首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Groundwater As concentrations >WHO limit (10 μg/L) are frequently found in the Po Plain (N. Italy). Although several hypotheses on As mobilization exist (i.e., reductive dissolution driven by peat degradation), the mechanisms of As release and subsequent attenuation acting in the multilayer aquifer in the Po Plain were poorly understood.The present work aims at implementing a reactive transport modeling of the aquifer system in Cremona, affected by As <183 μg/L, in order to quantify and test the feasibility of As release by the reductive dissolution of Fe-oxides driven by the degradation of peat contained in leaky aquitards and As attenuation downstream by the co-precipitation in iron sulfides.The model, based on a partial equilibrium approach, revealed that the observed As, Fe and Mn chemistry could be mostly explained by the simultaneous equilibrium between Fe-oxide and sulfate reduction and FeS precipitation and by the equilibrium of rhodochrosite precipitation/dissolution. Model results, together with litholog analysis, supported the assumption of peat as the likely source of organic matter driving As release. The model fitted to measured data showed that the peak in the organic carbon degradation rate at 20–40 m below surface (average of 0.67 mM/y), corresponding to the shallow peaty aquitard and the upper portion of the underlying semiconfined aquifer, is associated with the peak of net release of As (average of 0.32 μM/y) that is followed just downstream by a net precipitation in iron sulfides at 40–60 m below surface (average of 0.30 μM/y). These results support the assumptions of peaty aquifers as drivers of As release and iron sulfides as As traps. The model also outlined the following aspects that could have a broad applicability in other alluvial As affected aquifers worldwide: (a) shallow peaty aquitards may have a greater role in driving the As release since they likely have young and more reactive organic matter; (b) the occurrence of Fe-oxide reduction and FeS precipitation, that represent the As source and sink, together with sulfate reduction occurring simultaneously close to equilibrium may restrict the As mobility limiting the extent of contamination just downstream the source of organic matter that drives its release.  相似文献   

6.
7.
Dar es Salaam Quaternary coastal aquifer is a major source of water supply in Dar es Salaam City used for domestic, agricultural, and industrial uses. However, groundwater overdraft and contamination are the major problems affecting the aquifer system. This study aims to define the principal hydrogeochemical processes controlling groundwater quality in the coastal strip of Dar es Salaam and to investigate whether the threats of seawater intrusion and pollution are influencing groundwater quality. Major cations and anions analysed in 134 groundwater samples reveal that groundwater is mainly affected by four factors: dissolution of calcite and dolomite, weathering of silicate minerals, seawater intrusion due to aquifer overexploitation, and nitrate pollution mainly caused by the use of pit latrines and septic tanks. High enrichment of Na+ and Cl? near the coast gives an indication of seawater intrusion into the aquifer as also supported from the Na–Cl signature on the Piper diagram. The boreholes close to the coast have much higher Na/Cl molar ratios than the boreholes located further inland. The dissolution of calcite and dolomite in recharge areas results in Ca–HCO3 and Ca–Mg–HCO3 groundwater types. Further along flow paths, Ca2+ and Na+ ion exchange causes groundwater evolution to Na–HCO3 type. From the PHREEQC simulation model, it appears that groundwater is undersaturated to slightly oversaturated with respect to the calcite and dolomite minerals. The results of this study provide important information required for the protection of the aquifer system.  相似文献   

8.
《Applied Geochemistry》2005,20(8):1496-1517
Chloride concentrations were as high as 230 mg/L in water from the surface discharge of long-screened production wells in Pleasant Valley, Calif., about 100 km NW of Los Angeles. Wells with the higher Cl concentrations were near faults that bound the valley. Depending on well construction, high-Clwater from different sources may enter a well at different depths. For example, Cl concentration in the upper part of some wells completed in overlying aquifers influenced by irrigation return were as high as 220 mg/L, and Cl concentrations in water sampled within wells at depths greater than 450 m were as high as 500 mg/L. These high-Cl waters mix within the well during pumping and produce the water sampled at the surface discharge. Changes in the major ion, minor ion, trace element, and δ34S and δ13C isotopic composition of water in wells with depth were consistent with changes resulting from SO4 reduction, precipitation of calcite, and cation exchange. The chemical and isotopic composition of high-Cl water from deep wells trends towards the composition of oil-field production water from the study area. Chloride concentrations in oil-field production water present at depths 150 m beneath freshwater aquifers were 2200 mg/L, and Cl concentrations in underlying marine rock were as high as 4400 mg/L. High-Cl concentrations in water from deeper parts of wells were associated with dissolved organic C composed primarily of hydrophobic neutral compounds believed to be similar to those associated with petroleum in underlying deposits. These compounds would not be apparent using traditional sampling techniques and would not be detected using analytical methods intended to measure contamination.  相似文献   

