首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The mixing-layer height is estimated using measurements from a high resolution surface-layer sodar run at the French-Italian station of Concordia at Dome C, Antarctica during the summer 2011–2012. The temporal and spatial resolution of the sodar allows the monitoring of the mixing-layer evolution during the whole diurnal cycle, i.e. a very shallow nocturnal boundary layer followed by a typical daytime growth. The behaviour of the summer mixing-layer height, variable between about 10- and 300 m, is analyzed as a function of the mean and turbulent structure of the boundary layer. Focusing on convective cases only, the retrieved values are compared with those calculated using a one-dimensional prognostic equation. The role of subsidence is examined and discussed. We show that the agreement between modelled and experimental values significantly increases if the subsidence is not kept fixed during the day. A simple diagnostic equation, which depends on the time-averaged integral of the near-surface turbulent heat flux, the background static stability and the buoyancy parameter, is proposed and evaluated. The diagnostic relation performance is comparable to that of the more sophisticated prognostic model.  相似文献   

2.
Results from radiosoundings, performed both over land and over sea, show that the ascent rate of a radiosounding balloon, the vertical velocity of the balloon, can be used to determine the height of the boundary layer. In many cases the balloon has a higher ascent rate in the boundary layer and a lower, less variable, ascent rate above. The decrease in ascending velocity appears as a jump at the top of the boundary layer. Two examples of potential temperature profiles for unstable stratification and one profile for stable conditions are shown with the corresponding ascent rates. A comparison between the boundary-layer height determined from potential temperature profiles and from ascent rates is presented for a larger dataset. The different ascent rates of the balloon in the boundary layer and above can be explained by a decrease in drag on the balloon in combination with a lowering of the critical Reynolds number in the boundary layer caused by turbulence. Hence, by simply logging the time from release of a radiosonde, it is possible to obtain additional information that can be used to estimate the height of both the unstable and stable boundary layers.  相似文献   

3.
We present measurements from 2006 of the marine wind speed profile at a site located 18 km from the west coast of Denmark in the North Sea. Measurements from mast-mounted cup anemometers up to a height of 45 m are extended to 161 m using LiDAR observations. Atmospheric turbulent flux measurements performed in 2004 with a sonic anemometer are compared to a bulk Richardson number formulation of the atmospheric stability. This is used to classify the LiDAR/cup wind speed profiles into atmospheric stability classes. The observations are compared to a simplified model for the wind speed profile that accounts for the effect of the boundary-layer height. For unstable and neutral atmospheric conditions the boundary-layer height could be neglected, whereas for stable conditions it is comparable to the measuring heights and therefore essential to include. It is interesting to note that, although it is derived from a different physical approach, the simplified wind speed profile conforms to the traditional expressions of the surface layer when the effect of the boundary-layer height is neglected.  相似文献   

4.
A moving-grid finite-element model has been developed to model numerically the vertically integrated properties of the atmospheric boundary layer (ABL) in one dimension. The model equations for mean wind velocity and potential temperature are combined with a surface energy budget and predictive equations for boundary-layer height to simulate both stable and unstable ABLs. The nodal position defining the top of the boundary layer is one of the model unknowns and is determined by boundary-layer dynamics. The finite-element method, being an integral method, has advantages of accurate representation of both bulk values and their vertical derivatives, the latter being essential properties of the nocturnal boundary layer. Compared with observations and results of other models, the present model predicts bulk properties very well while retaining a simple and economical form.Journal Paper No. J-12996 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa, Project No. 2779.  相似文献   

