首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This research on an alluvial plain oasis in the middle reaches of the Heihe River used the trend estimation model of principal component analysis through fixed position experiments to investigate and analyze changes in saline meadow soil characteristics after reclamation of the oasis. The conclusion is that after cultivation for a number of years, clay content increased from 9.18% (before cultivation) to 12.93% (after 30 years of cultivation) and soil nutrient content increased as well, but available potassium decreased from 1,315.50 mg/kg (before cultivation) to 240.84 mg/kg (after 30 years of cultivation). As a result of engineering, biological, and agricultural methods, total salt content significantly decreased by 97.15% from 70.28 g/kg (before cultivation) to 2.00 g/kg (after 30 years of cultivation). Through the trend estimation model of principal components analysis (PCA), it was found that soil quality improved over time. Synthetic analysis of various indexes of soil quality revealed that meadow saline soil could be used for agricultural production with responsible tillage.  相似文献   

2.
Increased application of road salt for winter maintenance has resulted in increased concentration of deicer constituents in the environment. The runoffs from the deicing operation have a deteriorating effect on water quality. The existence of salt super saturated Urmia lake and easy access to it, causes Urmia municipality to over use the super saturated water of this lake and salt (NaCl) during winter for snow melting, freezing prevention and traffic load facilitation. The aim of this study was investigation of surface and groundwater contaminations in consequence of salt (NaCl) and saline water usage in Urmia city and its surroundings. Studying the chloride ion concentration as a tracer in runoff result snowmelts during winter shows that its amount is differential with respect to time and place sampling. Results indicate that runoff result of snowmelts effected groundwater, soil and plant growth. The contamination of groundwater in study area by road salt and saline water is a slow process and directly related to the amount of road salt and saline water applied.  相似文献   

3.
According to the field experiment in the sodic saline soil region in the Songnen Plain, the dynamics of the soil water and solute affected by the shallow groundwater were explored during the growing season in 2004. The results presented that, influenced by the strongly evaporative demand, the soil water tended to transport to the upper soil layer with salt. The layered soil water balance model (LSWB model) revealed that the ratio of the water exchange between the groundwater and upper layer of the soil was 11.7:1. The groundwater discharge was 53.86 mm, but the groundwater recharge from the upper layer of soil was only 5.04 mm from 11 July to 06 September, which indicated that the groundwater could discharge to upper layer of soil and influence the soil salinization through capillary rise. The observed values of the salt content from July to mid-October presented that the soil solute was more changeable influenced by the climatic condition at 30 cm depth. As the field saturated hydraulic conductivity was low, the salts mainly accumulated in about 50–70 cm depth soil layer and hardly leached into deeper soil layer. Furthermore, the salt content was mainly controlled by the groundwater in the subsoil below 100 cm depth, the salt content decreased with the groundwater level receding. As influenced by the shallow groundwater and freeze-thaw action, further studies should be performed on the mechanism of soil salinization in the sodic saline soil region in the Songnen Plain of China.  相似文献   

4.
5.
Geostatistical and statistical analyses were combined to examine the spatial distribution of soil water content under four vegetation types during the dry season, in the peak-cluster depression in the karst region in northwest Guangxi, southwest China. The soil water content significantly increased from farmland to plantation, secondary forest, and primary forest; whereas the variation coefficients, the sill (C 0+C), and total spatial variance increased, although the range decreased. The spatial distribution of soil water content in the different vegetation types had a high spatial autocorrelation. Different models produced a best fit for the semivariograms of the four vegetation types. Elevation and slope position were the primary factors influencing the spatial distribution of soil water content, with other key factors differing between the four vegetation types. Moreover, even though different specific factors influenced soil water content in the four vegetation types, the correlations and degrees of associations between the soil water content and these various factors differed. Therefore, the corresponding strategies for rational usage and management of water resources should be different for the four vegetation types in this region.  相似文献   

