首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Steven C. Cohen 《Tectonophysics》1985,120(3-4):173-189
As determined by satellite laser ranging the rate of contraction of a 900 km baseline between sites located near Quincy in northern California and San Diego in southern California is about 61–65 mm/yr with a formal uncertainty of about 10 mm/yr (Christodoulidis et al., 1985). The measured changes in baseline length are a manifestation of the relative motion between the North America and Pacific tectonic plates. This long baseline result is compared to measurements made by more conventional means on shorter baselines. Additional information based on seismiscity, geology, and theoretical modelling is also analyzed. Deformation lying within a few tens of kilometers about the major faults in southern California accounts for most, but not all, of the observed motion. Further motion is attributable to a broader-scale deformation in southern California. Data suggesting crustal movements north of the Garlock fault, in and near the southern Sierra Nevada and local motion at an observatory are also critically reviewed. The best estimates of overall motion indicated by ground observations lie between 40 and 60 mm/yr. This lies within one or two standard deviations of that deduced from satellite ranging but the possibility of some unresolved deficit cannot be entirely dismissed. The long time scale RM2 plate tectonic model of Minster and Jordan (1978) predicts a contraction between 47 and 53 mm/yr depending on the extension rate of the Basin and Range. Thus the ground based observations, SLR results, and RM2 rates differ at about the 10 mm/yr level but are not inconsistent with one another within the data and model uncertainties.  相似文献   

2.
Magnesium-rich clayey gouge similar to that comprising the two actively creeping strands of the San Andreas Fault in drill core from the San Andreas Fault Observatory at Depth (SAFOD) has been identified in a nearby outcrop of serpentinite within the fault zone at Nelson Creek. Each occurrence of the gouge consists of porphyroclasts of serpentinite and sedimentary rocks dispersed in a fine-grained, foliated matrix of Mg-rich smectitic clays. The clay minerals in all three gouges are interpreted to be the product of fluid-assisted, shear-enhanced reactions between quartzofeldspathic wall rocks and serpentinite that was tectonically entrained in the fault from a source in the Coast Range Ophiolite. We infer that the gouge at Nelson Creek connects to one or both of the gouge zones in the SAFOD core, and that similar gouge may occur at depths in between. The special significance of the outcrop is that it preserves the early stages of mineral reactions that are greatly advanced at depth, and it confirms the involvement of serpentinite and the Mg-rich phyllosilicate minerals that replace it in promoting creep along the central San Andreas Fault.  相似文献   

3.
Aseismic slip or fault creep is occurring on many faults in California. Although the creep rates are generally less than 10 mm/yr in most regions, the maximum observed rate along the San Andreas fault between San Juan Bautista and Gold Hill in central California exceeds 30 mm/yr. Changes in slip rates along a 162 km segment of the San Andreas fault in this region have occurred at approximately the same time at up to nine alinement array sites. Rates of creep on the fault near the epicenters of moderate earthquakes (ML 4–6) vary for periods of several years, decreasing before the main shocks and increasing thereafter, in agreement with prior observations based on creepmeter results. The change of surface slip rate is most pronounced within the epicentral region defined by aftershocks, but records from sites at distances up to 100 km show similar variations. Additionally, some variations in rate, also apparently consistent among many sites, have a less obvious relation with seismic activity and have usually taken place over shorter periods. Not all sites exhibit a significant variation in rate at the time of a regional change, and the amplitudes of the change at nearby sites are not consistently related. The time intervals between measurements at the nine array sites during a given period have not always been short with respect to the intervals between surveys at one site; hence, uneven sampling intervals may bias the results slightly. Anomalies in creep rates thus far observed, therefore, have not been demonstrably consistent precursors to moderate earthquakes; and in the cases when an earthquake has followed a long period change of rate, the anomaly has not specified time, place, or magnitude with a high degree of certainty. The consistency of rate changes may represent a large scale phenomenon that occurs along much of the San Andreas transform plate boundary.  相似文献   