5.
The mean flow profile within and above a tall canopy is well known to violate the standard boundary-layer flux–gradient relationships. Here we present a theory for the flow profile that is comprised of a canopy model coupled to a modified surface-layer model. The coupling between the two components and the modifications to the surface-layer profiles are formulated through the mixing layer analogy for the flow at a canopy top. This analogy provides an additional length scale—the vorticity thickness—upon which the flow just above the canopy, within the so-called roughness sublayer, depends. A natural form for the vertical profiles within the roughness sublayer follows that overcomes problems with many earlier forms in the literature. Predictions of the mean flow profiles are shown to match observations over a range of canopy types and stabilities. The unified theory predicts that key parameters, such as the displacement height and roughness length, have a significant dependence on the boundary-layer stability. Assuming one of these parameters a priori leads to the incorrect variation with stability of the others and incorrect predictions of the mean wind speed profile. The roughness sublayer has a greater impact on the mean wind speed in stable than unstable conditions. The presence of a roughness sublayer also allows the surface to exert a greater drag on the boundary layer for an equivalent value of the near-surface wind speed than would otherwise occur. This characteristic would alter predictions of the evolution of the boundary layer and surface states if included within numerical weather prediction models.  相似文献   

6.
An examination of boundary-layer meteorological and avian aerodynamic theories suggests that soaring birds can be used to measure the magnitude of vertical air motions within the boundary layer. These theories are applied to obtain mixed-layer normalized thermal updraft intensity over both flat and complex terrain from the climb rates of soaring American white pelicans and from diagnostic boundary-layer model-produced estimates of the boundary-layer depth zi and the convective velocity scale w*. Comparison of the flatland data with the profiles of normalized updraft velocity obtained from previous studies reveals that the pelican-derived measurements of thermal updraft intensity are in close agreement with those obtained using traditional research aircraft and large eddy simulation (LES) in the height range of 0.2 to 0.8 zi. Given the success of this method, the profiles of thermal vertical velocity over the flatland and the nearby mountains are compared. This comparison shows that these profiles are statistically indistinguishable over this height range, indicating that the profile for thermal updraft intensity varies little over this sample of complex terrain. These observations support the findings of a recent LES study that explored the turbulent structure of the boundary layer using a range of terrain specifications. For terrain similar in scale to that encountered in this study, results of the LES suggest that the terrain caused less than an 11% variation in the standard deviation of vertical velocity.  相似文献   

7.
Analysis of the mean wind, equivalent potential temperature and virtual potential temperature profiles observed by the National Center for Atmospheric Research (NCAR) Electra aircraft and obtained from dropwindsondes and ship-launched radiosondes were made in conjunction with synoptic observations to study the structure of the monsoon boundary layer over the Arabian Sea during MONEX 79. Comparison of mean profiles indicates the monsoon boundary layer to be much different from the trade wind boundary layer. Results confirm the existence of a boundary-layer jet known as East African or Somali Jet. Regions of multiple cloud layers at roughly the height of the capping inversion layer were associated with the jet. Regions in which a more well-mixed layer was observed showed a jet structure depressed in height. A free-jet surface-layer model appears to describe the mean wind structure of this jet observed during the present study and by others. An approximate balance of forces was found in the monsoon boundary layer between friction, advective acceleration, Coriolis and pressure gradient forces. Friction and advective acceleration terms were significant in the lower levels of the boundary layer. Forces in a typical trade wind boundary layer were found to be approximately one order of magnitude smaller than those observed in the monsoon boundary layer.  相似文献   

8.
The entrainment of air from the free atmosphere into the convective boundary layer is reviewed and further investigated using observations from a 2 μm Doppler lidar. It is possible to observe different individual processes entraining air into the turbulent layer, which develop with varying stability of the free atmosphere. These different processes are attended by different entrainment-zone thicknesses and entrainment velocities. Four classes of entrainment parametrizations, which describe relationships between the fundamental parameters of the process, are examined. Existing relationships between entrainment-zone thickness and entrainment velocity are basically confirmed using as scaling parameters boundary-layer height and convective velocity. An increase in the correlation coefficient between stability parameters based on the stratification of the free atmosphere and entrainment velocity (and entrainment-zone thickness respectively) up to 200% was possible using more suitable length and velocity scales.  相似文献   

