首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The quality of lidar and sodar wind estimates is generally judged through comparisons with mast-mounted instruments, and the resulting regressions. Evaluation of the relative merits of lidars versus sodars is complicated by the fact that lidars are generally placed close to a mast whereas sodars are generally placed some distance from a mast so that acoustic reflections off the mast are reduced. This leads to the two technologies, lidar and sodar, not being compared in similar situations. Differences arising from the two geometries can be expected to be larger in complex terrain, where the wind regime can vary significantly spatially. The current work explores these differences in moderately complex terrain. Lidar–mast comparisons are performed with the lidar close to an 80 m mast, and sodar–mast comparisons performed with the sodar 300 m from the mast. Systematic variations in estimated wind speed are found to occur with height, consistent with predictions from a simple flow model. When the lidar was moved to the sodar location, further from the mast, there were significant changes in the estimated wind speeds and a reduction in correlation with the mast-based wind speeds, as expected. However, the correlation between collocated lidar and sodar winds was high. This finding emphasizes that any comparison of two remote sensing instruments needs to be through similar experiments, and that differences in accuracy often reported for the lidar and sodar technologies are likely to be contaminated due to poor comparison configurations. A method was devised to simulate the sodar being collocated with the mast, by using the lidar–sodar measurements and the lidar–mast measurements. It was found that there was then no statistically detectable difference between lidar–mast regressions and sodar–mast regressions for the particular lidar and sodar tested. Both remote sensing instruments were also found to be good estimators of Weibull parameters, as compared with those derived from mast data. The conclusion is that the sodar measured the winds above the sodar with a similar accuracy to the lidar measuring winds above the lidar.  相似文献   

2.
We measured the surface energy budget of an Alpine grassland in highly complex terrain to explore possibilities and limitations for application of the eddy-covariance technique, also for CO2 flux measurements, at such non-ideal locations. This paper focuses on the influence of complex terrain on the turbulent energy measurements of a characteristic high Alpine grassland on Crap Alv (Alp Weissenstein) in the Swiss Alps during the growing season 2006. Measurements were carried out on a topographic terrace with a slope of 25 inclination. Flux data quality is assessed via the closure of the energy budget and the quality flag method used within the CarboEurope project. During 93% of the time the wind direction was along the main valley axis (43% upvalley and 50% downvalley directions). During the transition times of the typical twice daily wind direction changes in a mountain valley the fraction of high and good quality flux data reached a minimum of ≈50%, whereas during the early afternoon ≈70% of all records yielded good to highest quality (CarboEurope flags 0 and 1). The overall energy budget closure was 74 ± 2%. An angular correction for the shortwave energy input to the slope improved the energy budget closure slightly to 82 ± 2% for afternoon conditions. In the daily total, the measured turbulent energy fluxes are only underestimated by around 8% of net radiation. In summary, our results suggest that it is possible to yield realistic energy flux measurements under such conditions. We thus argue that the Crap Alv site and similar topographically complex locations with short-statured vegetation should be well suited also for CO2 flux measurements.  相似文献   

3.
Theoretical results and data are presented in order to describethe spectral modifications induced by the effects of surfaceinhomogeneity on the features of turbulent boundary-layer flows.The hill case is used by way of example, and atmospheric andlaboratory data in neutral conditions are discussed. Shear andblocking effects with different characteristics are shown to bepresent both upwind and over the hill top.  相似文献   

4.
Summary At a special measuring site for boundary-layer studies as well as land-surface processes the Meteorological Observatory Lindenberg of the German Weather Service (DWD) has recently put into operation a newly-desi gned phased-array SODAR/RASS, which has been developed by METEK on behalf of the DWD. This system provides the vertical profiles of the three-di mensional wind vector in the boundary layer on an operational basis and is furthermore suitable for getting information on the profile of virtual temperature up to about 400 m in height based on the addition of RASS components. The following paper describes both the technique of this SODAR/RASS and the various modes of operation as well as the different options in managing the system. First evaluations on the data availability concerning the maximum height coverage will give an impression on the system’s capabilities. Finally, the accuracy of the derived profiles of winds and temperature will be investigated by means of comparisons of the SODAR/RASS data with measurements of a six-sonde tethered-balloon system as well as meteorological data of a 99 m tower in the vicinity of the system. Received November 27, 1998 Revised April 9, 1999  相似文献   