4.
High-resolution magnetotelluric (MT) studies of the San Andreas fault (SAF) near Hollister, CA have imaged a zone of high fluid content flanking the San Andreas fault and extending to midcrustal depths. This zone, extending northeastward to the Calaveras fault, is imaged as several focused regions of high conductivity, believed to be the expression of tectonically bound fluid pockets separated by northeast dipping, impermeable fault seals. Furthermore, the spatial relationship between this zone and local seismicity suggests that where present, fluids inhibit seismicity within the upper crust (0–4 km). The correlation of coincident seismic and electromagnetic tomography models is used to sharply delineate geologic and tectonic boundaries. These studies show that the San Andreas fault plane is vertical below 2 km depth, bounding the southwest edge of the imaged fault-zone conductor (FZC). Thus, in the region of study, the San Andreas fault acts both as a conduit for along-strike fluid flow and a barrier for fluid flow across the fault. Combined with previous work, these results suggest that the geologic setting of the San Andreas fault gives rise to the observed distribution of fluids in and surrounding the fault, as well as the observed along-strike variation in seismicity.  相似文献   

5.
Many bends or step-overs along strike–slip faults may evolve by propagation of the strike–slip fault on one side of the structure and progressive shut-off of the strike–slip fault on the other side. In such a process, new transverse structures form, and the bend or step-over region migrates with respect to materials that were once affected by it. This process is the progressive asymmetric development of a strike–slip duplex. Consequences of this type of step-over evolution include: (1) the amount of structural relief in the restraining step-over or bend region is less than expected; (2) pull-apart basin deposits are left outside of the active basin; and (3) local tectonic inversion occurs that is not linked to regional plate boundary kinematic changes. This type of evolution of step-overs and bends may be common along the dextral San Andreas fault system of California; we present evidence at different scales for the evolution of bends and step-overs along this fault system. Examples of pull-apart basin deposits related to migrating releasing (right) bends or step-overs are the Plio-Pleistocene Merced Formation (tens of km along strike), the Pleistocene Olema Creek Formation (several km along strike) along the San Andreas fault in the San Francisco Bay area, and an inverted colluvial graben exposed in a paleoseismic trench across the Miller Creek fault (meters to tens of meters along strike) in the eastern San Francisco Bay area. Examples of migrating restraining bends or step-overs include the transfer of slip from the Calaveras to Hayward fault, and the Greenville to the Concord fault (ten km or more along strike), the offshore San Gregorio fold and thrust belt (40 km along strike), and the progressive transfer of slip from the eastern faults of the San Andreas system to the migrating Mendocino triple junction (over 150 km along strike). Similar 4D evolution may characterize the evolution of other regions in the world, including the Dead Sea pull-apart, the Gulf of Paria pull-apart basin of northern Venezuela, and the Hanmer and Dagg basins of New Zealand.  相似文献   

6.
Data are presented on the molecular composition of drill-mud gas from the lower sedimentary section (1800–3987 m) of the SAFOD (San Andreas Fault Observatory at Depth) Main Hole measured on-line during drilling, as well as C and H isotope data from off-line mud gas samples. Hydrocarbons, H2 and CO2 are the most abundant non-atmospheric gases in drill-mud when drilling seismogenic zones. Gas influx into the well at depth is related to the lithology and permeability of the drilled strata: larger formation gas influx was detected when drilling through organic-rich shales and permeable sandstones. The SAF (San Andreas Fault), encountered between approximately 3100 m and 3450 m borehole depth, is generally low in gas, but is encompassed by two gas-rich zones (2700–2900 m and below 3550 m) at the fault margins with enhanced 222Rn activities and distinct gas compositions. Within the fault, two interstratified gas-rich lenses (3150–3200 m and 3310–3340 m) consist of CO2 and hydrocarbons (upper zone), but almost exclusively of hydrocarbons (lower zone).  相似文献   