9.
The height of the atmospheric boundary layer (ABL) obtained with lidar and radiosondes is compared for a data set of 43 noon (12.00 GMT) cases in 1984. The data were selected to represent the synoptic circulation types appropriately. Lidar vertical profiles at 1064 nm were used to obtain three estimates for the ABL height (h lid), based on the first gradient in the back-scatter profile, namely, at the beginning, middle and top of the gradient. The boundary-layer height obtained with the radiosondes (h s) was determined with the dry-parcel-intersection method in unstable conditions. As a first guess for near-neutral and stable conditions, the height of the first significant level in the potential temperature profile was taken. Overall, the boundary-layer thickness estimates agree surprisingly well (regression lineh lidb=hs:cc.=0.93 and the standard error=121 m). However, in 10% of the cases, the lidar estimate was significantly lower (difference>400 m) than the routinely inferredh s. These outliers are discussed separately. For stable conditions, an estimate of ABL height (h N) is also made based on the friction velocity and the Brunt-Väisälä frequency. The agreement betweenh Nandh lidbis good. Discrepancies between the two methods are caused by:
  1. rapid growth of the boundary layer arround the measurement time;
  2. the presence of a deep entrainment layer leading to a large zone in which quantities are not well mixed;
  3. a large systematic error of 100–200 m in the estimate of boundary-layer height obtained from the radiosonde due to the way that profiles are recorded, as a series of significant points.
  相似文献   

10.
Summer boundary-layer height at the plateau site of Dome’C,antarctica   总被引:1,自引:1,他引:0  
Measurements of the mean and turbulent structure of the planetary boundary layer using a sodar and a sonic anemometer, and radiative measurements using a radiometer, were carried out in the summer of 1999–2000 at the Antarctic plateau station of Dome C during a two-month period. At Dome C strong ground-based inversions dominate for most of the year. However, in spite of the low surface temperatures (between −50 and −20 °C), and the surface always covered by snow and ice, a regular daytime boundary-layer evolution, similar to that observed at mid-latitudes, was observed during summertime. The mixed-layer height generally reaches 200–300 m at 1300–1400 LST in high summer (late December, early January); late in the summer (end of January to February), as the solar elevation decreases, it reduces to 100–200 m. A comparison between the mixed-layer height estimated from sodar measurements and that calculated using a mixed-layer growth model shows a rather satisfactory agreement if we assign a value of 0.01–0.02 m s−1 to the subsidence velocity at the top of the mixed layer, and a value of 0.003–0.004 K m−1 to the potential temperature gradient above the mixed layer.  相似文献   

11.
We consider the structure of the stable boundary layer using the concept of local scaling. In this scaling approach turbulence variables, non-dimensionalized with measurements taken at the same height, can be expressed as a function of a single parameter z/, where z is the height and a local Obukhov length. One of the consequences is that locally scaled variables become constant above the surface layer. This behavior is illustrated with observations of the Richardson number. With local scaling as a closure hypothesis we then formulate a model of the stable boundary layer. Its solution for steady-state conditions is given. One result we obtain is the well-known Zilitinkevich equation for the boundary-layer height. A comparison of this equation with observations results in a reasonable agreement. Also we discuss some alternative expressions for the stable boundary-layer height and compare them with observations. Another result of our model is an explicit profile for the K-coefficient as a quadratic function of height. We discuss the consequences of this expression for the dispersion of a point source emission. We find that the time scale of diffusion in this case is about 5 hours.  相似文献   

12.
A nested grid regional model with a high vertical resolution in the atmospheric boundary layer is used to simulate various atmospheric processes during an active monsoon period. A turbulence kinetic energy closure scheme is used to predict the boundary-layer structure. Model predictions indicate different structures of the boundary layer over land and oceans, as observed. Significant diurnal variation in boundary-layer structure and associated processes is predicted over land and negligible variations over oceans. The Somali jet over the Arabian Sea is well predicted. Location of the predicted monsoon depression and the associated rainfall are in good agreement with the observations. Also, predicted rainfall and its spatial distribution along the west coast of India are in good agreement with the observations.  相似文献   