9.
Seawater intrusion is a major problem to freshwater resources especially in coastal areas where fresh groundwater is surrounded and could be easily influenced by seawater. This study presents the development of a conceptual and numerical model for the coastal aquifer of Karareis region (Karaburun Peninsula) in the western part of Turkey. The study also presents the interpretation and the analysis of the time series data of groundwater levels recorded by data loggers. The SEAWAT model is used in this study to solve the density-dependent flow field and seawater intrusion in the coastal aquifer that is under excessive pumping particularly during summer months. The model was calibrated using the average values of a 1-year dataset and further verified by the average values of another year. Five potential scenarios were analyzed to understand the effects of pumping and climate change on groundwater levels and the extent of seawater intrusion in the next 10 years. The result of the analysis demonstrated high levels of electrical conductivity and chloride along the coastal part of the study area. As a result of the numerical model, seawater intrusion is simulated to move about 420 m toward the land in the next 10 years under “increased pumping” scenario, while a slight change in water level and TDS concentrations was observed in “climate change” scenario. Results also revealed that a reduction in the pumping rate from Karareis wells will be necessary to protect fresh groundwater from contamination by seawater.  相似文献   

10.
Seawater intrusion into the shallow aquifer in the Syrian coast, north of Latakia (Damsarkho, Ras Ibn Hani) and south of Tartous (Al Hamidieh, Ein Zarka) was studied using hydrochemical and isotopic techniques. The electrical conductivity (EC) distribution map north of Latakia revealed that mixing in this area is the consequence of a frontal intrusion of seawater within the fresh groundwater aquifer which, in turn, results from intensive pumping since the 1960s which has lowered the water table inland below sea level. In Ein Zarka, south of Tartous, in contrast, the EC distribution revealed that seawater intrusion is due to local up-coning as a result of intensive pumping. The deuterium and oxygen-18 relationship is that of a mixing line with a slope of 5.55, indicating an intrusion between freshwater and seawater. In addition, the relationship between oxygen-18 and chloride reveals that the mixing has a dominant role compared to evaporation process. The mixing ratios are estimated to be between 6 and 10% north of Latakia, while they do not exceed 3% south of Tartous. A tritium model was applied to compute the “mean transit time”, which is estimated to be around 10 years, on average, to reach the equilibrium that existed originally between the fresh groundwater and seawater, provided that severe pumping is completely halted and the aquifer is naturally recharged by rainfall and deep percolation of irrigation water, thereby allowing the restoration of the hydraulic gradient. This paper is dedicated to the memory of Dr. Y. Yurtsever.  相似文献   

11.
Seawater intrusion has been an important topic in hydrogeology in China in recent decades. The rapid growth of the population and economy in the coastal regions has been consuming a tremendous amount of groundwater resources and has increased the extent of seawater intrusion. The spatial discrepancy of water resource distribution has caused the studies of seawater intrusion into China to mainly be concentrated on the area around the Bohai Sea in the northern part of China. The total area of seawater-intruded land due to excessive groundwater utilization in the area was estimated to be approximately 2,457 km2 in 2003. Great efforts have been made to mitigate the extent of seawater intrusion and to secure more freshwater resources, including building monitoring networks, subsurface barrier and groundwater reservoirs, and artificial infiltration facilities. Management projects over the years were evaluated to satisfy the objectives and to provide valuable experiences for future research and planning. It is expected that the coastal groundwater conditions of the northern region will improve through the development of a national water resource plan, such as the ongoing south-to-north water diversion project.  相似文献   