7.
GPS-derived velocities (1993–2002) in northwestern California show that processes other than subduction are in part accountable for observed upper-plate contraction north of the Mendocino triple junction (MTJ) region. After removing the component of elastic strain accumulation due to the Cascadia subduction zone from the station velocities, two additional processes account for accumulated strain in northern California. The first is the westward convergence of the Sierra Nevada–Great Valley (SNGV) block toward the coast and the second is the north–northwest impingement of the San Andreas fault system from the south on the northern California coastal region in the vicinity of Humboldt Bay. Sierra Nevada–Great Valley block motion is northwest toward the coast, convergent with the more northerly, north–northwest San Andreas transform fault-parallel motion. In addition to the westward-converging Sierra Nevada–Great Valley block, San Andreas transform-parallel shortening also occurs in the Humboldt Bay region. Approximately 22 mm/yr of distributed Pacific–SNGV motion is observed inland of Cape Mendocino across the northern projections of the Maacama and Bartlett Springs fault zones but station velocities decrease rapidly north of Cape Mendocino. The resultant 6–10 mm/yr of San Andreas fault-parallel shortening occurs above the southern edge of the subducted Gorda plate and at the latitude of Humboldt Bay. Part of the San Andreas fault-parallel shortening may be due to the viscous coupling of the southern edge of the Gorda plate to overlying North American plate. We conclude that significant portions of the upper-plate contraction observed north of the MTJ region are not solely a result of subduction of the Gorda plate but also a consequence of impingement of the western edge of the Sierra Nevada–Great Valley block and growth of the northernmost segments of the San Andreas fault system.  相似文献   

8.
The authors recently determined seismic parameters of earthquakes located along a lineation of microearthquakes in the Coast Range Province of northern California (Dehlinger and Bolt, 1984). The lineation closely follows the mapped Bartlett Springs fault zone, which is considered to be the source of seismic activity. This fault strikes N40°W for about 40 km and the mapped fault zone consists of a 2–3 km-wide belt of melange. Earthquake hypocenters indicate that this belt dips steeply to the northeast, with shocks occurring along multiple dislocation planes that together extend downward to depths of about 12 km.Focal mechanisms and associated stress fields were determined for 22 of the best recorded recent shocks along the earthquake lineation. Analyses of these shocks provided a comparison between individually and jointly determined focal mechanisms and of the directions of the corresponding stress axes, for identical shocks along the entire fault length. Thirteen of the shocks exhibited right-lateral, San Andreas type of source motions. Average values of these 13 individually determined focal parameters are within the standard deviation of the same set of jointly determined values. It is thus verified that the probability model algorithm for joint parameters determinations developed by Brillinger et al. (1980) yields reliable values of focal parameters. Moreover, the jointly determined parameters appear to be more reliable than the average-determined ones. The focal mechanisms and associated stress fields along the entire length of the Bartlett Springs fault zone are consistent with shearing motions between the North American and Pacific lithospheric plates that produce displacements along the San Andreas transform fault.  相似文献   

9.
Detailed geologic mapping of the San Andreas fault zone in Los Angeles County since 1972 has revealed evidence for diverse histories of displacement on branch and secondary faults near Palmdale. The main trace of the San Andreas fault is well defined by a variety of physiographic features. The geologic record supports the concept of many kilometers of lateral displacement on the main trace and on some secondary faults, especially when dealing with pre-Quaternary rocks. However, the distribution of upper Pleistocene rocks along branch and secondary faults suggests a strong vertical component of displacement and, in many locations, Holocene displacement appears to be primarily vertical. The most recent movement on many secondary and some branch faults has been either high-angle (reverse and normal) or thrust. This is in contrast to the abundant evidence for lateral movement seen along the main San Andreas fault. We suggest that this change in the sense of displacement is more common than has been previously recognized.The branch and secondary faults described here have geomorphic features along them that are as fresh as similar features visible along the most recent trace of the San Andreas fault. From this we infer that surface rupture occurred on these faults in 1857, as it did on the main San Andreas fault. Branch faults commonly form “Riedel” and “thrust” shear configurations adjacent to the main San Andreas fault and affect a zone less than a few hundred meters wide. Holocene and upper Pleistocene deposits have been repeatedly offset along faults that also separate contrasting older rocks. Secondary faults are located up to 1500 m on either side of the San Andreas fault and trend subparallel to it. Moreover, our mapping indicates that some portions of these secondary faults appear to have been “inactive” throughout much of Quaternary time, even though Holocene and upper Pleistocene deposits have been repeatedly offset along other parts of these same faults. For example, near 37th Street E. and Barrel Springs Road, a limited stretch of the Nadeau fault has a very fresh normal scarp, in one place as much as 3 m high, which breaks upper Pleistocene or Holocene deposits. This scarp has two bevelled surfaces, the upper surface sloping significantly less than the lower, suggesting at least two periods of recent movement. Other exposures along this fault show undisturbed Quaternary deposits overlying the fault. The Cemetery and Little Rock faults also exhibit selected reactivation of isolated segments separated by “inactive” stretches.Activity on branch and secondary faults, as outlined above, is presumed to be the result of sympathetic movement on limited segments of older faults in response to major movement on the San Andreas fault. The recognition that Holocene activity is possible on faults where much of the evidence suggests prolonged inactivity emphasizes the need for regional, as well as detailed site studies to evaluate adequately the hazard of any fault trace in a major fault zone. Similar problems may be encountered when geodetic or other studies, Which depend on stable sites, are conducted in the vicinity of major faults.  相似文献   

