average electrical conductivity (EC) values of the samples were identified as averaging 1,125–1,297 μS cm?1, corresponding to appropriate crop growth. A weathered-rock layer in a small catchment within the reclaimed land was proved to be a main CGD pathway, with electrical resistivity anomalies ranging from 7 to 14 Ω m. Five monitoring wells were placed in this catchment to delineate the occurrence of CGD. Long-term vertical EC profiling results for the monitoring wells indicated that CGD occurs within a depth of 30 m below the ground surface. Annual monitoring data for groundwater level and EC demonstrated that the water quality of CGD was improved by introducing fresh terrestrial groundwater. A remarkable improvement in water quality (EC decrease of 900–1,600 μS cm?1) of CGD was observed during the saline water pumping test that explains how CGD could be an alternative water resource for the reclaimed land.  相似文献   

16.
The Central Godavari delta is located along the Bay of Bengal Coast, Andhra Pradesh, India, and is drained by Pikaleru, Kunavaram and Vasalatippa drains. There is no groundwater pumping for agriculture as wells as for domestic purpose due to the brackish nature of the groundwater at shallow depths. The groundwater table depths vary from 0.8 to 3.4 m and in the Ravva Onshore wells, 4.5 to 13.3 m. Electrical Resistivity Tomography (ERT) surveys were carried out at several locations in the delta to delineate the aquifer geometry and to identify saline water aquifer zones. Groundwater samples collected and analyzed for major ions for assessing the saline water intrusion and to identify the salinity origin in the delta region. The results derived from ERT indicated low resistivity values in the area, which can be attributed to the existence of thick marine clays from ground surface to 12–15 m below ground level near the coast and high resistivity values are due to the presence of coarse sand with freshwater away from the coast. The resistivity values similar to saline water <0.01 Ω m is attributed to the mixing of the saline water along surface water drains. In the Ravva Onshore Terminal low resistivity values indicated up coning of saline water and mixing of saline water from Pikaleru drain. The SO 4 ?2 /Cl?and Na+2/Cl?ratios did not indicate saline water intrusion and the salinity is due to marine palaeosalinity, dilution of marine clays and dissolution of evaporites.  相似文献   

17.
Temperature profiles from 25 boreholes were used to understand the spatial and vertical groundwater flow systems in the Western Nile Delta region of Egypt, as a case study of a semi-arid region. The study area is located between the Nile River and Wadi El Natrun. The recharge areas, which are located in the northeastern and the northwestern parts of the study area, have low subsurface temperatures. The discharge areas, which are located in the western (Wadi El Natrun) and southern (Moghra aquifer) parts of the study area, have higher subsurface temperatures. In the deeper zones, the effects of faults and the recharge area in the northeastern direction disappear at 80 m below sea level. For that depth, one main recharge and one main discharge area are recognized. The recharge area is located to the north in the Quaternary aquifer, and the discharge area is located to the south in the Miocene aquifer. Two-dimensional groundwater-flow and heat-transport models reveal that the sealing faults are the major factor disturbing the regional subsurface thermal regime in the study area. Besides the main recharge and discharge areas, the low permeability of the faults creates local discharge areas in its up-throw side and local recharge areas in its down-throw side. The estimated average linear groundwater velocity in the recharge area is 0.9 mm/day to the eastern direction and 14 mm/day to the northwest. The average linear groundwater discharge velocities range from 0.4 to 0.9 mm/day in the southern part.  相似文献   

18.
Seawater intrusion is a major problem to freshwater resources especially in coastal areas where fresh groundwater is surrounded and could be easily influenced by seawater. This study presents the development of a conceptual and numerical model for the coastal aquifer of Karareis region (Karaburun Peninsula) in the western part of Turkey. The study also presents the interpretation and the analysis of the time series data of groundwater levels recorded by data loggers. The SEAWAT model is used in this study to solve the density-dependent flow field and seawater intrusion in the coastal aquifer that is under excessive pumping particularly during summer months. The model was calibrated using the average values of a 1-year dataset and further verified by the average values of another year. Five potential scenarios were analyzed to understand the effects of pumping and climate change on groundwater levels and the extent of seawater intrusion in the next 10 years. The result of the analysis demonstrated high levels of electrical conductivity and chloride along the coastal part of the study area. As a result of the numerical model, seawater intrusion is simulated to move about 420 m toward the land in the next 10 years under “increased pumping” scenario, while a slight change in water level and TDS concentrations was observed in “climate change” scenario. Results also revealed that a reduction in the pumping rate from Karareis wells will be necessary to protect fresh groundwater from contamination by seawater.  相似文献   

19.
Data for the Waimea Plains, New Zealand indicate that the lower confined groundwater aquifer is hydraulically homogeneous and that shallow groundwater levels inland are affected mostly by anthropogenic processes, while those near the coast are affected more by sea level variation. Analysis of long-term data for New Zealand indicates that sea level has increased continuously, but trends are not spatially uniform. Results from non-parametric trend analysis show that rising trends for groundwater levels are predominant in the shallow aquifer both inland on the Waimea Plains and, for recent years, near the coast, while decreasing trends are evident in the underlying confined aquifer near the coast. Groundwater level change in the shallow aquifer appears to be more affected by climate change than the lower confined aquifer. Correlation analysis indicated that groundwater levels are more affected by rainfall during the rainy season than the dry season and more influenced by rainfall inland than near the coast. Groundwater level declines in the lower confined aquifer near the coast, which has its major recharge area inland in the catchment, may be substantially affected by groundwater abstraction in inland areas as well as sea level variation, but there are little evidences of seawater intrusion. Meanwhile, groundwater recharge over the catchment area has great influence on rising groundwater levels in the shallow aquifer and its recharge is estimated to be 417.8 mm/year using chloride concentrations of precipitation and groundwater.  相似文献   

20.
Seawater intrusion in the Salalah plain aquifer,Oman   总被引:2,自引:0,他引:2  
Salalah is situated on a fresh water aquifer that is replenished during the annual monsoon season. The aquifer is the only source of water in Salalah city. The rainfall and mist precipitation in the Jabal AlQara recharges the plain with significant renewable fresh groundwater that has allowed agricultural and industrial development to occur. In Salalah city where groundwater has been used extensively since the early 1980s for agricultural, industrial and municipal purposes, the groundwater has been withdrawn from the aquifer more rapidly than it can be replenished by natural recharge. The heavy withdrawal of large quantities of the groundwater from the aquifer has led to the intrusion of seawater. Agricultural activities utilize over 70% of the groundwater. For the study of the saltwater intrusion, the area has been divided into four strips, A, B, C and D, on the basis of land-use in the area. Water samples were collected from 18 water wells. Chemical analysis of major ions and pollution parameters in the groundwater was carried out and compared to the previous observed values. The electrical conductivity and chloride concentrations were highest in the agricultural and residential strips and Garziz grass farm. Before 1992 the aquifer was in a steady state, but presently (2005) the groundwater quality in most of the agricultural and residential strips does not meet drinking water standards. In addition, model simulations were developed with the computer code MODFLOW and MT3DMS for solute transport to determine the movement of the freshwater/saltwater interface. The study proposes the protection of the groundwater in Salalah plain aquifer from further encroachment by artificial recharge with reclaimed water, preferably along the Salalah coastal agricultural strip. This scheme can also be applied to other regions with similar conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号