12.
The Salalah central sewage treatment plant has been designed to treat 20,000 m3/day at the first stage and two further stages to double the initial capacity. The plant currently (2005) treats more than 15,000 m3/day effluents to a tertiary level, and after chlorination phase, the effluents are recharged into tube wells in a line parallel to the coast. The process aims to help stabilize the seawater interface and a part to be recovered from hand-dug wells/boreholes further inland and downstream. A three-dimensional flow and solute advection transport model was developed to assess the effectiveness of the proposed recharge scheme and to track the solute transport with respect to the design system. The advection transport model predicted that in 2020 the maximum pathlines of the injection fluids would reach the abstraction wells that are located 600 m, southward of the injection bores in about 1-year travel time in the case of the no-management interference and more than that southward under management interference. The developed flow predicted the wedge of the saline intrusion in 2019 is tracked up to 2.7 and 3.4 km from the shoreline with the injection and without the injection, respectively under constant underflow. The injection scheme is effective in pushing back the saline zone front by 700 m. This study argues that the treated wastewater would help to increase the water levels at the vicinity of the injection line and to reduce the influence of saline inflows from the coast. The reclaimed sewage recharge scheme is examined in the case of the Salalah coastal aquifer using groundwater simulation, which can also be applied to other regions with similar conditions.  相似文献   

13.
 Hydrogeological research is in progress, utilizing GIS methods, with the principal aim of modelling the Olocenic alluvial aquifer of the River Cornia coastal plain (southern Tuscany, Italy), which has been exploited for drinking water, irrigation, and industrial uses. A consequence of exploitation has been the appearance of wide seawater intrusion. The alluvial aquifer has recently been subjected to new well fields for the supply of drinking water, with an increase of total average discharge of about 4×106 m3/year. This paper presents results obtained from updating and integrating basic knowledge and structuring the database. The hydrogeological study allowed the recognition of the extension of areas that are characterized by a hydraulic head under the sea level, the progressive salinization of the aquifer, and the increase of water deficit in the aquifer which is produced by a progressive extraction of water superior to the natural recharge. In addition, benefits and disadvantages resulting from the location of new well fields in a hydrogeologically favourable zone, and the boundary conditions for much of the area studied have been defined. The GIS was used as support for making and updating the tabular and spatial database with the aim of integrating the local and regional hydrogeological knowledge. This study will permit the realization of a numerical simulation of the groundwater flow of the aquifer aimed at correcting the management of water resources, by means of the GIS-modelling integration. Received: 23 June 1998 · Accepted: 16 November 1998  相似文献   

14.
Saltwater intrusion in coastal aquifers depends on the distribution of hydraulic properties, on the climate, and on human interference such as land reclamation. In order to analyze the key processes that control saltwater intrusion, a hypothetical steady-state salt distribution in a representative cross-section perpendicular to the coastline was calculated using a two-dimensional density-dependent solute transport model. The effects of changes in groundwater recharge, lowering of drainage levels, and a rising sea level on the shape and position of the freshwater/saltwater interface were modeled in separate simulations. The results show that the exchange of groundwater and surface water in the marsh areas is one of the key processes influencing saltwater intrusion. A rising sea level causes rapid progression of saltwater intrusion, whereas the drainage network compensates changes in groundwater recharge. The time scale of changes resulting from altered boundary conditions is on the order of decades and centuries, suggesting that the present-day salt distribution does not reflect a steady-state of equilibrium.  相似文献   

15.
Ongoing hydrogeological research aims to develop a correct management model for the Plio-Pleistocene multi-aquifer system of the Albegna River coastal plain (southern Tuscany, Italy); overexploitation of this aquifer for irrigation and tourism has caused seawater intrusion. The conceptual model is based on field and laboratory data collected during the 1995–2003 period. Meteoric infiltration and flows from the adjoining carbonate aquifer recharge the aquifer. Natural outflow occurs through a diffuse flow into the sea and river; artificial outflow occurs through intensive extraction of groundwater from wells. Water exchanges in the aquifer occur naturally (leakage, closing of aquitard) and artificially (multiscreened wells). The aquifer was represented by a three-dimensional finite element model using the FEFLOW numerical code. The model was calibrated for steady-state and transient conditions by matching computed and measured piezometric levels (February 1995–February 1996). The model helped establish that seawater intrusion is essentially due to withdrawals near the coast during the irrigation season and that it occurs above all in the Osa-Albegna sector, as well as along the river that at times feeds the aquifer. The effects of hypothetical aquifer exploitation were assessed in terms of water budget and hydraulic head evolution.  相似文献   