10.
The Pacific-North America plate boundary along the San Andreas fault system is notoriously a right-lateral transpressive margin where both almost pure thrust and strike-slip tectonics take place. The Pacific plate travels WNW, forming an angle of about 25° with the boundary. Since the Pacific is moving WNW faster than North America, right lateral transtension should result along the San Andreas system. North America, in turn, travels westward obliquely to the boundary and a left-lateral transpressive component would be expected along the same margin. Therefore, the right-lateral transpression of the San Andreas system can be partitioned into (i) a sinistral transpression along the southwestern margin of the North America plate obliquely overriding (ii) a faster right lateral transtension occurring along the transfer margin of the Pacific plate between the East Pacific rise in the California Gulf and the Gorda ridge to the north-west. This is due to the oblique trend of the Pacific and North America plate margins with respect to their motion in a absolute reference frame.
The geodynamics of California is marked by a unique setting in which there is a special subduction where, in contrast with classic subduction zones, the footwall of the subduction plane is obliquely diverging from the hanging wall in an E-W section, while it is converging at slower rates in a NE-SW direction. The extensional E-W component is absorbed into the Basin and Range rifting, whereas the compressive NE-SW component is mainly expressed in the Coast Ranges and California offshore. The compression perpendicular to the San Andreas is then not intrinsic in the strike-slip movement, but it is rather an independent tectonic factor. Therefore, the San Andreas system cannot be considered as an archetype of a pure strike slip fault.  相似文献   

11.
Two major faults, over 32 km long and 6.4 km apart, truncate or overprint most previous folds and faults as they trend more northerly than the previous N25°E to N40°E fold trends. The faults were imposed as the last event in a region undergoing sequential counter-clockwise generation of tectonic structures. The western Big Cove anticline has an early NW verging thrust fault that emplaces resistant rocks on its NW limb. A 16 km overprint by the Cove Fault is manifested as 30 small northeast striking right-lateral strike-slip faults. This suggests major left-lateral strike-slip separation on the Cove Fault, but steep, dip-slip separation also occurs. From south to north the Cove Fault passes from SE dipping beds within the Big Cove anticline, to the vertical beds of the NW limb. Then it crosses four extended, separated, Tuscarora blocks along the ridge, brings Cambro-Ordovician carbonates against Devonian beds, and initiates the zone of overprinted right-lateral faults. Finally, it deflects the Lat 40°N fault zone as it crosses to the next major anticline to the northwest. To the east, the major Path Valley Fault rotates and overprints the earlier Carrick Valley thrust. The Path Valley Fault and Cove Fault may be Mesozoic in age, based upon fault fabrics and overprinting on the east–west Lat 40°N faults.  相似文献   