6.
硫酸钠盐渍土未冻水含量的实验研究   总被引:1,自引:1,他引:1  
马敏  邴慧  李国玉 《冰川冻土》2016,38(4):963-969
土体中的未冻水含量影响冻土的物理力学性质,也是评价冻土中水分迁移的重要指标.利用核磁共振技术对含有不同浓度硫酸钠溶液的兰州黄土的未冻水含量进行测试,并分析了温度、含盐量对未冻水含量的影响.同时,测试了不同含盐量下黄土的液塑限及液塑限含水率下土体的冻结温度,计算了不同含盐量下的未冻水含量并与实测值进行比较,给出了不同含盐量下幂函数方程wu=at-b中的参数值.在此基础上,分析了-5、-10、-15和-20℃条件下未冻水含量随含盐量的变化规律,建立了4个温度下不同含盐量区间的未冻水-含盐量拟合公式.  相似文献   

7.
The Pampa de Chaparrí (Pampa) in hyperarid northwest coastal Peru is an ideal area to study late prehispanic agricultural technology and production because irrigation canals and furrowed fields have been preserved since abandonment approximately 500 years ago. We collected 55 samples for soil characterization, fertility, and micromorphic analyses and compared these results to a noncultivated control soil previously sampled in an adjacent valley. Natural soil fertility levels for maize, cotton, and bean production were generally high during late prehispanic cultivation in the Pampa. Maintaining adequate nitrogren levels for production, however, would have required external inputs from livestock manure, guano, or leguminous plants. The management of low soil salinity levels was possible because of rapidly permeable soils and irrigation waters low in salt. Based on available water capacity and climate conditions, the Blaney‐Criddle Equation yields evapotranspiration rates indicating that irrigation frequency was necessary in a range of every 10–16 days during the growing season. © 2004 Wiley Periodicals, Inc.  相似文献   

8.
《Applied Geochemistry》2005,20(10):1875-1889
Based on the systematic analyses of light hydrocarbon, saturate, aromatic fractions and C isotopes of over 40 oil samples along with related Tertiary source rocks collected from the western Qaidam basin, the geochemical characteristics of the Tertiary saline lacustrine oils in this region was investigated. The oils are characterized by bimodal n-alkane distributions with odd-to-even (C11–C17) and even-to-odd (C18–C28) predominance, low Pr/Ph (mostly lower than 0.6), high concentration of gammacerane, C35 hopane and methylated MTTCs, reflecting the high salinity and anoxic setting typical of a saline lacustrine depositional environment. Mango’s K1 values in the saline oils are highly variable (0.99–1.63), and could be associated with the facies-dependent parameters such as Pr/Ph and gammacerane indexes. Compared with other Tertiary oils, the studied Tertiary saline oils are marked by enhanced C28 sterane abundance (30% or more of C27–C29 homologues), possibly derived from halophilic algae. It is noted that the geochemical parameters of the oils in various oilfields exhibit regular spatial changes, which are consistent with the depositional phase variations of the source rocks. The oils have uncommon heavy C isotopic ratios (−24‰ to −26‰) and a flat shape of the individual n-alkane isotope profile, and show isotopic characteristics similar to marine organic matter. The appearance of oleanane and high 24/(24 + 27)-norcholestane ratios (0.57–0.87) in the saline oils and source rocks confirm a Tertiary organic source.  相似文献   

9.
10.
含盐量对滨海盐渍土物理及水理性质的影响   总被引:3,自引:0,他引:3  
含盐量的增加使滨海盐渍土含水率与含液率间的差值变大,并导致高估土的干密度,低估土的孔隙比和饱和度。物理性质指标换算和颗粒级配分析试验结果表明,从2%的含盐量开始,随含盐量增加,胶粒含量减少,粘粒和粉粒含量增加,但25μm及以上的粒组含量变化不大。2%以内的含盐量对土的稠度指标影响微弱,当含盐量增加到11%时,盐分结晶形成了较多的晶体颗粒,使土的塑性指数明显下降并呈现出区段性。  相似文献   

11.
西北地区水资源若干问题探讨   总被引:8,自引:0,他引:8  
在对我国西北地区水资源及开发利用现状进行分析的基础上,针对如何认识西北地区的缺水问题,如何评价西北地区地下水资源的重要性,怎样看待深层地下水资源以及开采地下水可能引起的环境地质问题等,进行了较深入的分析论述。指出进一步查清西北地区地下水资源,尤其是中深层地下水资源,并加以科学、适度的开发和合理利用,是解决西北地区水资源短缺问题的重要途径之一。  相似文献   