16.
17.
The current study introduces the geological subsurface cross-sections in the southern part of the Gaza Strip to show the structure of the aquifer in the area. The cross-sections give evidence of four subaquifers of the coastal aquifer in the southern part of the Gaza Strip. These cross-sections give the natural reasons for the deterioration of the groundwater in the study area. The results show presence of clay lenses that prevent the replenishment processes of the aquifer of fresh water from the rainfall and returns flow from agricultural activities. Lithological formation was evident as one of the natural causes which accelerate destroying process of the coastal aquifer. The results also show that the structure of the aquifer causes the increase of the groundwater salinity in the Gaza Strip. The cross-sections had shown the shortage of storage capacity of high quantities of fresh water in the coastal aquifer in these areas. The role of lithological formation was evident as one of the natural causes to accelerate the process of destroying the coastal aquifer.  相似文献   

18.
19.
This study is an attempt to quantify the geochemical processes and the timescale of seawater intrusion into a coastal aquifer from changes in the major ionic composition of the water and the natural distribution of the cosmogenic isotopes 14C and 3H. For that purpose, we sampled saline and brackish groundwaters from the Israeli coastal aquifer. A multilayer sampler (MLS) was used to obtain very high resolution (10 cm) profiles across the fresh-saline water interface (FSI).The chemical and stable isotope data revealed three distinct water types (end members) that are located in different zones on the route to the coastal aquifer: (1) slightly modified Mediterranean seawater (SWS); (2) slightly diluted (with up to 20% fresh groundwater) saline groundwater (SDS); and (3) fresh groundwater (FGW).The SWS samples generally show an excess of total alkalinity and total dissolved inorganic carbon (DIC), and a depletion of 13CDIC and 14CDIC with respect to normal seawater indicating that anaerobic oxidation of organic matter is the first diagenetic reaction that affects seawater during its penetration into the bottom sediments. SDS waters appear when SWS is slightly diluted, gain Ca2+ and Sr2+, and is depleted in K+, suggesting that the main processes that transform SWS into SDS are slight dilution with fresh groundwater and cation exchange. At the fresh-saline water interface, SDS generally shows conservative mixing with FGW.Inspection of chemical data from coastal aquifers around the world indicates that intensive ion exchange in slightly diluted saline groundwater is a globally important phenomenon of seawater intrusion. Most of our saline groundwater samples contain substantial amounts of 3H suggesting that penetration of Mediterranean seawater and its inland travel to a distance of 50-100 m onshore occurred 15-30 yr ago. This is supported by the 14CDIC mass balance that explains the relatively low 14CDIC activities in the SDS as influenced by diagenesis and not by simple radioactive decay.  相似文献   

20.
The central-eastern Po Plain in northern Italy is a rapidly subsiding sedimentary basin that hosts about 30% of the Italian population and 40% of Italy's total productive activities. Subsidence rates range from 0 to −70 mm/year, the maximum occurring in synclinal areas at the Po Delta and near Bologna, the minimum located at the top of buried, probable tectonically active anticlines (Mirandola–Ferrara). We show that modern subsidence is at least an order of magnitude higher than due solely to long-term natural processes. This implies that most subsidence in the Po Plain has been induced by human activities. As previously noted, we suggest that the main factor controlling modern subsidence is water withdrawal, which was particularly intense during the second half of the 20th century, coinciding with accelerating economic growth. We also evaluate the impact of rapid subsidence on floods in low areas by comparing subsidence velocity maps with flood maps. This shows that there is a clear-cut correlation between flood frequency and rapid subsidence. In contrast, few floods occurred in low subsidence areas, which generally correspond with the top of buried anticlines. We finally note that the anthropic-caused increase in subsidence has now greatly increased the potential for additional floodings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号