12.
The Coyote Lake basalt, located near the intersection of the Hayward and Calaveras faults in central California, contains spinel peridotite xenoliths from the mantle beneath the San Andreas fault system. Six upper mantle xenoliths were studied in detail by a combination of petrologic techniques. Temperature estimates, obtained from three two-pyroxene geothermometers and the Al-in-orthopyroxene geothermometer, indicate that the xenoliths equilibrated at 970–1100 °C. A thermal model was used to estimate the corresponding depth of equilibration for these xenoliths, resulting in depths between 38 and 43 km. The lattice preferred orientation of olivine measured in five of the xenolith samples show strong point distributions of olivine crystallographic axes suggesting that fabrics formed under high-temperature conditions. Calculated seismic anisotropy values indicate an average shear wave anisotropy of 6%, higher than the anisotropy calculated from xenoliths from other tectonic environments. Using this value, the anisotropic layer responsible for fault-parallel shear wave splitting in central California is less than 100 km thick. The strong fabric preserved in the xenoliths suggests that a mantle shear zone exists below the Calaveras fault to a depth of at least 40 km, and combining xenolith petrofabrics with shear wave splitting studies helps distinguish between different models for deformation at depth beneath the San Andrea fault system.  相似文献   

13.
A chaotic fault interaction model previously developed for the San Andreas Fault System and the Nankai Trough (examples of transform fault and subduction dominated tectonic regimes, respectively) is here applied to the large-event seismicity in the New Zealand region, where the interacting blocks of the model are taken to be those parts of the Indo-Australian plate boundary that are, from north-east to southwest, subduction dominated, ‘transpressional’, and transform-fault dominated. The model suggests a shorter term recurrence of large events than do simple seismic cycle approaches.  相似文献   

14.
对珠江三角洲地区布格重力和航磁资料系统处理、研究、解释,确认珠江三角洲地区地壳深部存在近EW向、NW向和NE向3组断裂系统。近EW向断裂是深部主要断裂系统,大部分断裂深及30km以上,其中有些断裂是以往很少为人们关注的; NW向断裂分布也比较广泛,但深度相对较浅,大都在10km左右,不超过20km; NE向断裂虽然地表出露最广,规模最大,但只有广州-恩平断裂可深及30km 以上,大多数也相对较浅,特别是以往一些被称为深大断裂的断裂只有10km左右深度,不超过20km。上述工作新成果同传统概念的珠江三角洲地区深大断裂格局有较大改变。本文提出“新构造期深大断裂”的新概念及理论分析、解释这种格局的改变。并认为它对研究新构造、地质构造、工程地质、地震地质、找矿、找水、地质灾害等方面或具有科学理论意义和实用价值。文章还阐述了近EW,NW和NE向3组断裂间的相互切割关系,认为前二组断裂活动较NE向断裂更活跃或更新一些。  相似文献   

15.
The Parkfield Area Seismic Observatory (PASO) was a dense, telemetered seismic array that operated for nearly 2 years in a 15 km aperture centered on the San Andreas Fault Observatory at Depth (SAFOD) drill site. The main objective of this deployment was to refine the locations of earthquakes that will serve as potential targets for SAFOD drilling and in the process develop a high (for passive seismological techniques) resolution image of the fault zone structure. A challenging aspect of the analysis of this data set was the known existence of large (20–25%) contrasts in seismic wavespeed across the San Andreas Fault. The resultant distortion of raypaths could challenge the applicability of approximate ray tracing techniques. In order to test the sensitivity of our hypocenter locations and tomographic image to the particular ray tracing and inversion technique employed, we compare an initial determination of locations and structure developed using a coarse grid and an approximate ray tracer [Thurber, C., Roecker, S., Roberts, K., Gold, M., Powell, M.L. , and Rittger, K., 2003. Earthquake locations and three-dimensional fault zone structure along the creeping section of the San Andreas fault near Parkfield, CA: Preparing for SAFOD, Geophys. Res. Lett., 30 3, 10.1029/2002GL016004.] with one derived from a relatively fine grid and an application of a finite difference algorithm [Hole, J.A., and Zelt, B.C., 1995. 3-D finite-difference reflection traveltimes, Geophys. J. Int., 121, 2, 427–434.]. In both cases, we inverted arrival-time data from about 686 local earthquakes and 23 shots simultaneously for earthquake locations and three-dimensional Vp and Vp/Vs structure. Included are data from an active source seismic experiment around the SAFOD site as well as from a vertical array of geophones installed in the 2-km-deep SAFOD pilot hole, drilled in summer 2002. Our results show that the main features of the original analysis are robust: hypocenters are located beneath the trace of the fault in the vicinity of the drill site and the positions of major contrasts in wavespeed are largely the same. At the same time, we determine that shear wave speeds in the upper 2 km of the fault zone are significantly lower than previously estimated, and our estimate of the depth of the main part of the seismogenic zone decreases in places by  100 m. Tests using “virtual earthquakes” (borehole receiver gathers of picks for surface shots) indicate that our event locations near the borehole currently are accurate to about a few tens of meters horizontally and vertically.  相似文献   