13.
A dataset collected during a measurement campaign in the middle of the Po Valley, Italy, is used to investigate the boundary-layer structure in stable conditions. Empirical formulations for temperature and wind profiles derived from Monin–Obukhov similarity theory are used as regression curves to fit radiosounding profiles in the lower half of the boundary-layer. The best fitting parameters of the regression are then compared to the surface turbulent fluxes as measured by a co-located sonic anemometer. This comparison shows significant discrepancies and supports earlier results showing that surface fluxes, in the limit of high stability, are not adequate scalings for mean profiles. The most evident differences are found for cases for which the bulk Richardson number turns out to be quite large. One of the practical consequences is that boundary-layer height diagnostic formulations that mainly rely on surface fluxes are in disagreement with those obtained by inspecting the thermodynamic profiles recorded during the radiosounding ascent. Moreover the incorrect scaling of similarity profiles in stable conditions leads to the erroneous diagnosis of 2-m air temperatures used in numerical weather prediction validation.  相似文献   

14.
A simple algorithm is proposed in order to transform routine surface wind speed observations near the coast to a wind at the height of the equilibrium planetary boundary layer as well as to any other height over a relatively flat coastal region. The model is based on the well known internal boundary layer (IBL) concept, Monin-Obukhov similarity theory and the resistance law, and describes the effects of the roughness transition from sea to land as well as the effect of stability on the shape of the profiles and the IBL growth. The required input weather data are no more than surface wind speed, air temperature and total cloud cover. Satisfactory agreement was found between measurements at Hellinikon airport and estimations made with the scheme. The introduction of a transition layer above the IBL did not improve the agreement to any significant extent. Mean values of the estimated wind differed by less than 1 m s -1 from the observed ones, a difference within the accuracy of the reported rawinsonde values. The rms error varied in the range of 17–22% of the observed average value, giving the best agreement under unstable conditions. The correlation coefficient between the observed and the estimated values of the wind, at the height of the equilibrium planetary boundary layer, ranged between 0.74 and 0.90.  相似文献   

15.
Thermodynamic characteristics and temporal variation of alpine lake breezes in the eastern Southern Alps are examined. Research was conducted in a large glacially excavated basin dominated by an 87 square kilometre melt-water lake as part of a study of windblown dust dispersion. The surrounding mountain ranges were found to shelter the lake basin from most synoptic winds, thereby allowing local and regional thermally generated circulations to develop to ridge height, approximately 1300m above the surrounding landscape. During favourable synoptic conditions the local lake breeze becomes embedded within the regional valley wind forming an extended lake breeze. Tethersonde flights during these conditions made using a kite based sounding system identified both stable internal (SIBL) and thermal internal boundary layer (TIBL) conditions over the down wind shoreline. Two equations for estimating the height of both boundary-layer types were tested against observations and found to provide good first order predictive estimates of boundary-layer height.  相似文献   

16.
Models of the diabatic wind profile over homogeneous terrain for the entire atmospheric boundary layer are developed using mixing-length theory and are compared to wind speed observations up to 300 m at the National Test Station for Wind Turbines at Høvsøre, Denmark. The measurements are performed within a wide range of atmospheric stability conditions, which allows a comparison of the models with the average wind profile computed in seven stability classes, showing a better agreement than compared to the traditional surface-layer wind profile. The wind profile is measured by combining cup anemometer and lidar observations, showing good agreement at the overlapping heights. The height of the boundary layer, a parameter required for the wind profile models, is estimated under neutral and stable conditions using surface-layer turbulence measurements, and under unstable conditions based on the aerosol backscatter profile from ceilometer observations.  相似文献   

17.
The paper describes some aspects of the convective boundary-layer structure based on simultaneous sodar and tethersonde measurements during a field experiment in the urban area of Milan in the period 8 to 20 February, 1993. During this period, fog episodes and strong low-level elevated inversions (with lower boundaries < 400 m) were observed most of the time. A close agreement in the mixing height values, derived from the sodar and tethersonde profiles, has been achieved under these conditions. The validity of the similarity relationships, which have been originally derived to describe the vertical velocity variance and heat flux profiles over horizontally homogeneous terrain under quasi-stationary conditions, was evaluated when applied to the urban boundary layer.  相似文献   