5.
Elucidating cold-air-pooling processes forms part of the longstanding problem of parametrizing the effects of complex terrain in larger-scale numerical models. The Weather Research and Forecasting model has been set-up and run at high resolution over an idealized alpine-valley domain with a width of order 10 km, to investigate the four-dimensional variation of key cold-air-pooling forcing mechanisms, under decoupled stable conditions. Results of the simulation indicated that the total average valley-atmosphere cooling is driven by a complex balance/interplay between radiation and dynamical effects. Three fairly distinct regimes in the evolution of cold-air-pooling processes have been identified. Starting about 1 h before sunset, there is an initial 30-min period when the downslope flows are initiated and the total average valley-atmosphere instantaneous cooling is dominated by radiative heat loss. A period of instability follows, when there is a competition between radiation and dynamical effects, lasting some 90 min. Finally, there is a gradual reduction of the contribution of radiative cooling from 75 to 37 %. The maximum cold-air-pool intensity corresponds to the time of minimum radiative cooling, within the period of instability. Although, once the flow is established, the valley atmosphere cools at broadly similar rates by radiation and dynamical effects, overall, radiation effects dominate the total average valley-atmosphere cooling. Some of the intricacies of the valley mixing have been revealed. There are places where the dynamics dominate the cooling and radiation effects are minor. Characteristics of internal gravity waves propagating away from the slopes are discussed.  相似文献   

6.
复杂地形局地环流的数值模拟研究   总被引:7,自引:1,他引:7  
采用一个三维中尺度动力学诊断模式,对重庆地区气象场进行了实例模拟,研究了复杂地形和不同下垫面型对流场的动力和热力作用,揭示了中尺度局地环流(山谷风、河陆风)的基本特征和变化规律,模拟结果与实测资料有好的一致性,表明该模式能够成功地模拟复杂地形局地环流。  相似文献   

7.
Summary A REMTECH PA2 Doppler Sodar is operated regularly at the Czech Hydrometeorological Institute (CHMI) observatory in Prague, collocated with a routine rawinsonde sounding system. The Air Pollution Control Division of CHMI utilises the sodar data in air pollution studies and as an information support for the smog warning system operated in Prague. Besides of the basic software for echo strength and wind profile evaluation, optional routines for deriving parameters such as inversion and mixing height, stability class etc. were delivered by the sodar manufacturer. Based on a sufficiently large data set (more than one year) of synchronous sodar and rawinsonde measurements, an analysis and comparison of inversion and mixing heights provided by both sounding systems have been accomplished in order to evaluate the correctness and accuracy of sodar estimates of these parameters. In contrast to the wind speed and wind direction data, for which a satisfactory agreement with other kind of measurements has been reported by many studies, the results for inversion and mixing height detection were totally disappointing. A direct applicability of inversion height and mixing height data provided by the REMTECH’s automatic routines in air pollution studies or smog warning systems is quite problematical with the present “state of the art”. Received November 3, 1998 Revised April 20, 1999  相似文献   

8.
9.
An examination of boundary-layer meteorological and avian aerodynamic theories suggests that soaring birds can be used to measure the magnitude of vertical air motions within the boundary layer. These theories are applied to obtain mixed-layer normalized thermal updraft intensity over both flat and complex terrain from the climb rates of soaring American white pelicans and from diagnostic boundary-layer model-produced estimates of the boundary-layer depth zi and the convective velocity scale w*. Comparison of the flatland data with the profiles of normalized updraft velocity obtained from previous studies reveals that the pelican-derived measurements of thermal updraft intensity are in close agreement with those obtained using traditional research aircraft and large eddy simulation (LES) in the height range of 0.2 to 0.8 zi. Given the success of this method, the profiles of thermal vertical velocity over the flatland and the nearby mountains are compared. This comparison shows that these profiles are statistically indistinguishable over this height range, indicating that the profile for thermal updraft intensity varies little over this sample of complex terrain. These observations support the findings of a recent LES study that explored the turbulent structure of the boundary layer using a range of terrain specifications. For terrain similar in scale to that encountered in this study, results of the LES suggest that the terrain caused less than an 11% variation in the standard deviation of vertical velocity.  相似文献   

10.
复杂地形区域之大气环境容量   总被引:1,自引:0,他引:1  
向可宗 《大气科学》1991,15(1):111-119
复杂地形区域之风场及污染物的输送,受地形影响往往是非均匀的,这类地区大气环境容量的估算也有别于平坦地形区域。本文以粤东山区之梅州市工业居民混合区为例,介绍了复杂地形条件下大气环境容量的计算方法。主要包括:1.确定地形影响下近地面之主要流型.2.合理给出模式调整前容量的初估值,以尽量减少模式调整的工作量.3.建立非均匀风场条件下的环境容量调整模式.4.通过模式调整得出大气环境容量的准确值。  相似文献   

11.
利用中尺度数值模式MM5,选用NCEP全球客观分析资料(1°×1°)和国内高空地面资料为初始场,采用张驰逼近边界条件和单一冰相水汽方案,模拟了河南省西部山区的复杂地形对2006年6月19日局地环流的影响,结果表明:太行山的南麓和熊耳山的东侧都有因地形热力作用而形成的山谷风存在。  相似文献   