16.
The present paper is a continuation of the previous work on modeling the local stress field induced by the San Andreas fault system (Nikonov et al., 1975). This system has been simulated on plane elastic models made of optically sensitive material, the models being under homogeneous uniaxial compression. The photoelastic method has been used to study the redistribution of τmax around the fault system with sides closed under compression.Three main features emerge in the kinematics of fault-system modeling. The first is a peculiar distortion of an originally rectangular grid, reflecting right-lateral movements on the San Andreas fault. This is especially noticeable in its central part. The second is the appearance and spreading of tear breaks near the ends of the zone nearly normal to the strike of the ends of the master fault. The third feature is separation of fault wings in certain sections of the San Andreas fault in the model. All these features are in general correspondence with the phenomena actually observed in the San Andreas fault system.  相似文献   

17.
Deciphering the internal structure of large fault zones is fundamental if a proper understanding is to be gained of their mechanical, hydrological and seismological properties. To this end, new detailed mapping and microstructural observations of the excellently exposed Carboneras fault zone in southeastern Spain have been used to elucidate both the internal arrangement of fault products and their likely mechanical properties. The fault is a 40 km offset strike-slip fault, which constitutes part of the Africa–Iberia plate boundary. The zone of faulting is 1 km in width not including the associated damage zone surrounding the fault. It is composed of continuous strands of phyllosilicate-rich fault gouge that bound lenses of variably broken-up protolith. This arrangement provides a number of fluid flow and fluid sealing possibilities within the fault zone. The gouge strands exhibit distributed deformation and are inferred to have strain hardening and/or velocity hardening characteristics. Also included in the fault zone are blocks of dolomite that contain thin (<1 cm thick) fault planes inferred to have been produced by strain weakening/velocity weakening behaviour. These fault planes have a predominantly R1 Riedel shear orientation and are arranged in an en echelon pattern. A conceptual model of this type of wide fault zone is proposed which contrasts with previous narrow fault zone models. The observed structural and inferred mechanical characteristics of the Carboneras fault zone are compared to seismological observations of the San Andreas fault around Parkfield, CA. Similarities suggest that the Carboneras fault structure may be a useful analogue for this portion of the San Andreas fault at depth.  相似文献   

18.
The spaceborne laser ranging (or lasering) system provides a method of precise positioning of a large number of points on the earth's surface in a short period of time. That is, a measure of the relative location of geodetic markers from a space platform can maintain horizontal and vertical control to 2–5 cm. At this level of control, small earth surface crustal motions should be detectable. Development of a model for the strain field can be constructed. Furthermore, the spaceborne lasering system can survey an area in a very short period of time (1–2 weeks) and resurvey the area as required.System design parameters are now being established by NASA for a possible test flight aboard the Shuttle in 1982. These include design specifications of economical corner cubes for ground retroreflectors, coupled with the evolution of engineering model to flight model development. If the experiment of the Shuttle proves successful, it is hoped to put the laser in a free flight satellite. This paper presents the results of a simulated analysis for this contingency.The system is conceived as an orbiting ranging device with a ground base grid of reflectors or transponders (spacing 1.0–30 km), which are projected to be of low cost (maintenance-free and unattended) and which will permit the saturation of a local area to obtain data useful in monitoring crustal movements. The test network includes 75 stations with roughly half of them situated on either side of the San Andreas fault. Critical study comparatively evaluates various observational schemes and statistically analyzes crustal motion recovery.The study considers laser radar as the main ranging system, pending final selection from many possible candidates. The satellite orbit is inclined at 110° and slightly eccentric (e = 0.04) with orbital altitudes varying from 370 to 930 km.  相似文献   