12.
13.
冻融季节苏打盐渍土的水盐变化规律   总被引:4,自引:0,他引:4       下载免费PDF全文
通过野外定位观测和室内分析,探讨了冻融季节的微域尺度(32 m长的横剖面)苏打盐渍土的水分和盐分的变化规律.结果表明:冻结期大量地下水迁移并储存在盐化草甸土的冻层中,同时地下水位埋深迅速从1.2 m下降到2.5 m以下;苏打盐化草甸土冻结层的含水率明显增加,其中30~40 cm土层的含水率变化最明显(从冻结前的20%增加到50%).苏打碱土冻层的含水率增量不明显,但盐分显著增加,其中白盖苏打碱土表层的盐分增量幅度达80%.盐分变化主要表现为苏打盐渍土表层HCO3-、CO32-、SO42-以及Na+的增加,大量盐分表聚使消融期土壤的盐渍化程度不断加重.  相似文献   

14.
利用高密度电阻率法进行盐渍土含水率的测定   总被引:1,自引:3,他引:1       下载免费PDF全文
盐渍土中含有较多的可溶盐,其工程性质对含水率很敏感。将室内试验与现场试验相结合探索了电阻率法间接测定盐渍土含水率的可行性。采用高密度电阻率法对盐渍土浸水试验后的影响范围进行测试,通过在室内恒定温度下测定的盐渍土电阻率与含水率的关系,建立特定土体结构下的电阻率与含水率的数学模型。现场实测高密度电阻率值,利用现场观测的土层温度,计算出浸水范围的含水率,与现场分层实测含水率进行对比,验证了数学模型的可靠性。  相似文献   

15.
16.
膜下滴灌微区环境对土壤水盐运移的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
基于膜下滴灌特有的"膜中"、"膜间"、"膜边"、"膜外"微区环境,利用2011—2013年田间对比试验方法获取的5 960个数据,运用柯布-道格拉斯模型,构建膜下滴灌环境土壤层次、灌水定额、土壤水分、气温、蒸发综合因素与土壤水盐关系及影响效应分析模型.结果表明,在气候干旱、蒸发强烈灌区,地膜覆盖与滴灌结合的地表介面灌溉形式下,土壤水盐具有水平方向由"膜中"向"膜边"地表裸露区定向迁移,垂直方向土壤水盐则由下向上层运移且趋于"膜外"边界积累的趋势,尤其是气温与蒸发因素交互作用,推进膜下滴灌土壤水盐在地膜覆盖与土壤裸露区域空间运移,研究结果进一步揭示了膜下滴灌"土壤水盐定向迁移"形成机理,为膜下滴灌土壤水盐地表排放模式应用提供了依据.  相似文献   

17.
The long-term impact of irrigation on a Mediterranean sandy soil irrigated with Treated wastewater (TWW) since 1980 was evaluated. The main soil properties (CEC, pH, size distribution, exchangeable cations and chloride, hydraulic conductivity) as well as the organic matter and Cu, Cr and Pb speciation in an irrigated soil and a non-irrigated control soil at various soil depths were monitored and compared during a 2 years experiment. In this first part, the evolution of the physico-chemical soil properties was described. The irrigation with TWW was beneficial with regard to water and nutrient supplying. All the exchangeable cations other than K+ were higher in the irrigated soil than in the reference one. A part of the exchangeable cations was not fixed on the exchange complex but stored as labile salts or in concentrated soil solution. Despite the very sandy soil texture, both saturated and unsaturated hydraulic conductivity exhibited a significant diminution in the irrigated soil, but remained high enough to allow water percolation during rainy periods and subsequent leaching of accumulated salts, preventing soil salinization. In the irrigated soil, exchangeable sodium percentage (ESP) exhibited high values (20% on average) and the soil organic C was lower than in the reference. No significant effect was noticed on soil mineralogical composition due to irrigation.  相似文献   