12.
复杂地形下山谷风的数值模拟   总被引:3,自引:0,他引:3  
利用中尺度数值模式MM5,选用NCEP全球客观分析资料(1°×1°)和国内高空地面资料为初始场,采用张驰逼近边界条件和单一冰相水汽方案,模拟了河南省西部山区的复杂地形对2006年6月19日局地环流的影响,结果表明:太行山的南麓和熊耳山的东侧都有因地形热力作用而形成的山谷风存在.  相似文献   

13.
由于观测资料不能覆盖研究所关注的高空区域,已有理论又无法解释所面对的问题,所以希望利用数值模拟来生产一套逼近真实的数据,以补充观测的欠缺。  相似文献   

14.
15.
Russian Meteorology and Hydrology - It is shown that the snow stake measurements in central Antarctica systematically underestimate the value of the snow build-up. Two methods for the calculation...  相似文献   

16.
17.
复杂地形风场的精细数值模拟   总被引:1,自引:0,他引:1  
风能是一种重要气候资源,随着我国风电规模的迅速增大,发展风能资源评估系统和风功率预测系统已成为一项重要的研究内容。国内外对复杂地形风场结构的数值模拟有大量研究,随着计算机能力增强,以往用于空气动力学精细流场计算的计算流体力学(Computational Fluid Dynamics,CFD)模式越来越多地在气象领域得到应用,人们开始研究用中尺度预报模式和CFD模式结合进行复杂地形风场的数值模拟。本文的耦合模式系统采用中尺度气象模式(WRF),通过嵌套网格到内层尺度(一般是几公里),然后通过耦合CFD模式Fluent软件获得高分辨率(水平30~100 m,垂直150 m高度以下10 m)的风速分布资料,得到精细化的风场信息。通过对鄱阳湖北部区域和云南杨梅山复杂地形的风场模拟,提供了风能评估和预报的一种可行的方法。  相似文献   

18.
Global radiation is an important parameter necessary for most ecological models. However, in situ data barely meets the needs of modelling mountainous ecosystems since most field stations are located in flat areas. Consequently, it is usually necessary to extrapolate radiation measurements obtained from an adjacent flat area to the complex terrain of concern. The distribution of radiation in complex terrain depends upon two factors: the local atmospheric conditions, which determine the radiation potentially available to a supposed flat surface in a given location, and the topographic effects on this possible radiation. The latter have been included in detail in most radiation models for complex terrain, but the former are often only simply treated as constant or estimated by over-simplified empirical algorithms. In this paper we propose a novel model that uses a parametric atmospheric model to calculate the potential radiation for a supposed flat surface in a given location, and then account for topographic effects. Direct radiation, diffuse radiation and reflected radiation are calculated separately in the model due to the distinctive characteristics of and the effects by topography. Based on the parametric model, this paper has investigated the relationship between radiation transmittance, clearness indices and altitude under a series of water vapour content and turbidity conditions. This combines three ratios, R b, R d, and R r, defined as the direct radiation, diffuse radiation and reflected radiation received by the arbitrary surface, respectively, to their counterparts in the horizontal surface, to estimate the global radiation for any given location. The model has been validated with data from measurements in National Park Berchtesgaden, Germany, where six measurement sites with various altitudes and topographic characteristics have been deployed. The r 2 of modelled and measured hourly global radiation are greater than 0.90 in all six sites, with RMSE varies from 16 to 100 W m−2. Sensitivity analysis revealed that the model was not sensitive to change in water vapour content, which suggests the possibility to use an exponential algorithm of water vapour content when there is no in situ water vapour content information in complex terrains. The NRMSE was only reduced by 0.04, on average, in five of the six sites when water vapour content information was calculated from the in situ air temperature and relative humidity measurements.  相似文献   

19.
复杂地形对对流混合层的影响   总被引:2,自引:1,他引:1  
用发展后的混合层模式研究下垫面(地形和地面热力)的不均匀性对混合层结构的影响。数值实验表明,在保持了混合层模式简便和实用等特点的同时,发展后的混合层模式能够很好地反映复杂地形对混合层厚度和风速的影响。  相似文献   

20.
西双版纳地区雾的数值模拟研究   总被引:14,自引:1,他引:13  
建立了一个适用于复杂地形上的三维非定常雾模式,用于研究西双版纳地区雾的生消规律。模式详细考虑了湍流、长短波辐射、凝结、蒸发、重力沉降等影响因子,特别注意了植被和气溶胶辐射效应对雾的生消的影响。利用本模式对山谷风及雾的生消过程进行了实况模拟,结果表明,模式在一定程度上反映了实际情况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号