19.
The San Andreas Fault zone in central California accommodates tectonic strain by stable slip and microseismic activity. We study microstructural controls of strength and deformation in the fault using core samples provided by the San Andreas Fault Observatory at Depth (SAFOD) including gouge corresponding to presently active shearing intervals in the main borehole. The methods of study include high-resolution optical and electron microscopy, X-ray fluorescence mapping, X-ray powder diffraction, energy dispersive X-ray spectroscopy, white light interferometry, and image processing.The fault zone at the SAFOD site consists of a strongly deformed and foliated core zone that includes 2–3 m thick active shear zones, surrounded by less deformed rocks. Results suggest deformation and foliation of the core zone outside the active shear zones by alternating cataclasis and pressure solution mechanisms. The active shear zones, considered zones of large-scale shear localization, appear to be associated with an abundance of weak phases including smectite clays, serpentinite alteration products, and amorphous material. We suggest that deformation along the active shear zones is by a granular-type flow mechanism that involves frictional sliding of microlithons along phyllosilicate-rich Riedel shear surfaces as well as stress-driven diffusive mass transfer. The microstructural data may be interpreted to suggest that deformation in the active shear zones is strongly displacement-weakening. The fault creeps because the velocity strengthening weak gouge in the active shear zones is being sheared without strong restrengthening mechanisms such as cementation or fracture sealing. Possible mechanisms for the observed microseismicity in the creeping segment of the SAF include local high fluid pressure build-ups, hard asperity development by fracture-and-seal cycles, and stress build-up due to slip zone undulations.  相似文献   

20.
The South China Sea (SCS) is a region of interaction among three major plates: the Pacific, Indo-Australian and Eurasian. The collision of the Indian subcontinent with the Eurasian plate in the northwest, back-arc spreading at the center, and subduction beneath the Philippine plate along Manila trench in the east and the collision along Palawan trough in the south have produced complex tectonic features within and along the SCS. This investigation examines the satellite-derived gravity anomalies of the SCS and compares them with major tectonic features of the area. A map of Bouguer gravity anomaly is derived in conjunction with available seafloor topography to investigate the crustal structure. The residual isostatic gravity anomaly is calculated assuming that the Cenozoic sedimentary load is isostatically compensated. The features in the gravity anomalies in general correlate remarkably well with the major geological features, including offsets in the seafloor spreading segments, major faults, basins, seamounts and other manifestations of magmatism and volcanism on the seafloor. They also correlate with the presumed location of continental-oceanic crust boundary. The region underlain by oceanic crust in the central part of the SCS is characterized by a large positive Bouguer gravity anomaly (220–330 mgal) as well as large free-air and residual isostatic anomalies. There are, however, important differences among spreading segments. For example, in terms of free-air gravity anomaly, the southwest section of mid-ocean has an approximately 50 km wide belt of gravity low superimposed on a broad high of 45 mgal running NW–SE, whereas there are no similar features in other spreading segments. There are indications that gravity anomalies may represent lateral variation in upper crustal density structure. For instance, free air and isostatic anomalies show large positive anomalies in the east of the Namconson basin, which coincide with areas of dense volcanic material known from seismic surveys. The Red River Fault system are clearly identified in the satellite gravity anomalies, including three major faults, Songchay Fault in the southwest, Songlo Fault in the Northeast and Central Fault in the center of the basin. They are elongated in NW–SE direction between 20±30'N and 17°N and reach to Vietnam Scarp Fault around 16°30'N. It is also defined that the crustal density in the south side of the Central Basin is denser than that in the north side of the Central Basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号