18.
We present an analysis of data from a nearly 1-year measurement campaign performed at Høvsøre, Denmark, a coastal farmland area where the terrain is flat. Within the easterly sector upstream of the site, the terrain is nearly homogenous. This topography and conditions provide a good basis for the analysis of vertical wind-speed profiles under a wide range of atmospheric stability, turbulence, and forcing conditions. One of the objectives of the campaign was to serve as a benchmark for flow over flat terrain models. The observations consist of combined wind lidar and sonic anemometer measurements at a meteorological mast. The sonic measurements cover the first 100 m and the wind lidar measures above 100 m every 50 m in the vertical. Results of the analysis of observations of the horizontal wind-speed components in the range 10–1200 m and surface turbulence fluxes are illustrated in detail, combined with forcing conditions derived from mesoscale model simulations. Ten different cases are presented. The observed wind profiles approach well the simulated gradient and geostrophic winds close to the simulated boundary-layer height during both barotropic and baroclinic conditions, respectively, except for a low-level jet case, as expected. The simulated winds are also presented for completeness and show good agreement with the measurements, generally underpredicting the turning of the wind in both barotropic and baroclinic cases.  相似文献   

19.
Different methods to determine the height of the convective boundary layer from lidar measurements are described and compared. The differences in either aerosol backscatter or in humidity between the boundary layer and the free troposphere are used, and either the variance or the gradient profile of the parameter under study is evaluated. On average the different methods are in very good agreement. Temporal resolution of the gradient methods is very high, on the order of seconds, but often there is an ambiguity in the choice of the “relevant” minimum in the gradient that corresponds to the boundary-layer height. This is avoided by combining the variance and the gradient methods, using the result of the variance analysis as an indicator for the region where the minimum of the gradient is sought. The combined method is useful for automated determination of the boundary-layer height at least under convective conditions. Aerosol backscatter is found to be as good an indicator for boundary-layer air as humidity, so a relatively simple backscatter lidar is sufficient for determination of the boundary-layer height.  相似文献   

20.
The basic numerical air-sea boundary-layer model described in Pandolfo (1969a, b) was varied to produce a set of models with differing atmospheric boundary-layer formulas, four of which are discussed here. Model I is the basic model itself, with stability and sea-state dependent eddy viscosity, conductivity and diffusivity which may, in certain ranges ofRi, be unequal. This model is applied on a relatively fine grid. Model II, applied on the same grid, uses formulas which yield equal eddy conductivity, diffusivity, and viscosity. The calculated eddy coefficients depend only on the height and wind shear. Model III uses the same exchange coefficient formulas as Model II. However, the surface-layer eddy flux in Model III is calculated by assuming that logarithmic profiles of the transported variables are present in this layer. Model IV is the same as Model III in these respects, but employs a relatively coarse vertical grid. This model, therefore, includes boundary layer formulas most like those conventionally used in large scale atmospheric models (e.g. Miyakoda, 1969).The four models were integrated numerically with identical inputs of initial, boundary, and auxiliary data prepared from observations made over the eastern half of the BOMEX observational area during June 21–25, 1969.Models I and IV are, in general, in better agreement with each other than either is with Model II. This is true for the model-generated upper and lower boundary fluxes of mean momentum and latent heat; and for the internal boundary layer production of mean kinetic energy by the cross-isobaric flow component. Model I agrees, on balance, about as well with Model IV as does Model III. The solutions for Models I, III, and IV are also, in general, more consistent with observed data, viz. 5-day average temperature profiles in the layer from the surface to 1000 meters, and 5-day averages of sea surface temperature and of surface-layer atmospheric humidity. Solutions for Model I are in better overall agreement with the observed data, and with the average observed surface-layer wind.The results show that, under the limitations implicit in these preliminary experiments, accurate simulations of observed data are possible with boundary-layer formulas of the type used in Model IV, and even more accurate simulation with the modest refinements represented by Model I. Piecemeal imposition of such refinements could, however, lead to models, like Model II, with significantly different energetic properties and less simulative accuracy. Specifically, the results support the speculation (Miyakodaet al., 1969) that the shallowness of the simulated Trades noted in some large-scale models is due to deficiencies in the boundary-layer eddy stress formulations used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号