18.
Toxicity of heavy metals adversely affects environment and human health. Organic materials derived from natural matters or wastes have been applied to soils to reduce the mobility of contaminants such as heavy metals. However, the application of cow bone powder (CB), biochar (BC), and eggshell powder (ES) is rarely investigated for the reduction of Pb bioavailability in soils irrigated with saline water. The objective of this study was to assess the effectiveness of CB, BC, and ES additions as immobilizing substances on Pb bioavailability in shooting range soil irrigated with deionized and saline water. Each additive of CB, BC, and ES at 5 % (w/w) was mixed with soils and then the deionized and saline water were irrigated for 21 days. With deionized water irrigation, the soils treated with CB, BC, and ES exhibited higher pH when compared with saline water irrigation. With saline water irrigation, the electrical conductivity, water-soluble anions, and cations were significantly increased in soils treated with CB, BC, and ES. The water-soluble Pb in soils treated with CB, BC, and ES was significantly decreased with saline water irrigation. On the other hand, the water-soluble Pb in soil treated with CB was increased with deionized water irrigation. Only BC with saline water irrigation decreased the Pb concentration in maize shoots.  相似文献   

19.
Soil hydraulic properties such as soil infiltration rate and hydraulic conductivity are closely linked to runoff generation and infiltration processes but little is known about them on karst hillslopes. The objectives of this paper were to investigate the change in soil stable infiltration rate (q s) and near-saturated hydraulic conductivity (K ns) in different slope positions and to understand their relationship with rock fragment content and soil texture within the topsoil in subtropical karst regions of southwest China. Tension infiltrometers (20 cm in diameter) were used to measure q s and K ns at pressure head of −20 mm on hillslopes 1 (a disintegrated landslide failure) and 2 (an avalanche slope). The change of q s and K ns was great and they mostly had a moderate variability with coefficient of variations (CV) between 0.1 and 1.0 in the different slope positions. On average, q s ranged from 0.43 to 4.25 mm/min and K ns varied from 0.75 to 11.00 mm/min. These rates exceed those of most natural rainfall events, confirming that overland flow is rare on karst hillslopes. From bottom to top, q s and K ns had a decrease–increase–decrease trend due to the presence of large rock outcrops (>2 m in height) on hillslope 1 but had an increasing trend on hillslope 2 with less complex landform. They tended to increase with increase in total rock fragment content (5–250 mm) within the topsoil as well as slope gradient on both hillslopes. Pearson correlation analysis suggested that higher coarse pebble (20–75 mm), cobble (75–250 mm), and sand (2–0.05 mm) contents as well as total rock fragment content could significantly facilitate water infiltration into soils, but higher clay (<0.002 mm) content could restrict water movement. This result indicated that rock fragment, sand, and clay contents may remarkably affect water flow in the topsoil layers, and should be considered in hydrological modeling on karst hillslopes in subtropical regions.  相似文献   

20.
Irrigation with diluted seawater would be an alternative water resource which can play an important role under scarce resources of freshwater for promoting agricultural production in coastal areas. Salvadora persica Linn. was irrigated with different concentrations of seawater (0, 10, 20, 40, 60, 80 and 100 % seawater), and their effect on plant growth, nutrient contents in soil and plants, shift in soil microbial community structure (phospholipid fatty acid; PLFA) and community-level physiological profiling (CLPP, Biolog ECO MicroPlate) were studied. Plant dry matter was significantly increased with all seawater treatments, and highest increase was at 20 % seawater treatment. Sodium and chloride contents were significantly increased, whereas ratios of K/Na and Ca/Na were significantly decreased in plants with seawater irrigation. Soil electrical conductivity (EC), available K and Na were significantly increased with increasing the concentration of seawater. Total PLFA concentration and PLFA profile of soils were used as indices of total microbial biomass and community composition, respectively. The concentrations of total PLFA, gram-positive, gram-negative and actinomycetes biomarker PLFAs were significantly reduced at 20, 40, 80 and 40 % concentrations of seawater, respectively. The application of different concentrations of seawater induced a clear shift in the soil microbial community structure toward the bacterial abundance. The microbial community structure and community-level physiological profiling in seawater irrigation treatments had significantly differentiated. It can be concluded that irrigation with different concentrations of seawater had significant impact on soil chemical and microbial properties which is attributed due to the salinity stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号